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Abstract. We introduce the idea of SJS-metric spaces which is a gener-
alization of S-metric spaces. Next we study the properties of SJS-metric
spaces and prove several theorems. We also deal with abstract SJS-
topological spaces induced by SJS-metric and obtain several classical
results including Cantor’s intersection theorem in this setting.
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1 Introduction

In 1906 Maurice Fréchet [6] introduced metric spaces in his seminal
work ”Sur quelques points du calcul fonctionnel”. A metric space is
a set together with a metric (a real valued distance function between
points of the set) on the set and this metric also induces topological
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properties like open and closed sets, which lead to the study of more
abstract topological spaces [11]. However soon after the publication
of Fréchet’s paper, researchers have started to generalize/extend his
idea. There are two types of generalizations/extensions of a metric;
replace real number set R by some other larger set or relax one of the
conditions in the definition of a metric. Menger [14] was the first to
propose probabilistic metric spaces, a generalization of metric spaces.
During the last six decades a lot of further generalizations/extension of
metric spaces was introduced/proposed by the researchers; pseudometric
spaces/dislocated metric spaces [7], partial metric spaces [3], modular
metric space with the Fatou property [12], fuzzy metric spaces [10],
cone metric spaces [8], b−metric spaces [4], generalized D−metric spaces
[2, 5, 15], generalized cone metric spaces [1] and so on. Sedghi et al.
[17] gave the concept of S−metric spaces by modifying D−metric and
G−metric spaces. Following this Souayan and Mlaiki [18] proposed the
concept of Sb− metric spaces as a generalization of S−metric spaces.
Afterwards Rohen et al. [16] have given the definition of Sb− metric
space in a more generalized way and they renamed the usual Sb− metric
space as symmetric Sb−metric space. Recently Mehravaran et al. [13]
have defined dislocated Sb−metric space and proved some fixed point
theorems therein. In the year 2015, Jleli and Samet [9] introduced the
idea of JS−metric spaces, which is one of the interesting generalization
of usual metric spaces. They also showed that any standard metric space,
b−metric space, dislocated metric space and modular metric space with
the Fatou property are JS−metric space. In this paper we continue
these efforts to further weaken the hypothesis of a metric. First we
introduce SJS- metric spaces with examples and study their properties.
Next we discuss SJS-topological spaces induced by SJS-metric and prove
several classical theorems including Cantor’s intersection theorem in this
setting.

2 Preliminaries

Let us recall some basic preliminaries here for subsequent use. Jleli and
Samet [9] have given the following definitions regarding a generalized
metric space.
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Let A be a non-empty set and d : A×A→ [0,∞] be a mapping. For
any a ∈ A, define the set

C(d,A, a) = {{an} ⊂ A : lim
n→∞

d(an, a) = 0}.

Definition 2.1. [9] Let d : A×A→ [0,∞] be a mapping which satisfies
the following conditions:

(i) d(a, b) = 0 implies a = b for all a, b ∈ A;
(ii) for every (a, b) ∈ A×A, we have d(a, b) = d(b, a);
(iii) if (a, b) ∈ A×A and {an} ∈ C(d,A, a) then

d(a, b) ≤ p lim sup
n→∞

d(an, b), for some p > 0.

The pair (A, d) is a generalized metric space, usually known as JS−metric
space.

Jleli and Samet [9] observed that any metric space, b−metric space
and dislocated metric space are JS−metric space. Our below example
shows that a rectangular metric space [2] may not be a JS−metric space.

Example 2.2. Let X = R and d : X2 → [0,∞) be defined as follows:
d(x, y) = d(y, x) for any x, y ∈ X, d(x, y) = 0 if x = y and for x 6= y.

d(x, y) =



1
n , if x = 1, y = 1 + 1

n for any n ≥ 2

1
n2 , if x = 2, y = 1 + 1

n for any n ≥ 2

3, otherwise

Then it can be easily verified that (X, d) is a rectangular metric space
but it is not a metric space, because

d(1,
3

2
) + d(

3

2
, 2) =

3

4
< 3 = d(1, 2)

Here we see that {1 + 1
n}n≥2 ∈ C(d,X, 1) but there exits no p > 0 for

which

d(1, 2) ≤ p lim sup
n→∞

d(1 +
1

n
, 2).

