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Abstract. In this note, we study Cauchy-Schwarz-type inequality for
fractional Strum-Liouville boundary value problem containing Caputo
derivative of order a, 1 < a < 2. A lower bound for the smallest
eigenvalue is determined using this inequality. We give a comparison
between the smallest eigenvalue and its lower bound obtained from
the Lyapunov-type and Cauchy-Schwarz-type inequalities which indi-
cate the properties of eigenvalues.
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1 Introduction

The Lyapunov inequality [10] has proved to be very useful in the study
of spectral properties and oscillation theory of ordinary differential equa-
tions. This inequality can be stated as follows [!]:
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The nontrivial solution to the boundary value problem
w'(t) + q(t)u(t) = 0,a < t < b, ula) = u(b) = 0, exists, where
q : [a,b] — R is a continuous function, then

b 4
A

The research on Lyapunov-Type Inequalities (LTIs) for Fractional Bound-
ary Value Problems (FBVPs) has begun since 2013. In [3], [4], [5], [0], [7],
[8], [11], [12], [13] and [15], the authors have established LTIs for FBVPs
of order a with different boundary conditions. In [12], Pathak obtained
LTT for fractional boundary value problem with Hilfer derivative of order
a, 1 < a < 2. Furthermore, the author applied LTI to obtain the lower
bound for the smallest eigenvalue of corresponding eigenvalue problem.
In addition, the Cauchy-Schwarz type inequality (CSI) is established to
improve the lower bound estimation of the smallest eigenvalue and ap-
plied it to obtain intervals where certain Mittag-Leffler (M-L) function
has no real zeros. The CSI provides better results than that of LTI
Motivated by the above work, we consider the following problem with
Sturm-Liouville boundary conditions [%]:

CED%)(t) +qt)u(t) =0, a<t<b 1<a<?2 (1)

pu(a) —ru'(a) = u(b) =0, (2)

where p > 0, » > 0 and ¢ : [a,b] — R is a continuous function. In
[8], Jleli and Samet established a Lyapunov-type inequality for FBVP
(1)-(2) as follows:

bh—
For % > =5

/a aolds > (1+ Po- a))(brjgal (3)

and for 0 <
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We establish CSI for FBVP (1)-(2). The outline of the paper is as
follows: first, we provide some preliminaries in Section 2 which we will
use in this paper. In section 3, we establish CSI for fractional Strum-
Liouville boundary value problem containing Caputo derivative of order
a, 1 < a < 2. We also give a comparison between the lower bound
estimates of the smallest eigenvalue obtained from the LTI and CSI.
In section 4, we use these inequalities to obtain an interval where a
linear combination of certain Mittag- Lefller functions have no real zeros.
Finally, a conclusion is given in Section 5.

2 Preliminaries

In this section, we recall some basic definitions which are further used
in this paper.

Definition 2.1. The Caputo derivative of fractional order a@ > 0 is
defined by

1 t—sm_a_lms s a
)/a@) f™(s)ds, t € [a, ],

C na

D )= ——
DN = T —a
where m is the smallest integer greater of equal to a.

Definition 2.2. The two-parameter M-L function is defined by

o k
z
Ea7ﬁ(2’) = I;)I‘(ak-i-ﬂ)’ (OC,B,Z S R,a,ﬁ > O)

Definition 2.3. The Pfaff Transformation is defined as

t 1
2F1(CL, bv C7t) = (1 _t)_a2F1 ((I,C— b7 (6% ﬁ)7 |t‘ < 57

where 9 F} (a, b; c;t) is a hypergeometric function.

For more details, refer [9] and [11].
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3 Main Result

The main result of this note is given in Theorem 3.3.

