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Abstract. solving optimal control problems (OCP) with analytical
methods has usually been difficult or not cost-effective. Therefore, solv-
ing these problems requires numerical methods. There are, of course,
many ways to solve these problems. One of the methods available
to solve OCP is a forward-backward sweep method (FBSM). In this
method, the state variable is solved in a forward and co-state variable
by a backward method where an explicit Runge–Kutta method (ERK)
is often used to solve differential equations arising from OCP.In this
paper, instead of the ERK method, two hybrid methods based on ERK
method of order 3 and 4 are proposed for the numerical approxima-
tion of the OCP. Truncation errors and stability analysis of the pre-
sented methods are illustrated. Finally, numerical results of the five
optimal control problems obtained by new methods, which shows that
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new methods give us more accurate results, are compared with those of
ERK methods of orders 3 and 4 for solving OCP.

AMS Subject Classification: 65K10;65L20.
Keywords and Phrases: FBSM, OCP, Stability analysis, Hybrid
methods.

1 Introduction
The goal of this work is to illustrate details of a new single step ex-
plicit Rung-Kutta (ERK) type method based on off-step points for the
numerical solution of optimal control problems (OCP) of the form:

maxu

∫ t1

t0

f (t, x (t) , u (t)) dt, (1)

subject to the state equation

x′ (t) = g (t, x (t) , u (t)) , x (t0) = t0, (2)

where it is assumed that x and u are vector-valued functions on [t0, t1]
with values in Rn and Rm, respectively. Some of the ways to generalize
this problem are as follows:
1) the terminal value of the x(t) at t = t1 may be fixed;
2) the value of end time t1could be considered as a variable;
3) a scrap function ϕ(t1) could be included in addition to the objective
function (1) [9, 16, 17, 18] .
The generalized problem can be solved by using indirect methods which
are numerical techniques to solve them. The forward backward sweep
method (FBSM) is one of these methods. In [7], convergence analysis of
the FBSM has been done. In fact, by using FBSM, the differential equa-
tions arising from the maximum principle are numerically solved. Euler,
Trapezoidal and Runge–Kutta methods can be used for the numerical
solution of OCP by using FBSM where we are faced with initial value
problems(IVPS) arising from the state and adjoint equations. In 2015,
D. P. Moualeu et al. used FBSM to solve derived optimality system for
a tuberculosis model with undetected cases in Cameroon numerically.
An iterative method used for solving obtained optimality system. The
state system solved by forward in time and the adjoint system solved
backward using the transversality condition [3]. Lhous et al. presented
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a discrete mathematical modeling and optimal control of the marital
status in 2017 and solved the control problem using FBSM in which an
iterative method used for the numerical solution of ordinary differential
equations with initial guess [2]. In [5], authors solved basic OCP us-
ing Runge-Kutta based FBSM and compared the numerical results with
those of Euler and trapezoidal based FBSM. Note that, for non-stiff
models of OCP a number of numerical schemes for solving ODEs in the
literature can be used to solve forward as well as backward. On the other
hand, for mildly stiff and stiff problems of ODEs which may be appeared
in OCP, we need to use numerical methods with wide stability regions
and domains as well as good accuracy. In this work, we illustrate three
implicit hybrid methods of orders 3 and 4 and then convert them into
explicit methods using explicit Runge-Kutta methods of orders 3 and 4
as a predictor of the scheme. The stability and order of truncation error
of the methods discussed showing that new methods have wide stability
regains by which more accurate results can be obtained compared to the
FBSM based explicit Runge-Kutta methods of orders 3 and 4. The pa-
per is organized as follows: In Section 2, hybrid methods of orders 3 and
4 is described and their orders of truncation errors discussed. In Section
3, stability of the presented methods is analyzed. Numerical results for
solving some optimal control problems presented in Section 4. Finally,
we conclude the paper in Section 5.