Hence X is not a JS−metric space.
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We now give the definitions of S−metric space, Sb−metric space and
dislocated Sb−metric space.

Definition 2.3. [17] Let X be a non-empty set and S : X3 → [0,∞) be
a function satisfying the following conditions, for each x, y, z, w ∈ X:

(i) S(x, y, z) = 0 if and only if x = y = z;
(ii) S(x, y, z) ≤ S(x, x, w) + S(y, y, w) + S(z, z, w).

The function S is called an S−metric and the pair (X,S) is called an
S−metric space.

Definition 2.4. [16] Let X be a nonempty set and s ≥ 1 be a given
number. Also let a function Sb : X3 → [0,∞) satisfies the following
conditions, for each x, y, z, w ∈ X:

(i) Sb(x, y, z) = 0 if and only if x = y = z;
(ii) Sb(x, y, z) ≤ s[Sb(x, x, w) + Sb(y, y, w) + Sb(z, z, w)].

The pair (X,Sb) is called an Sb−metric space.
A symmetric Sb−metric is a function which satisfies the conditions

(i), (ii) and also the following condition:

Sb(x, x, y) = Sb(y, y, x)

for all x, y ∈ X.

Definition 2.5. [13] Let X be a non-empty set and Sd : X3 → [0,∞) be
a mapping which satisfies the following conditions for all x, y, z, w ∈ X:

(i) Sd(x, y, z) = 0 implies x = y = z;
(ii) Sd(x, y, z) ≤ k[Sd(x, x, w)+Sd(y, y, w)+Sd(z, z, w)], where k ≥ 1.

The function Sd is said to be a dislocated Sb−metric and the pair (X,Sd)
is called a dislocated Sb−metric space. In the case when k = 1, Sd is
known as the dislocated S-metric.

3 SJS-metric spaces

Let X be a nonempty set and J : X3 → [0,∞] be a function. For any
x ∈ X define

S(J,X, x) = {{xn} ⊂ X : lim
n→∞

J(x, x, xn) = 0}

for all x ∈ X.
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Definition 3.1. Let X be a nonempty set and J : X3 → [0,∞] satisfies
the following conditions:

(J1) J(x, y, z) = 0 implies x = y = z for any x, y, z ∈ X;
(J2) there exists some b > 0 such that for any (x, y, z) ∈ X3 and

{zn} ∈ S(J,X, z), we have

J(x, y, z) ≤ b lim sup
n→∞

(J(x, x, zn) + J(y, y, zn))

Then the pair (X, J) is called an SJS-metric space.

Additionally if J also satisfies
(J3) J(x, x, y) = J(y, y, x) for all x, y ∈ X, then we call it a symmet-

ric SJS-metric space.

Example 3.2. Let X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined
by J(x, y, z) = |x|+ |y|+ t|z| ; t > 0 with t 6= 2 for all x, y, z ∈ X, then
clearly (J1) is satisfied. For any z 6= 0, S(J,X, z) = ∅. If z = 0 then for
{zn} ∈ S(J,X, 0), we have

J(x, y, 0) ≤ 1

2
lim sup
n→∞

(J(x, x, zn) + J(y, y, zn))

for all x, y ∈ X. Then (J2) is also satisfied. So (X, J) is an SJS−metric
space but it is not symmetric.

Example 3.3. Let X = R ∪ {−∞,∞} and J : X3 → [0,∞] be defined
by J(x, y, z) = |x|+ |y|+ 2|z| for all x, y, z ∈ X. Clearly the conditions
(J1) and (J3) are satisfied. Also one can check that for any x, y, z ∈ X

J(x, y, z) ≤ lim sup
n→∞

(J(x, x, zn) + J(y, y, zn))

for any sequence {zn} ∈ S(J,X, z). Therefore (J2) is also satisfied and
hence X is a symmetric SJS-metric space.

Remark 3.4. (1) Let (X,S) be an S−metric space (See Definition
2.3). Clearly S satisfies condition (J1). Now let (x, y, z) ∈ X3 and {zn}
converges to z in (X,S), then S(z, z, zn) → 0 as n → ∞ and from the
condition (ii) we have

S(x, y, z) ≤ lim sup
n→∞

(S(x, x, zn) + S(y, y, zn))
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Therefore S satisfies (J2) also. Hence X is an SJS-metric space. It is
also symmetric.

