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Abstract An efficient family of the recursive methods of adaptive is proposed for

solving nonlinear equations, is developed such that all previous information are ap-

plied. These methods have reached the maximum degree of convergence improvement

of 100%, and also have an efficiency index of 2. Three families have been examined

from Steffensen-Like single, two, and three-step methods that have used 2, 3 and 4 pa-

rameters respectively.Numerical comparisons are made with other existing methods

one-, two-, three-, and four-point to show the performance of the convergence speed of

the proposed method and confirm theoretical results.
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1 Introduction

It is often necessary in scientific and engineering practices to find a root of a polyno-

mial or a nonlinear equation.Undoubtedly, Traub is the pioneer in classifying iterative

methods for solving such equations as one or multi point [43]. It is well-known that

Newton’s method is one of the most common iterative methods to approximate the

solution α of f(x) = 0 is of great importance [30]. However, the condition of deriva-

tive existence for function f in a neighborhood of the required root is mandatory

indeed for convergence of Newton’s method,which restricts its applications in prac-

tice. To overcome on this problem, Steffensen replaced the first derivative of the func-

tion in the Newton’s iterate by forward finite difference approximation. Steffensen-type

methods without using derivatives, only compute divided differences and can be used
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for nondifferentiable problems.Traub in his book proved the best one point iterative

method should achieve order of convergence n using n function evaluations. In trying

to furnish multi-point methods of various orders, the Kung-Traub conjecture [23] is a

crucial part of the development.On the basis of this hypothesis, a multi-point itera-

tion without memory using n evaluations per full cycle possesses the maximal order

of convergence 2n−1, which is called the optimal order. Following the Kung and Traub

conjecture,many authors tried to construct optimal multipoint methods without mem-

ory [1–9, 11, 13, 17, 19–23, 29, 31, 33, 34, 36–38, 40, 41, 44, 47]. Traub developed the first

method with memory by applying Steffensen’s method [40], and increased the order of

convergence of this method from 2 to 2.41 (improvement 20.5%)without using any new

information, and only by reusing the information of the previous step. Traub presented

his memory method by entering a free parameter to the Steffensen’s method as follows:{
γk = − xk−xk−1

f(xk)−f(xk−1)
, k = 1, 2, 3, · · · ,

xk+1 = xk − γkf(xk)
2

f(xk+γkf(xk))−f(xk)
k = 0, 1, 2, · · · .

(1)

To see more related papers in the with memory methods of study, the readers might

refer to [10,12,14–16,24–28,32,39,43,45,46].We develop an adaptive method with mem-

ory; i.e., that uses the information not only from the last two steps, but also from the all

previous iterations. This technique enables us to achieve the highest efficiency both the-

oretically and practically. Adaptive methods with memory have efficiency index 2, hence

competes all the existing methods without and with memory in the literature. It should

be noted that improvement of the degree of convergence up to 100% is mentioned in

references [42], but these families are different from the mentioned methods. The com-

putational efficiency in the sense of Ostrowski-Traub [31,43], of an iterative method of

the order p, requiring n function evaluations per iteration, is frequently calculated using

the Ostrowski-Traub’s efficiency index E(p, n) = p1/n.We later compare both numer-

ical performances and efficiency index of the proposed method with some significant

methods to show our claims. To achieve and remodify the optimal one-, two-, three-

steps methods, we approximate and update the introduced accelerator parameters in

each iteration by suitable kind and optimal of Newton’s interpolation.

The main objective of this paper is to achieve the highest efficiency index, 2, without

imposing an evaluation of the function. Contents of the paper are summarized in what

follows. In the next section, deals with modifying the optimal one-, two-, three-points

methods without memory introduced by Zheng et al. [47], Soleymani et al. [39], and

Lotfi-Assari. [27]. In Section 3, with memory methods with maximum self-referential

parameters (one, two, and three) are presented for one, two, and three-step meth-

ods, respectively. The new class of recursive with methods of adaptive is supported

with detailed proof in this section to verify the construction theoretically. Numerical

examples are given in Section 4 to illustrate convergence behavior of our methods for

simple roots. Finally, a short conclusion is given in the last section.