2 Hybrid methods and order of truncation er-
rors

For the numerical solution of initial value problems (IVP) of the form

x′ = f(t, x) , x ∈ Rn , x(t0) = x0 , t0 ≤ t ≤ t1, (3)

where f : [t0, t1]×Rn → Rn, one can use an explicit or implicit method.
Methods based of off-step points, such as hybrid BDF, (HBDF), new
class of HBDFs and class 2+1 hybrid BDF-like methods have wide sta-
bility regions and higher order compared to some Runge-Kutta method
and implicit BDF methods [1, 11, 13, 14, 15]. Let us consider the IVP of
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the form (3). Linear k-step methods of the

xn+1 = α1xn+α2xn−1+...+αkxn−k+1+h{β0fn+1+β1fn+...+βkfn−k+1}
(4)

has 2k + 1 arbitrary parameter and can be written as

ρ(E)xn−k+1 − hσ(E)fn−k+1 = 0

where E is the shift operator as E(x(t)) = x(t+h), with the step length
h and ρ and σ are first and second characteristic polynomials defined by

ρ(ξ) = ξk − α1ξ
k−1 − α2ξ

k−2 − ...− αk, (5)

σ(ξ) = β0ξ
k + β1ξ

k−1 + ...+ βk , (6)

To increase the order of k-step methods of the form (4), we use a linear
combination of the slopes at several points between tn and tn+1 where
tn+1 = tn + h and h is the step length on [t0, t1]. Then, the modified
form of (4) with m slops is given by

xn+1 =
k∑

j=1

αjxn−j+1 + h
k∑

j=0

βjfn−j+1 + h
m∑
j=1

γjfn−θj+1 (7)

where αj , βj , γj and θj are 2k + 2m + 1 arbitrary parameters [11].
Methods of the form (7) with m off-step points are called hybrid methods
where 0 < θj < 1, j = 1, 2, ...,m. In this work, we set β0 = 0, k = 1 and
m = 1. Hence, we write (7) as

xn+1 = α1xn + h{β0fn+1 + β1fn}+ hγ1fn−θ1+1 (8)

where α1, β0, β1, γ1 and θ1 are arbitrary parameters and θ1 ̸= 0 or 1.
Expanding terms yn+1, fn+1, fn−θ1+1 in Taylor’s series about tn, we can
obtain a family of third order methods if the equations

α1 = 1
β1 + β0 + γ1 = 1
β0 + (1− θ1)γ1 =

1
2

1
2β0 +

1
2(1− θ1)

2γ1 =
1
6
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are satisfied where the principal term of the truncation error is

1

4!
c4h

4x(4)(tn) + o(h5), c4 = 1− 4β2 − 4γ1(1− θ1)
3.

For more details, we refer the reader to [11]. Considering the following
three cases:

1. β1 = 0, α1 = 1, β0 =
1
4 , γ1 =

3
4 , θ1 =

2
3 , c4 = −1

9 ,

2. β1 =
1
4 , α1 = 1, β0 = 0, γ1 =

3
4 , θ1 =

1
3 , c4 =

1
9 ,

3. β1 =
1
6 , α1 = 1, β0 =

1
6 , γ1 =

2
3 , θ1 =

1
2 , c4 = 0.

gives us the following methods of orders 3, 3, and 4 respectively (say
New 3_1, New 3_2 and New 4 in this work) [11]:

xn+1 = xn +
h

4
{fn+1 + 3fn+ 1

3
}, (9)

xn+1 = xn +
h

4
{fn + 3fn+ 2

3
}, (10)

xn+1 = xn +
h

4
{fn+1 + 4fn+ 1

2
+ fn}, (11)

where fn+1 = f(tn, xn+1), fn+m = f(tn +mh, xn+m) and fn = f(tn, xn)
for m = 1

3 ,
2
3 and 1

2 . Note that, xn+1, xn+m and xn are numerical
approximations according to the exact values of the solution x(t) at
tn+1 = tn + h, tn+m = tn +mh, tn = tn for m = 1

3 ,
2
3 and 1

2 respectively.
In order to convert methods (9)–(11) into explicit methods at each step,
we predict the values of xn+1 and xn+m used on the right hand side
of the new methods using fourth or third order explicit Runge-Kutta
method as follows, respectively:

xn+1 = xn + h
6 (k1 + 2k2 + 2k3 + k4),

k1 = f(tn, xn),
k2 = f(tn + 1

2h, xn + 1
2k1h),

k3 = f(tn + 1
2h, xn + 1

2k2h),
k4 = f(tn + h, xn + k3h).