(2) Let (X,Sb) be an Sb−metric space with coefficient s ≥ 1 (See
Definition 2.4). Then clearly Sb satisfies (J1) and it also satisfies (J2)
for b = s. So an Sb−metric space is an SJS-metric space.

(3) If (X,Sd) is a dislocated Sb−metric space with coefficient k ≥ 1
(See Definition 2.5), then clearly Sd satisfies the condition (J1) and
condition (J2) for b = k. So a dislocated Sb−metric space is an SJS-
metric space.

Definition 3.5. Let (X, J) be an SJS-metric space, then a sequence
{xn} ⊂ X is said to be convergent to an element x ∈ X if {xn} ∈
S(J,X, x).

Definition 3.6. Let (X, J) be an SJS-metric space. A sequence {xn} ⊂
X is said to be Cauchy if limn,m→∞ J(xn, xn, xm) = 0.

Definition 3.7. An SJS-metric space is said to be complete if every
Cauchy sequence in X is convergent.

Definition 3.8. Let (X, J) be an SJS-metric space and T : X → X be
a self mapping. Then T is called continuous at a ∈ X if for any ε > 0
there exists δ > 0 such that for any x ∈ X, J(Ta, Ta, Tx) < ε whenever
J(a, a, x) < δ.

Theorem 3.9. In an SJS-metric space (X, J) if {xn} converges to both
x and y for x, y ∈ X, then x = y.

Proof. Now,
J(x, x, y) ≤ b lim sup

n→∞
(2J(x, x, xn)).

Since xn → x then limn→∞ J(x, x, xn) = 0, which implies J(x, x, y) = 0
that is x = y. �

Theorem 3.10. Let (X,J) be an SJS-metric space and {xn} ⊂ X
converges to some x ∈ X. Then J(x, x, x) = 0.

Proof. Since {xn} converges to x it follows that {xn} ∈ S(J,X, x) and
thus

J(x, x, x) ≤ b lim sup
n→∞

(2J(x, x, xn)),

which implies J(x, x, x) = 0. �
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Theorem 3.11. In a symmetric SJS-metric space (X, J) if a Cauchy
sequence {xn} has a convergent subsequence then {xn} is also convergent
in X.

Proof. Let {xn} has a convergent subsequence {xnk
} which converges

to x ∈ X. Now since (X, J) is symmetric, we have

J(x, x, xn) = J(xn, xn, x) ≤ b lim sup
k→∞

(2J(xn, xn, xnk
)).

Taking n, k →∞ we have limn→∞ J(x, x, xn) = 0. So {xn} converges to
x. �

Theorem 3.12. In an SJS-metric space (X, J) if T is continuous at a ∈
X then for any sequence {xn} ∈ S(J,X, a) implies {Txn} ∈ S(J,X, Ta).

Proof. Let ε > 0 be given. Since T is continuous at a then for ε > 0
there exists δ > 0 such that J(a, a, x) < δ implies J(Ta, Ta, Tx) < ε.

As {xn} converges to a, so for δ > 0 there exists N ∈ N such that
J(a, a, xn) < δ for all n ≥ N. Therefore for any n ≥ N , J(Ta, Ta, Txn) <
ε and thus Txn → Ta as n→∞. �

4 SJS-topological spaces

Definition 4.1. Let (X, J) be an SJS-metric space. The open and
closed ball of center x ∈ X and radius r > 0 in X are defined as follows:

BJ(x, r) = {y ∈ X : J(x, x, y) < r};
BJ [x, r] = {y ∈ X : J(x, x, y) ≤ r}.

Remark 4.2. It may happen that in an SJS-metric space X, x /∈
BJ(x, r) for some r > 0 and x ∈ X. In Example 3.2 if we take x = 1,
r = 2 and t = 1 then J(1, 1, 1) = 3 and therefore 1 /∈ BJ(1, 2).