Lemma 3.1. The FBVP (1)-(2) can be written in its equivalent integral
form as [5]

b
_ / G(t, s)a(s)u(s)ds, € [ab)], (5)

where G is the Green’s function given by

r o
(P+<trai(b;) 1_(t—s)a—1,a§s§t§b,
—+b—a
Glts) = —— g
I'(a) (f+t—a>(b—8)a71
p (r ; ) a<t<s<b
—+b—ua
p

(6)

Lemma 3.2. [12] Let u € L*[a,b], then the Cauchy-Schwarz-type in-
equality of FBVP (1)-(2) is given by

{//yGts |dsdt} (1)

Proof. Taking the Cauchy-Scharz inequality in (5) we get,

s vora] o]

Squaring and integrating from a to b w.r.to. t gives

/ab|u(t)|2dt§ /b{ [/ab|G(t,s)q(S)‘2ds] [/abu(5)|2ds} }dt
Huuzs/ / G(t, s)a(s) Pdsdtfulla,
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which proves the Lemma. O
Now, we consider Fractional Sturm-Liouville eigen value problem (FEP):

{(aoDau)(t)—l—)\u(t):O, a<t<bl<a<?2 (®)
pu(a) — ru'(a) = u(b) = 0.

We are ready to state and prove our main results.

Theorem 3.3. If a nontrivial continuous solution of the problem (8)
exists, then for FEP (8) the CSI is

1 1 r 2
A2 ) { Za- D +b-ap [(p ~a) ¢-a)

B -], b-a
3 20(2a — 1)

+ (%—a)(b2—a2)+

28(1,0)(b—a)® [¥ /7 a2F1(172a71+047%) B
_ (%+b_a) L C~—a+Q@—a) - ﬁ}

p
where B(m,n) is a Beta function.
Proof. Taking q(t) = X\ in (7) gives the inequality

2> [/b /ab]G(t,s)Fdsdt]_é. (10)

By substituting equation (6) in (10), after some simplifications we obtain
(9), which concludes the proof. O

9)

We consider following two cases.
Case 1: Taking a =0,b=1,p =1 and r = 2 in (8), we get the following
FEP:
@D%Q@+Amnzao<t<L1<a<2 (11)
u(0) — 24/(0) = u(1) = 0. (12)

Case 2: Taking a =0,b=1,p=2and r = 1 in (8), gives the eigenvalue
problem:

@D%Q@+Amwzqo<t<L1<a<2 (13)

SIS
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2u(0) — u/(0) = u(1) = 0. (14)
Next, we give three methods to estimate the lower bound for the smallest

eigenvalue of problems (11)-(12) and (13)-(14) by using the following
definitions given in [12].

Definition 3.4. A Lyapunov-Type Inequality Lower Bound (LTILB) is
defined as a lower bound estimate for the smallest eigenvalue obtained
from Lyapunov-type inequalities given by (3) and (4).

We obtain a lower bound for the smallest eigenvalue of problem (11)
with boundary conditions (12) is:

A gf(a). (15)
and for the problem (13)-(14) it is:
Ia
> . (16)
maz{A(a, ), B(a, 3)}

Definition 3.5. A Cauchy-Schwarz Inequality Lower Bound (CSILB)
is defined as an estimate of the lower bound for the smallest eigenvalue
obtained from the Cauchy-Schwarz inequality of type given in equation

(9)-
We obtain the CSIs of problems (11)-(12) and (13) -(14), after some

simplifications and using Pfaff transformation in (9) respectively as fol-
lows :

el
“T(a))] 2a—1)]27 2«

2 (! 1
_3/(24_25)15065(1’@) 2F1(1—a,1;a+1,t)dt} ;oz>§ ,
0

o ol 3
“T(a)] 2a—1)[27  2a

! 1
/(2—l—t)to‘ﬁ(l,a)2F1(1—a,1;a+1,t)dt a>g
0

(17)

[NIES

(NI

ol
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In [2], eigenvalues A € R of problems (11)-(12) and (13)-(14) are the solu-
tions of the linear combination of certain M-L functions are respectively
as follows:

2Ea,1(_)‘) + Ea,2(_)‘) =0, (19)

Eo1(=A) +2Eq2(—A) = 0. (20)

Now, comparing the non-zero solutions of equations (19)-(20) for 1.5 <
a < 2 with CSILB given by equations (17)-(18) and LTILB given by the
equations (15)-(16) respectively, we get the following comparison figures.