(12)
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or
xn+1 = xn + h

6 (k1 + 4k2 + k3),
k1 = f(tn, xn),
k2 = f(tn + 1

2h, xn + 1
2k1h),

k3 = f(tn + h, xn − k1h+ 2k2h).

(13)

In general, we rewrite methods (9) –(11) using RK4 method as a pre-
dictor as follows:

−
xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4), (14)
−
xn+m = xn + mh

6 (k1 + 2k2m + 2k3m + k4m),m = 1
3 ,

2
3 or 1

2 , (15)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (16)

where

k1 = f(tn, xn),
k2m = f(tn +mh, xn +mk1h),
k3m = f(tn +mh, xn +mk2h),
k4m = f(tn +mh, xn +mk3h),

and fn+1 = f(tn, xn+1), fn+m = f(tn +mh, xn+m), fn = f(tn, xn). Now,
suppose that the order of stage equation (13) is p1, p1 = 4, as like as
(14). Thus, the difference between exact and numerical solution at t =
tn+m = tn +mh,m = 1

3 ,
2
3 ,

1
2 and 1 is

y(tn+m)− yn+m = Cmhp1y(p1)(tn) +O(hp1+1) (17)

where Cm is the error constant of the method (14) or (16) with corre-
sponding m which can take only one of the values 1

3 ,
2
3 ,

1
2 , together

with the value 1 related to methods (13) and (14) respectively. The
difference operator associated to method (15), of order p, p = 3 or 4, can
be written as

y(tn+1)− yn+1 = Chpy(p)(tn) +O(hp+1) (18)

where C is the error constant of the method (16). Therefore, we have
the following theorem:

Theorem 2.1. Given that
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1. formula (14) is of order p1,

2. formula (15) is of order p1 too,

3. formula (16) is of order p,

then, the order of (14) –(15) is p.

Proof. Suppose that m can only take one of the values 1
3 ,

2
3 or 1

2 and
yn is exact. From (18) and (16) one can write

y(tn+1)− yn+1 = hβm[f(tn+m, y(tn+m))− f(tn+m, yn+m)] (19)

+hβ1[f(tn+1, y(tn+1))− f(tn+1, yn+1)] + Chpy(p)(tn) +O(hp+1).

Considering properties of the IVPs of the form (3), for some values such
as ηm and η1 belong to intervals (yn+m, y(tn+m)) and (yn+1, y(tn+1))
respectively, we can write
f(tn+m, y(tn+m))− f(tn+m, yn+m) = ∂f

∂y (tn+m, ηn+m)(y(tn+m)− yn+m),

f(tn+1, y(tn+1))− f(tn+1, yn+1) =
∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1).

Therefore, by using (19), we have
y(tn+1)− yn+1 = hβm

[
∂f
∂y (tn+m, ηn+m)(y(tn+m)− yn+m)

]
+hβ1

[
∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1)

]
+ Chpy(p)(tn) +O(hp+1).

Applying equation (16) to this gives us
y(tn+1)− yn+1 =

hβm

[
∂f
∂y (tn+m, ηn+m)Cmhp1y(p1)(tn) +O(hp1+1)

]
+hβ1

[
∂f
∂y (tn+1, ηn+1)C1h

p1y(p1)(tn) +O(hp1+1)
]
+Chpy(p)(tn)+O(hp+1)

= hp
{
βm

[
∂f
∂y (tn+m, ηn+m)Cmhp1−p+1y(p1)(tn)

]
+ β1

[
∂f
∂y (tn+1, ηn+1)C1h

p1−p+1y(p1)(tn)
]