2 Modified Steffensen-Like Methods

2.1 One step method by Zheng et al.

In this section, we deal with modifying one-point method without memory by Zheng

et al. [47], such that the error equation has two accelerators. Zheng et al.’s method has
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the iterative expression as follows:{
wk = xk + γf(xk), k = 0, 1, 2, . . . ,

xk+1 = xk − f(xk)
f [xk,wk]

,
(2)

where γ ∈ R is nonzero arbitrary parameter. To transform Eq. (2) into a method with

memory,with two accelerators :{
wk = xk + γkf(xk), k = 0, 1, 2, · · · ,
xk+1 = xk − f(xk)

f [xk,wk]+qkf [wk]
,

(3)

where γ and q are arbitrary nonzero parameters. In what follows, we present the error

equation of Eq. (3).

Theorem 1 Let I ⊆ R be an open interval, f : I → R be a scalar function which has a

simple root α in the open interval I, and also the initail approximation x0 is sufficiently

close the simple zero, then, the one-step iteration method (3) has two-order satisfies the

following error equation:

ek+1 = (1 + f ′(α)γ)(q + c2)e
2
k +O(e3k). (4)

Proof: Using symbolic computation the following code written in the computational

software pakage Mathematica is given.We emphasize that this proof is different from

the given by [14,47].

In[1] : f [e−] = fla(e+
∑3

i=2 cie
i);

In[2] : ew = e+ γSeries[f [e], {e, 0, 3}]//Fullsimplify

Out[2] : (1 + γfla)e+O[e]2

In[3] : f [x−, y−] =
f [x]−f [y]

x−y ;

In[4] : ek+1 = e− Series[
f [e]

f [e,ew]+qf [ew]
, {e, 0, 3}]//Fullsimplify

Out[4] : (1 + f ′(α)γ)(q + c2)e
2 +O(e3). □

2.2 Acceleration of the modified Soleymani et al.’s method

In this section, concerns with modifying Soleymani et al.’smethod (SLTKM) [39], so

that it could be considered for the proposed scheme in the next section. Let recall the

mentioned method:{
wk = xk + γf(xk), yk = xk − f(xk)

f [xk,wk]+qf(wk)
, k = 0, 1, 2, · · · ,

xk+1 = yk − f(yk)
f [wk,yk]+qf(wk)+λ(yk−xk)(yk−wk)

(1 +
f(yk)
f(xk)

),
(5)

where wk = xk + γf(xk),0 ̸= λ, q and γ ∈ R, and f [x, y] =
f(x)−f(y)

x−y stands for the

divided difference of the first order. This is an optimal method without memory. In order

words, it uses three function evaluations per iteration, and has optimal convergence

order 4. It is possible to adapt the method (5) in some ways that it remains optimal in

the sence of Kung and Traub conjecture [23] as follows:{
wk = xk + γkf(xk), yk = xk − f(xk)

f [xk,wk]+qkf(wk)
, k = 0, 1, 2, · · · ,

xk+1 = yk − f(yk)
f [wk,yk]+qkf(wk)+λk(yk−xk)(yk−wk)

(1 +
f(yk)
f(xk)

),
(6)

where γ, λ and q are arbitrary nonzero real parameters. The next theorem states the

error equation of the method (6).
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Theorem 2 Let I ⊆ R be an open interval, f : I → R be a differentiable function, and

has a simple zero, say α. If x0 is an initial guess to α, then the error equation of the

method (6) is given by

ek+1 =
1

f ′(α)
((1 + γf ′(α))2(q + c2)(λ+ f ′(α)q2(1 + γf ′(α)) + f ′(α)c2

(2q(2 + γf ′(α)) + (3 + γf ′(α))c2)− f ′(α)c3)e
4
k +O(e5k),

where ck =
f(k)(α)
k!f ′(α)

for k = 2, 3, · · · .