Theorem 4.3. Let (X, J) be an SJS-metric space. Let τ = {∅}∪ {U( 6=
∅) ⊂ X : for any x ∈ U there exists r > 0 such that BJ(x, r) ⊂ U}.
Then τ forms a topology on X, called the topology induced by J and
(X, τ) is said to be a SJS- topological space.



8 I. BEG, K. ROY and M. SAHA

Proof. Clearly X ∈ τ . Now let {Gα}α∈Λ, Λ being an indexing set, be
a collection of members of τ and G = ∪α∈ΛGα. If x ∈ G then there
exists some β ∈ Λ such that x ∈ Gβ. So there exists r > 0 such that
BJ(x, r) ⊂ Gβ ⊂ G. Hence G ∈ τ.

Also let G,H ∈ τ and y ∈ G ∩H. Then there exist r1, r2 > 0 such
that BJ(y, r1) ⊂ G and BJ(y, r2) ⊂ H. If we take r = min{r1, r2}
then we have BJ(y, r) ⊂ G ∩H and so G ∩H ∈ τ. Therefore τ forms a
topology on X. �

Definition 4.4. Let (X, J) be an SJS-topological space. and F ⊂ X.
Then F is said to be closed if there exists an open set U ⊂ X such that
F = U c.

Theorem 4.5. Let (X,J) be an SJS-topological space and F ⊂ X be
closed. Let {xn} ⊂ F be such that {xn} ∈ S(J,X, x), then x ∈ F.

Proof. If possible let x /∈ F. Then x ∈ F c = U, where U is open. So
there exists r > 0 such that BJ(x, r) ⊂ U. Now limn→∞ J(x, x, xn) = 0
so for r > 0 there exists N ∈ N such that J(x, x, xn) < r whenever
n ≥ N. Thus xn ∈ BJ(x, r) ⊂ U for all n ≥ N, a contradiction. Hence
x ∈ F. �

Theorem 4.6. Let (X, J) be an SJS- topological space and F ⊂ X be
closed. If X is complete then (F, JF ) is also complete.

Proof. Let {xn} ⊂ F be Cauchy in F. Since X is complete and {xn} is
Cauchy in X also, there exists z ∈ X such that {xn} ∈ S(J,X, z). As F
is closed then by Theorem 4.5 we have z ∈ F. Thus {xn} is convergent
in F . Therefore F is complete. �

Theorem 4.7. Let (X, J) be an SJS-topological space and T be contin-
uous self mapping on X. Then for any open set U, T−1(U) is open.

Proof. Let U be any open set in X, if T−1(U) = ∅ then we are done. So
let T−1(U) 6= ∅ and a ∈ T−1(U). Then Ta ∈ U and since U is open there
exists ε > 0 such that BJ(Ta, ε) ⊂ U. T is continuous at ′a′ so there exists
δ > 0 such that J(x, x, a) < δ implies J(Tx, Tx, Ta) < ε. Therefore
T (BJ(a, δ)) ⊂ BJ(Ta, ε) ⊂ U implying that BJ(a, δ) ⊂ T−1(U). Hence
T−1(U) is open. �
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Definition 4.8. Let (X,J) be an SJS-metric space and A ⊂ X. Then
diam(A) = sup{J(a, a, b) : a, b ∈ X}.

Definition 4.9. In an SJS-topological space (X, J), a sequence {Fn}
of subsets of X is said to be decreasing if F1 ⊃ F2 ⊃ F3 ⊃ ... .

The following theorem gives conditions under which the intersection
of such a sequence is non empty.

Theorem 4.10. [Cantor’s intersection property] Let (X, J) be a com-
plete SJS-metric space and {Fn} be a decreasing sequence of nonempty
closed subsets of X such that diam(Fn)→ 0 as n→∞. Then the inter-
section ∩∞n=1Fn contains exactly one point.

Proof. Let xn ∈ Fn be arbitrary for all n ∈ N. Since {Fn} is decreasing,
we have {xn, xn+1, ...} ⊂ Fn for all n ∈ N.