+Cy(p)(tn)}+O(hp+1)

where p1 ≥ p. Thus, it can be concluded that the method (14) –(16) is
of order p and so the proof is completed. □
By following the same way as presented above, it can be proved that
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the methods (9) –(11) using RK3 method as a predictor (Runge-kutta
of order 3) of the form

−
xn+1 = xn + h

6 (k1 + 4k2 + k3), (20)
−
xn+m = xn + mh

6 (k1 + 2k2m + 2k3m),m = 1
3 ,

2
3 or 1

2 , (21)

xn+1 = xn + h{β1
−
fn+1 + γ1

−
fn+m + β0fn}, (22)

where

k1 = f(tn, xn),
k2m = f(tn +mh, xn +mk1h),
k3m = f(tn +mh, xn +mk2h),

and fn+1 = f(tn, xn+1), fn+m = f(tn +mh, xn+m), fn = f(tn, xn).

3 Stability analysis of the new methods
Now we want to examine the stability analysis of new methods. We
consider Dahlquist test problem x′ = λx to investigate the stability
region of the methods presented in this study. Using the Dahlquist
test problem to the methods (14)-(16) inserting p1 = 4, the following
equations can be obtained:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!
+

(h̄)4

4!

)
xn, (23)

−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

(mh̄)4

4!

)
xn,m = 1

3 ,
2
3 or 1

2 ,

(24)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (25)

where h̄ = hλ. By substituting (23) and (24) into (25), the following
equation is obtained:

xn+1 = xn + h

{
β0

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

(h̄)4

4!

)
xn

}
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+ h

{
γ1

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

(mh̄)4

4!

)
xn + β1xn

}
. (26)

By inserting xn = rn into (26) and dividing by rn we can obtain:

rn+1 = rn
{
1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2 +

(β0 + γ1m
2)h̄3

2

}

+rn
{
(β0 + γ1m

3)h̄4

6
+

(β0 + γ1m
4)h̄5

24

}
(27)

⇒ r = 1+h̄(β0+β1+γ1)+(β0+γ1m)h̄2+
(β0 + γ1m

2)h̄3

2
+
(β0 + γ1m

3)h̄4

6

+
(β0 + γ1m

4)h̄5

24
.

which is the stability polynomial of the methods (14) – (16) for m =
1
3 ,

2
3 or 1

2 where p1 = 4. By following the same way for p1 = 3, we can
obtain:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

)
xn, (28)

−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!

)
xn,m = 1

3 ,
2
3 or 1

2 , (29)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (30)

where h̄ = hλ. By substituting (28) and (29) into (30), the following
equation is obtained:

xn+1 = xn + h

{
β0

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

(h̄)4

4!

)
xn

}

+ h

{
γ1

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

)
xn + β1xn

}
. (31)
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By inserting xn = rn into (31) and dividing by rn we can obtain:

rn+1 = rn
{
1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2

}

+rn
{
(β0 + γ1m

2)h̄3

2
+

(β0 + γ1m
3)h̄4

6

}
⇒ r = 1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2

+
(β0 + γ1m

2)h̄3

2
+

(β0 + γ1m
3)h̄4

6
. (32)

We show the stability of the method New 3_1, where p1 = 3. in Fig-
ure. 1 and compared Runge- Kutta of Rank 3 method. It can be seen
that the stability zone of the new method is larger, and this proves
the efficiency of the new method. We show the stability of the method
New 3_1, where p1 = 4. in Figure. 1 and We compared Runge- Kutta
of Rank 4 methods. It can be seen that the stability zone of the new
method is larger, and this proves the efficiency of the new method. We
show the stability of the method New 3_2, where p1 = 3 in Figure. 2
and compared Runge- Kutta of rank 3 methods. It can be seen that
the stability region of the new method is larger, and this proves the
efficiency of the new method, and we show the stability of the method
New 3_2 where p1 = 4 in Figure 2 and compared Runge- Kutta of rank
4 method. It can be seen that the stability region of the new method
is larger. We show the stability of the method New4, where p1 = 3 in
Figure. 3 and compared Runge- Kutta of rank 3 method. It can be seen
that the stability region of the new method is larger, and this proves the
efficiency of the new method, and we show the stability of the method
New4 where p1 = 4 in Figure 3 and compared Runge- Kutta of rank 4
method. It can be seen that the stability region of the new method is
larger.