Proof : We use the self-explained mathematical approach to avoid the tedious and

humdrum algebraic manipulation. First, we define the Taylor’s series of f(x) as follows:

In[1] : f [e−] = fla(e+ c2e
2 + c3e

3 + c4e
4);

where e = x−α, fla = f ′(α). Note that since α is a simple zero of f(x), then f ′(α) ̸= 0,

f(α) = 0.We define

In[2] : f [x−, y−] =
f [x]− f [y]

x− y
;

In[3] : ew = e+ γf [e];

In[4] : ey = e− Series[
f [e]

f [e, ew] + qf [ew]
, {e, 0, 4}];

In[5] : ek+1 = ey − Series[
f [ey]

f [ey, ew] + qf [ew] + λ(ey − e)(ey − ew)

(1 +
f [ey]

f [e]
), {e, 0, 4}]//FullSimplify

Out[5] : ek+1 =
1

f ′(α)
((1 + γf ′(α))2(q + c2)(λ+ f ′(α)q2(1 + γf ′(α)) + f ′(α)c2

(2q(2 + γf ′(α)) + (3 + γf ′(α))c2)− f ′(α)c3)e
4
k +O(e5k).

This complets the proof. □

2.3 Acceleration of the modified Lotfi and Assari’s method

This section concerns with modifying Lotfi and Assari’s method (LAM) [27], so that it

could be considered for the proposed scheme in the next section. Let recall the men-

tioned method:


wk = xk + γf(xk), yk = xk − f(xk)

f [xk,wk]+qf(wk)
, k = 0, 1, 2, · · · ,

zk = yk − f(yk)
f [yk,xk]+f [wk,xk,yk](yk−xk)+λ(yk−xk)(yk−wk)

,

xk+1 = zk − f(zk)
f [xk,zk]+(f [wk,xk,yk]−f [wk,xk,zk]−f [yk,xk,zk])(xk−zk)+β(zk−yk)(zk−xk)(zk−wk)

.

(7)
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This optimal method without memory use four function evaluations per iteration, and

has convergence order 8. To transform Eq. (7) in a method with memory,with four

accelerators, we consider the following modification of (7) [27]:


wk = xk + γkf(xk), k = 1, 2, 3, · · · ,
yk = xk − f(xk)

f [xk,wk]+qkf(wk)
, k = 0, 1, 2, · · · ,

zk = yk − f(yk)
f [yk,xk]+f [wk,xk,yk](yk−xk)+λk(yk−xk)(yk−wk)

,

xk+1 = zk − f(zk)
f [xk,zk]+(f [wk,xk,yk]−f [wk,xk,zk]−f [yk,xk,zk])(xk−zk)+βk(zk−yk)(zk−xk)(zk−wk)

,

(8)

where γk, βk, λk and qk are nonzero arbitrary parameters.We give the following con-

vergence theorem for the proposed method (8) as follows:

Theorem 3 Let I ⊆ R be an open interval, f : I → R be a differentiable function, and

has a simple zero, say α. If x0 is an initial guess to α, then the error equation of the

method (8) is given by

ek+1 =(1 + γf ′(α))4(q + c2)
2(λ+ f ′(α)c2(q + c2)− f ′(α)c3)(−β + c2

(λ+ f ′(α)c2(q + c2)− f ′(α)c3) + f ′(α)c4)f
′(α)

−2
e8k +O(e9k). (9)

Proof : First, we define the Taylor series of f(x) as follows:

In[1] : f [e−] = fla(e+ c2e
2 + · · ·+ c8e

8),

where e = x − α, fla = f ′(α). Note that since α is a simple zero of f(x), the f ′(α) ̸=
0, f(α) = 0.We define

In[2] : f [x−, y−] =
f [x]− f [y]

x− y
;

In[3] : f [x−, y−, z−] =
f [x, y]− f [y, z]

x− z
;

In[4] : f [x−, y−, z−, t−] =
f [x, y, z]− f [y, z, t]

x− t
;

In[5] : ew = e+ γf [e];

In[6] : ey = e− Series[
f [e]

f [e, ew] + qf [ew]
, {e, 0, 8}];

In[7] : ez = ey − Series[
f [ey]

f [ey, e] + f [ey, e, ew](ey − e) + λ(ey − e)(ey − ew)
, {e, 0, 8}];

In[8] : ek+1 =ez − Series[f [ez]/(f [ez, ey] + f [ez, ey, e](ez − ey) + f [ez, ey, e, ew](ez − ey)