Now for any n,m ∈ N with n,m ≥ k we have J(xn, xn, xm) ≤
diam(Fk), k ≥ 1. Let ε > 0 be given. Then there exists some p ∈ N such
that diam(Fp) < ε since diam(Fn)→ 0 as n→∞. From this it follows
that J(xn, xn, xm) < ε whenever n,m ≥ p. So {xn} is Cauchy in X. By
the completeness of X there exists z ∈ X such that {xn} ∈ S(J,X, z).
Since {xn, xn+1, ...} ⊂ Fn and Fn is closed for each n ∈ N, using Theorem
4.5 we have z ∈ ∩∞n=1Fn.

Next we prove the uniqueness of z. Let y ∈ ∩∞n=1Fn be another point,
then J(z, z, y) > 0. As diam(Fn)→ 0, there exists N0 ∈ N such that

diam(Fn) < J(z, z, y) ≤ diam(Fn)

for all n ≥ N0, a contradiction. Hence ∩∞n=1Fn = {z} and this completes
the proof of our theorem. �

Definition 4.11. Let (X,J) be an SJS-metric space and A(6= ∅) ⊂ X.
Then a closed set F (if exists) is said to be the closure of A if it is largest
which satisfies

A ⊂ F ⊂ A ∪ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈
S(X,J, x)}.
We denote F as A.

Remark 4.12. If (X,J) is an SJS-metric space and A(6= ∅) ⊂ X is
closed then by Theorem 4.5 we have A = A.
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Theorem 4.13. Let (X,J) be an SJS-metric space and A(6= ∅) ⊂ X.
Then {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈ S(X, J, x)} =
{x ∈ X : for all r > 0, BJ(x, r) ∩A 6= ∅}.

Proof. Let y ∈ {x ∈ X : for all r > 0, BJ(x, r) ∩ A 6= ∅}. Then
BJ(y, 1

n) ∩A 6= ∅ for all n ∈ N. So there exists yn ∈ BJ(y, 1
n) ∩A for all

n ∈ N and we have, {yn} ∈ S(X,J, y). Thus y ∈ {x ∈ X : there exists
{xn} ⊂ A such that {xn} ∈ S(X, J, x)}.

Conversely let, z ∈ {x ∈ X : there exists {xn} ⊂ A such that
{xn} ∈ S(X, J, x)}. Then there exists {zn} ⊂ A such that J(z, z, zn)→ 0
as n → ∞. Let us choose a r > 0. Then there exists m ∈ N such that
zn ∈ BJ(z, r) for all n ≥ m. So BJ(z, r) ∩ A 6= ∅. Hence z ∈ {x ∈ X :
for all r > 0, BJ(x, r) ∩A 6= ∅}. �

Remark 4.14. Clearly from Theorem 4.3 we have A ⊂ A ⊂ A∪{x ∈ X :
for all r > 0, BJ(x, r) ∩A 6= ∅}.

Theorem 4.15. Let (X, J) be an SJS-metric space and A,B be two
nonempty subsets of X with A ⊂ B. Then A ⊂ B.

Proof. Clearly A and B are largest closed sets respectively satisfying
the followings

A ⊂ A ⊂ A ∪ {x ∈ X : there exists {xn} ⊂ A such that {xn} ∈
S(X, J, x)},

B ⊂ B ⊂ B ∪ {x ∈ X : there exists {xn} ⊂ B such that {xn} ∈
S(X, J, x)}.
Now, A ∪B ⊂ A ∪B ⊂ (A ∪B) ∪ ({x ∈ X : there exists {xn} ⊂ A such
that {xn} ∈ S(X, J, x)} ∪ {x ∈ X : there exists {xn} ⊂ B such that
{xn} ∈ S(X, J, x)}) implies that B ⊂ A∪B ⊂ B ∪{x ∈ X : there exists
{xn} ⊂ B such that {xn} ∈ S(X,J, x)}. Since A∪B is closed, it follows
that A ∪B ⊂ B. Therefore we have A ∪B = B and thus A ⊂ B. �

Theorem 4.16. Let (X, J) be a symmetric SJS-metric space and A(6=
∅) ⊂ X for which A exists. Then diam(A) ≤ L diam(A), where L =
max{1, 2b, 4b2}.