FBSM Solution of Optimal Control Problems using Hybrid Runge-Kutta
based Methods 11

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

-----   new31 p=3

-----   rk3

(a)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

-----  new31 p=4

-----    rk4

(b)

Figure 1: (a) Stability region of rk3 and new 3_1 methods where p1 = 3. (b)
Stability region of rk4 and new3_1 methods where p1 = 4.

4 Numerical results using FBSM and new meth-
ods:

Example 4.1. Consider the following optimal control problem:

minu
∫ 1
0 3x(t)2 + u(t)2dt

st. x′(t) = x(t) + u(t), x(0) = 1.
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Figure 2: (a) Stability region of rk3 and new3_2 methods where p1 = 3. (b)
Stability region of rk4 and new3_2 methods where p1 = 4.

Analytical solutions which are as follows: [9]

u∗(t) = 3e−4

3e−4+1
e2t − 3

3e−4+1
e−2t, x∗(t) = 3e−4

3e−4+1
e2t + 1

3e−4+1
e−2t

The state variable at the end point is x = 0.51314537669. And
variable control endpoint is equal to zero. Matlab implementation of the
three methods of Example 4.1 was determined as follows. The results
are shown in Figure 4 with h = 1

10 and in Tables 1, 2.These results show
that the new methods are more accurate than the Runge-Kutta of rank
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Figure 3: (a) Stability region of rk3 and new34 methods where p1 = 3. (b)
Stability region of rk4 and new4 methods where p1 = 4.

3 and 4

Example 4.2. Consider the following optimal control problem with a
payoff term:

min
u

x(T ) +

∫ T

0
u(t)2dt

st x′(t) = αx(t)− u(t), x(0) = x0 > 0
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Figure 4: (a) The optimal state and control of Example 4.1(Rk4). (b) The optimal
state and control values of Example 4.1 (new3_1, where p1 = 4)

The analytical solution of this problem is as follows [9]:

H = u2 + λ(αx− u) , ∂H
∂u = 2u− λ = 0 at u∗ ⇒ u∗ = λ

2 ,

λ′ = −∂H
∂x = −∂λ ⇒ λ = ce−αt , λ(T ) = 1 ⇒ λ(t) = eα(T−t) ⇒ u∗(t) = eα(T−t)

2 ,

x′ = αx−u = αx−u = αx−eα(T−t)

2
, x(0) = x0. ⇒ x∗(t) = x0e

αt+eαT
e−αt − eαt

4α
.

The numerical solution of this problem related to x (t) , and u(t) are ob-
tained and their results have been plotted in figure 5 with α = 2, h = 1

30 :
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Table 1: End Error of state values in Example 4.1 where p1 = 4

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

1.2332e-6 1.1930e-5 1.4443e-4 7.1135e-3 7.1134e-3 1
100

3.6697e-7 2.9247e-6 6.9423e-5 3.5690e-3 3.5960e-3 1
200

1.1662e-7 1.2755e-6 4.5676e-5 2.3820e-3 2.3820e-3 1
300

7.4674e-8 2.9113e-7 2.2526e-5 1.1924e-3 1.1924e-3 1
600

Table 2: End Error of state values in Example 4.1 where p1 = 3

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

1.4565e-5 4.6274e-6 4.6161e-6 7.1135e-3 7.1134e-3 1
100

3.7039e-6 1.1471e-6 1.1457e-6 3.5690e-3 3.5960e-3 1
200

1.6712e-6 5.6625e-7 5.6583e-7 2.3820e-3 2.3820e-3 1
300

3.7482e-7 1.6944e-7 1.6939e-7 1.1924e-3 1.1924e-3 1
600

These results show that the new methods are more accurate than
the Runge-Kutta of rank 4 method.