— " =
2.5 1 e —%—CSILB
e —E&—TILB
-~ * —%—LE
5l
15}
; . ; ; ;
15 16 17 18 19 2

a

Figure 1: Comparison of the lower bounds for A obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest
eigenvalue. (—o —: LTILB; — % —: CSILB; — x —:LE - the Lowest
Eigenvalue \) )
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—#— CSILB

o

Figure 2: Comparison of the lower bounds for A obtained from
Lyapunov-type and Cauchy-Schwarz inequalities with the lowest
eigenvalue. (—o —: LTILB; — % —: CSILB; — x —:LE - the Lowest
Eigenvalue \) )

These figures clearly demonstrates that between the two estimates
considered here, the LTILB provides the worse estimate and the CSILB
provide better estimate for the smallest eigenvalues of (11)-(12) (Figure
1) and (13)-(14) (Figure 2). We use MATHEMATICA and MATLAB
codes to find the smallest eigenvalue of the M-L functions.

We consider the integer order case, i.e. a = 2. For this case, the
LTILB and CSILB for the smallest A of (11)-(12) are given as 1.5 and
3.3310 and for (13)-(14), 2.6667 and 5.1117 respectively. (See equations
(15), (16), (17) and (18)). For o = 2, the problems (11)-(12) and (13)-
(14) can be solved in closed form using the tools from integer order
calculus. Results show, the smallest eigenvalues of (11)-(12) and (13)-
(14) are the roots of equations (19) and (20) respectively, which give the
smallest eigenvalues as 3.3731 and 5.2392. Comparing these A with its
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estimate above, it is clear that between LTILB and CSILB for the integer
« the CSILB provides the best estimate for the smallest eigenvalue.

4 Applications

We now consider an application of the lower bounds for the smallest
eigenvalues of FEPs (11)-(12) and (13)-(14) found in equations (15)-
(20).

Theorem 4.1. Let 1.5 < o < 2. The linear combination of certain

Mittag-Leffler functions 2Eq 1(—2) + Eq2(—2) have no real zeros in the
following domains:
LTILB: 5

v e (— fF(oz),O} (21)
CSILB:

Z€ (‘ I‘(loz) { (2a1_ 0 B*i + i} - icl(o‘)}%’(’]’ (22)

where Cy(a fo 2+ 0)t*B(1,a) o F1(1 — a, 15+ 1, t)dt.

Proof. Let A be the smallest eigenvalue of the equation (12), then
z = A is the smallest value for which 2E, 1(—2) + Eq2(—2) = 0. If there
is another z smaller than A for which 2E, 1(—z) + Eq2(—2) = 0,then it
will contradict that A is the smallest eigenvalue.Therefore, 2E, 1 (—z) +
E, 2(—2) have no real zeros for z € (—A,0]. Thus,2E, 1(—2) + Eq2(—2)
have no real zeros for

,0] |

z€ <_ r(la){(zal— 1) [% * i} N %Cl(a)}_

This proves the equation (22). Proof of equation (21) is given in [8].
O

N[

Theorem 4.2. Let 1.5 < a < 2. The linear combination of certain

Mittag- Leffler functions Eq1(—2)+2Eq 2(—2) have no real zeros in the
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following domains:
LTILB:

e ( Fa 0] (23)
maz{A(a, %), B(a, %)}’ ‘

CSILB:

z € (‘ r(la) { (2a1— 1) E + i} - ;102(04)}_;,0] TGS

where Cy(a) = fol (% + t)taﬂ(l,a) oF (1 — o, 150 + 1, t)dt.

Proof. The proof is similar to the proof of Theorem 4.1 . O

5 Conclusion

In this note, we established Cauchy-Schwarz-type inequality for frac-
tional Strum-Liouville boundary value problem containing Caputo deriva-
tive of order «, 1 < a < 2 to determine a lower bound for the smallest
eigenvalues. We give a comparison between the smallest eigenvalues and
its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-
type inequalities. The results indicate that the Cauchy-Schwarz-type in-
equality gives better lower bound estimates for the smallest eigenvalues
than the Lyapunov-type inequality. We then used these inequalities to
obtain an interval where a linear combination of certain Mittag- LefHer
functions have no real zeros.
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