Proof. Let x, y ∈ A. Then we have to consider three cases.
Case 1. If x, y ∈ A then

J(x, x, y) ≤ diam(A). (1)
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Case 2. If x ∈ A and y ∈ {x ∈ X : there exists {xn} ⊂ A such that
{xn} ∈ S(X,J, x)} then there exists a sequence {yn} ⊂ A such that
{yn} ∈ S(X, J, y) and we have

J(x, x, y) ≤ 2b lim sup
n→∞

J(x, x, yn)

≤ 2b diam(A). (2)

Case 3. If x, y ∈ {p ∈ X : there exists {pn} ⊂ A such that {pn} ∈
S(X,J, p)} then there exists sequences {xn}, {yn} ⊂ A such that {xn} ∈
S(X,J, x), {yn} ∈ S(X,J, y) and we have

J(x, x, y) ≤ 2b lim sup
n→∞

J(x, x, yn)

= 2b lim sup
n→∞

J(yn, yn, x)

≤ 2b lim sup
n→∞

(2b lim sup
m→∞

J(yn, yn, xm))

≤ 4b2diam(A). (3)

Therefore from (1), (2) and (3) we get diam(A) ≤ L diam(A), L =
max{1, 2b, 4b2}. �

Theorem 4.17. (Converse of Theorem 4.10) Let (X,J) be a symmetric
SJS-metric space in which every nonempty subset has a closure and
{Fn} be a decreasing sequence of nonempty closed subsets of X with
diam(Fn) → 0 as n → ∞ . If ∩∞n=1Fn contains exactly one point then
X is complete.

Proof. Let {xn} be a Cauchy sequence in X. Let us choose Gn =
{xn, xn+1, xn+2, ...} for all n ∈ N. Since {xn} is a Cauchy sequence
therefore diam(Gn) → 0 as n → ∞. Also {Gn} is a decreasing se-
quence of nonempty closed subsets of X (using Theorem 4.15) such that
diam(Gn) → 0 as n → ∞ (from Theorem 4.16). Hence from the given
condition we see that ∩∞n=1Gn = {z}, z ∈ X.

Now J(z, z, xn) ≤ diam(Gn) → 0 as n → ∞. So {xn} is convergent
and X is complete. �

Example 4.18. Let us consider the symmetric SJS-metric space given
in Example 3.3. Then we have for any x ∈ X and for any r > 0

BJ(x, r) =

{
∅, if |x| ≥ r

2
(−( r2 − |x|), (

r
2 − |x|)), if |x| < r

2
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and

BJ [x, r] =

{
∅, if |x| . > r

2
[−( r2 − |x|), (

r
2 − |x|)], if |x| ≤ r

2

Here we see that the topology τ is given by

τ = {∅} ∪ {B(6= ∅) : B ⊂ X\{0}} ∪ {B(6= ∅) : 0 ∈ B}

and there exists r > 0 such that
(
− r

2 ,
r
2

)
⊂ B}.

Clearly any nonempty subset of X containing 0 is closed.
If A( 6= ∅) ⊂ X, 0 /∈ A and there does not exist a sequence {xn} ⊂ A

converging to 0 in X then there must exists some r > 0 such that
0 ∈

(
− r

2 ,
r
2

)
⊂ X\A and therefore we have A is closed. If A(6= ∅) ⊂ X

is not closed, 0 /∈ A and there exists a sequence {xn} ⊂ A converging to
0 in X then A = A ∪ {0}. So in (X, J) any nonempty subset of X has
closure.

Example 4.19. (Supporting example for Theorem 4.17) Let us consider
the symmetric SJS-metric space given in Example 3.3. Also let {Fn}
be a decreasing sequence of nonempty closed subsets of X such that
diam(Fn) → 0 as n → ∞. If 0 /∈ Fm for some m ∈ N. Then 0 /∈ Fk for
all k ≥ m. Now let xk ∈ Fk for all k ≥ m. Then {xm, xm+1, ...} ⊂ Fm
and also J(xk, xk, xk) ≤ diam(Fk) → 0 as m ≤ k → ∞. Thus |xk| → 0
as k →∞ and we get J(0, 0, xk) = 2|xk| → 0 as m ≤ k →∞. Since Fm
is closed so by Theorem 4.15 we get 0 ∈ Fm, a contradiction.