Example 4.3. Consider the example 4.2.
The numerical solution of Example 2 related to x (t) , and u(t) are ob-
tained and their results have been plotted in figure 6 with α = −30, h =
1
40 :

Table 3: End Error for state values of Example 4.2 (Alpha=2,eta=.000001, p1 = 4)

New4 New3_2 New3_1 Rk4 h

2.7526-4 2.6289e-4 2.8447e-4 7.6088e-2 1
200

4.5617e-5 4.3631e-5 4.7100e-5 3.0713e-2 1
500

1.2621e-5 1.2122e-5 1.2993e-5 1.5404e-2 1
1000

1.7077e-6 1.7027e-6 1.7112e-6 1.5460e-3 1
2000
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Figure 5: (a) The optimal state and control values of Example 4.2 (new3_1, where
p1 = 4). (b) The optimal state and control values of Example 4.2 (rk4).

These results show that the new methods are more accurate than the
Runge-Kutta of rank 4 method.

Example 4.4. Consider the following optimal control problem:

minu
∫ 1
0

5
8x(t)

2 + 1
2x(t)u(t) +

1
2u(t)

2dt
st. x′(t) = 1

2x(t) + u(t), x(0) = 1.
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Figure 6: (a) The optimal state and control values for Example 4.3(new3_1,p1 =
4). (b) The optimal state and control values of Example 4.3(rk4, p1 = 4).

Analytical solutions which are as follows [12]:
u∗(t) = − (tanh(1−t)+.5)cosh(1−t)

cosh(1) , x∗(t) = cosh(1−t)
cosh(1)

The state variable at the end point is x(1) = 6.4805427366388e− 1.
And variable control endpoint is u(1) = −3.24027136831e − 1. Matlab
implementation of the three methods of Example 4.5 was determined as
follows. The results are shown in Figure 7 with h = 1

10 and in Tables
6− 9.These results show that the new methods are more accurate than
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Table 4: End error for state values of Example 4.3 (Alpha=-
30,eta=.000001, where p1 = 4

New4 New3_2 New3_1 Rk4 h

1.0885e-5 1.3666e-5 7.8909e-6 3.0501e-4 1
200

1.6421e-6 2.0708e-6 1.2004e-6 1.2132e-4 1
500

4.0217e-7 5.0787e-7 2.9488e-7 6.0541e-5 1
1000

9.8872e-8 1.2510e-7 7.2440e-8 3.0240e-5 1
2000

Table 5: End Error of state values in Example 4.4 where p1 = 4

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

3.4818e-4 4.0739e-4 3.4143e-3 1.0965e-2 1.0936e-2 1
10

4.2119e-5 4.2737e-5 3.5529e-4 1.2195e-3 1.2194e-4 1
100

2.1162e-5 2.1317e-5 1.7793e-4 6.1325e-4 6.1325e-4 1
200

1.4106e-5 1.4175e-5 1.1866e-4 4.0959e-4 4.0959e-4 1
300

7.0160e-6 7.0333e-6 5.9314e-5 2.0514e-4 2.0514e-4 1
600

4.1705e-6 4.1767e-6 3.5554e-5 1.2313e-4 1.2313e-4 1
1000

the Runge-Kutta of rank 3 and 4.

Example 4.5. .Consider the following optimal control problem[6]

minu
∫ 3
0 (Ax3 + u2)2dt

st.

x1
′
= b− b(px2 + qx2)− bx1 − βx1x3 − ux1,,

x2
′
= bpx2 + βx1x3 − (e+ b)x2,

x3
′
= ex2 − (g + b)x3,

x4
′
= b− bx4.

With initial conditions x1(1) = 0.0555 , x2(1) = 0.0003 , x3(1) =
0.00041 , x4(1) = 1 and the parameters b = 0.012, p = 0.65, q = 0.65,
β = 527.59, e = 36.5, g = 30.417 and A = 100.