(ez − e) + β(ez − ey)(ez − e)(ez − ew)), {e, 0, 8}]//FullSimplify

Out[8] : ek+1 = ((1 + γf ′(α))4(q + c2)
2(λ+ f ′(α)c2(q + c2)− f ′(α)c3)(−β + c2(λ+ f ′(α)c2(q + c2)

− f ′(α)c3) + f ′(α)c4)f
′(α)

−2
)e8k +O(e9k)

And thus proof is completed. □
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3 Development the recursive adaptive method with memory

This section deals with the main contribution of this work. In other words, it is at-

tempted to introduce a recursive adaptive method with memory so that it has the

highest possible efficiency index as proposed to methods with memory in the liter-

ature. It is worth mentioning that some special cases of this new method covers the

existing methods.

3.1 One step adaptive method

This section concerns with extracting the novel method with memory from (3) by

using two self-accelerating parameters. Theorem (1) states that modified method (3)

has order of convergence 2 if γ ̸= −1
f ′(α)

and q ̸= −c2. Now,we pose some ques-

tions: Is it possible to increase the order of convergence of this method? If so, how

can it be done, and what is the new convergence order? For answering these ques-

tions, we look at the error equation (4).As can be seen that if we set γ = −1
f ′(α)

and

q = −c2 =
f ′′(α)

−2f ′(α)
, then at least the coefficient of e2k disappears. However, since α

is not determined and consequently,f ′(α) and f ′′(α) cannot be computed.On the

other hand,we can approximate α using available data and therefore improve or-

der of convergence. Following the same idea in the methods with memory, this issue

can be resaved.However, we are going to do it in a more efficient way, say recursive

adaptively. Let us describe it a little more. If we use information from the current

and only the last iteration, we come up with the method with memory introduced

in [27, 28]. Also, note that we have considered the best approximations.Hence, to this

end, the following approximates are applied

γk =
−1

N ′
2(xk)

≈ −1

f ′(α)
, qk =

N ′′
3 (wk)

−2N ′
3(wk)

≈ − f ′′(α)
2f ′(α)

, (10)

where k = 1, 2, · · · , the N ′
2(xk), N

′
3(wk) are Newton’s interpolating polynomials of two

and third degree, set through three and four best available approximations (nodes)

(xk, xk−1, wk−1) and (wk, xk, xk−1, wk−1), respectively. It should be noted that if one

uses lower Newton’s interpolation, lower accelerators are obtained.

Replacing the fixed parameters q and γ in the iterative formula (4) by the varying γk
and qk calculated by (4), we propose the following new methods with memory,x0, q0, γ0
are given, and w0 = x0 + γ0f(x0)γk = −1

N ′
2k(xk)

, qk =
N ′′

2k+1(wk)

−2N ′
2k+1(wk)

, k = 1, 2, · · · ,

wk = xk + γkf(xk), xk+1 = xk − f(xk)
f [xk,wk]+qkf [wk]

, k = 0, 1, 2, · · · .
(11)

Here, we answer the second question regarding order of convergence of the method

with memory (11). In what follows, we discuss the general convergence analysis of the

recursive adaptive method with memory (11). It should be noted that the convergence

order varies as the iteration go ahead. First, we need the following lemma.
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Lemma 1 If γk = −1
N ′

2k(xk)
and qk =

N ′′
2k+1(wk)

−2N ′
2k+1(wk)

, then

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,w, (12)

(qk + c2) ∼
k−1∏
s=0

eses,w, (13)

where es = xs − α, es,w = ws − α.

Proof : The proof is similar to the Lemma 4 mentioned in [46].

The following result determines the order of convergence of the one-point iterative

method with memory (11).

Theorem 4 If an initial estimation x0 is close enough to a simple root α of f(x) =

0, and γ0 and q0 are uniformly bounded above, being f a real sufficiently differentiable

function, then the R-order of convergence of the one-point method adaptive with mem-

ory (11) is obtained from the following system of nonlinear equations.{
rkp− (1 + p)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0,

rk+1 − 2(1 + p)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0,
(14)

where r and p are the convergence order of the sequences {xk} and {wk},
respectively. Also, k indicates the number of iterations.