Therefore 0 ∈ Fn for all n ∈ N. Now if t( 6= 0) ∈ ∩∞n=1Fn then
J(t, t, t) ≤ diam(Fn) → 0 as n → ∞ implying that t = 0, a contradic-
tion. Therefore ∩∞n=1Fn = {0}. Here we see that (X, J) is complete.

The condition, SJS-metric space X is symmetric is a sufficient con-
dition in Theorem 4.17. Which can be shown from our next example.

Example 4.20. If we consider the SJS-metric space given in Example
3.2 then it is not symmetric and the topology τ is given by τ = {∅} ∪
{B( 6= ∅) : B ⊂ X\{0}} ∪ {B( 6= ∅) : 0 ∈ B and there exists r > 0 such
that 0 ∈ (−r, r) ⊂ B}. Clearly any nonempty subset of X containing 0
is closed. If A(6= ∅) ⊂ X, 0 /∈ A and there does not exist a sequence
{xn} ⊂ A converging to 0 in X then there must exists some r > 0
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such that 0 ∈ (−r, r) ⊂ X\A and therefore we have A is closed. If
A(6= ∅) ⊂ X is not closed, 0 /∈ A and there exists a sequence {xn} ⊂ A
converging to 0 in X then A = A ∪ {0}.
So in (X, J) any nonempty subset of X has closure and we can prove
that for any decreasing sequence {Fn} of nonempty closed subsets of X
such that diam(Fn)→ 0 as n→∞, ∩∞n=1Fn = {0}, in a similar way as
in Example 4.18.

Definition 4.21. Let (X, J) be an SJS-metric space and A(6= ∅) ⊂ X.
Then int(A) is the largest open set contained in A.

Definition 4.22. Let (X, J) be an SJS-metric space. A subset A of X
is said to be nowhere dense in X if A exists and int(A) = ∅.
Theorem 4.23. Let (X, J) be an SJS-metric space and A(6= ∅) ⊂ X.
If A exists then int(X\A) = X\A.
Proof. Since A exists then A ⊂ A ⊂ A∪{x ∈ X : there exists {xn} ⊂ A
such that {xn} ∈ S(X, J, x)}. Let us denote the set {x ∈ X : there exists
{xn} ⊂ A such that {xn} ∈ S(X, J, x)} by A′. Then (X\A) ∩ (X\A′) ⊂
X\A ⊂ X\A. Now X\A is open so X\A ⊂ int(X\A). If int(X\A) = ∅
then we are done. So let int(X\A) 6= ∅ and x ∈ int(X\A). Then
there exists some r > 0 such that BJ(x, r) ⊂ int(X\A) ⊂ X\A. So
BJ(x, r) ∩ A = ∅ and we have x ∈ X\A′ (using Theorem 4.13). It
implies that x ∈ (X\A) ∩ (X\A′) ⊂ X\A. Therefore int(X\A) ⊂ X\A,
which shows that int(X\A) = X\A. �

Theorem 4.24. Let (X,J) be an SJS-metric space and A(6= ∅) ⊂ X be
a nowhere dense set in X. Then for any open set U 6= ∅ there exists an
open set V (6= ∅) ⊂ U such that V ∩A = ∅.
Proof. Since int(A) = ∅ then A 6= X. So int(X\A) = X\A 6= ∅. Let U
be a nonempty open set in X. Then U ∩ int(X\A) 6= ∅ because if U ∩
int(X\A) = ∅ then U∩(X\A) = ∅ implying that U ⊂ A, a contradiction.
Let V = U ∩ int(X\A). Then V is open and V ⊂ int(X\A) ⊂ X\A.
Therefore V ∩A = ∅. �

Definition 4.25. An SJS-metric space (X, J) is said to have property
(c) if every nonempty subset of X has a closure.

Conjecture: A complete SJS-metric space (X, J) with property (c)
is not expressable as a countable union of nowhere dense sets.
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5 Conclusion

In this paper we initiated the study of SJS- metric and topological spaces
and proved several classical theorems. In future we plan to further inves-
tigate topological properties of these spaces. Proving Baire’s Category
Theorem in SJS- metric spaces is still an open challenging problem. We
also expect applications of these spaces in approximation theory, varia-
tional problems, fixed point theory, and optimization theory.
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