It is not easy to solve this, analytically and it is necessary to use
numerical method.
The results in the table 9 and figures 8, 9 shows that the new methods
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Table 6: End Error of state values in Example 4.4 where p1 = 3

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

2.3723e-4 7.5223e-5 5.2716e-4 1.0965e-2 1.0936e-2 1
10

2.4718e-6 8.9277e-7 8.0464e-5 1.2195e-3 1.2194e-4 1
100

5.3996e-7 1.4577e-7 4.0935e-5 6.1325e-4 6.1325e-4 1
200

1.8050e-7 5.3951e-9 2.7422e-5 4.0959e-4 4.0959e-4 1
300

3.5639e-8 7.9314e-8 1.3741e-5 2.0514e-4 2.0514e-4 1
600

8.1824e-8 9.7573e-8 8.2219e-6 1.2313e-4 1.2313e-4 1
1000

Table 7: End Error of control values in Example 4.4 where p1 = 4

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

1.7442e-4 2.0403e-4 1.7074e-3 5.4830e-3 5.4687e-3 1
10

2.1387e-5 2.1696e-5 1.7796e-4 6.1008e-4 6.1007e-4 1
100

1.0909e-5 1.0986e-5 8.9291e-5 3.0695e-4 3.0695e-4 1
200

7.3809e-6 7.4154e-6 5.9656e-5 2.0512e-4 2.0512e-4 1
300

3.8358e-6 3.8444e-6 2.9983e-5 1.0289e-4 1.0289e-4 1
600

2.4130e-6 2.4161e-6 1.8104e-5 6.1896e-5 6.1896e-5 1
1000

Table 8: End Error of control values in Example 4.4 where p1 = 3

New3_2 New4 New3_1 FBSM_rk4 FBSM_Rk3 h

1.1895e-4 3.7945e-5 2.6391e-4 5.4830e-3 5.4687e-3 1
10

1.5637e-6 7.7423e-7 4.0560e-5 6.1008e-4 6.1007e-4 1
100

5.9778e-7 4.0069e-7 2.0795e-5 3.0695e-4 3.0695e-4 1
200

4.1804e-7 3.3049e-7 1.4039e-5 2.0512e-4 2.0512e-4 1
300

3.0997e-7 2.8809e-7 7.1985e-6 1.0289e-4 1.0289e-4 1
600

2.8687e-7 2.7900e-7 4.4387e-6 6.1896e-5 6.1896e-5 1
1000
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Figure 7: (a) The optimal state and control values of Example 4.4(Rk4). (b) The
optimal state and control of Example 4.4 (new3_1, where p1 = 4)

compete with Runge-Kutta methods in stiff and several variable prob-
lems.

5 Conclusion

In this work, three hybrid methods of orders 3 and 4 are presented and
then, Runge - Kutta methods of orders 3 and 4 are used as predictor
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Figure 8: The optimal curves of the problem in Example 4.5(rk4)

Table 9: The optimal state values of methods in Example 4.5, p1 = 4

Method x1 x2 x3 x4

Rk4 0.057229233323 0.000174026727 0.000209796082 0
New3_1 0.057201314198 0.000175317514 0.000211408161 0
New3_2 0.057187036786 0.000176015581 0.000212278533 0
New4 0.057201267178 0.000175314688 0.000211404848 0
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Figure 9: The optimal curves of the problem in Example 4.5(new3_1,
p1 = 4)

schemes to gain whole methods of the same orders. In section 2, order of
truncation errors are investigated for the explicit hybrid based on Rune
- Kutta methods. Then, stability analysis of the methods are discussed
which shows that the stability domains of them are wider compared to
explicit Rune - kutta methods of orders 3 and 4. Finally, five examples of
optimal control problems are solved by using Matlab, FBSM scheme and
presented methods. Numerical results to solve the examples presented
by Tables 1 − 9 and therefore one can conclude that hybrid methods,
have a good performance in getting small end errors in solving optimal
control problems numerically.
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