Proof : Let {xk} and {wk} be convergent with orders r and p, respectively. Then:{
ek+1 ∼ erk ∼ er

2

k−1 ∼ . . . ∼ er
k+1

0 ,

ek,w ∼ epk ∼ erpk−1 ∼ . . . ∼ epr
k

0 ,
(15)

where ek = xk − α and ek,w = wk − α. Now, by Lemma (1) and Eq (15), we obtain

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,w = (e0e0,w) . . . (ek−1ek−1,w)

= (e0e
p
0)(e

r
0e

rp
0 ) . . . (er

k−1

0 er
k−1p

0 )

= e
(1+p)+(1+p)r+...+(1+p)rk−1

0

= e
(1+p)(1+r+...+rk−1)
0 . (16)

Similarly, we get

(qk + c2) ∼ e
(1+p)(1+r+...+rk−1)
0 . (17)

By considering the errors of wk and xk+1 in Eq. (15), and Eqs. (16)-(17).We conclude:

ek,w ∼ (1 + γkf
′(α))ek ∼ e

(1+p)(1+r+...+rk−1)
0 er

k

0 , (18)

ek+1 ∼ (1 + γkf
′(α))(qk + c2)e

2
k ∼ e

((1+p)(1+r+...+rk−1))2

0 e2r
k

0 . (19)
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To obtain the desire result, it is enough to match the right-hand-side of the Eqs(15),(18),

and (19) :{
rkp− (1 + p)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0, k = 1, 2, . . . ,

rk+1 − 2(1 + p)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0.

This completes the proof of the Theorem. □

Remark 1 For k = 1, the order of convergence of the method with memory (11)

can be computed from the following of system of equations{
rp− (1 + p)− r = 0,

r2 − 2(1 + p)− 2r = 0.
(20)

This system of equations has the solution p = 1
4 (3 +

√
17) ≃ 1.78078, and r = 1

2 (3 +√
17) ≃ 3.56155. This special case give the given result by Dzunic [14] and denoted by

DM. If k = 2, the system of equations(14) becomes :{
r2p− (1 + p+ rp+ r + r2) = 0,

r3 − 2(1 + p+ rp+ r + r2) = 0.
(21)

This system of equations has the solution: p ≃ 1.95029 and r ≃ 3.90057.

Also, Positive solution of the system(14) for k = 3, is given by p ≃ 1.98804 and r ≃
3.97609. And, positive solution of the system(14) for k = 4, is given by(has been shown

by TAM4) p ≃ 1.99705 and r ≃ 3.9941.

As can be seen the order of convergence is very close to 4, so its efficiency index is very

close to 2. This efficiency is astonishingly remarkable.

3.2 Two-steps adaptive method

Let us look at the error equation of the modified method (6). It is clear that there are

some possibilities to vanish the coefficient of e4k. For example, if 1+γf ′(α) = 0, q+c2 =

0, or (λ+ f ′(α)q2(1+ γf ′(α)) + f ′(α)c2(2q(2+ γf ′(α))+ (3+ γf ′(α))c2)− f ′(α)c3) =
0, then the coeffcient of e4k vanishes at once. To get the best result, we suggest that

all these relations hold simultaneously.We note that this can happen theoretically. To

be more precise, it can be seen that these relations lead to γ = −1
f ′(α)

, q = −c2 =

− f ′′(α)
2f ′(α)

, and λ = f ′(α)c3 =
f ′′′(α)

6 . Since α is not at hand, it is impossible to compute

f ′(α), f ′′(α), and f ′′′(α). Even worse, if we assume that α is known, computing f ′(α),
f ′′(α), and f ′′′(α) is not suggested since it increases these function evaluations, and

therefore, it spoils that optimality of the method (6). Following the same idea in the

methods with memory, this issue can be resaved.However, we are going to do it in

a more efficient way, say recursive adaptively.Note that we have considered the best

approximations.Hence 
γk = − 1

N ′
3(xk)

≃ −1
f ′(α)

,

qk = − N ′′
4 (wk)

2N ′
4(wk)

≃ − f ′′(α)
2f ′(α)

,

λk =
N ′′′

5 (yk)
6 ≃ f ′(α)c3 =

f ′′′(α)
6 ,

(22)
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whereN ′
3(xk), N

′′
4 (wk) andN ′′′

5 (yk) are Newton’s interpolation polynomials go through

the nodes {xk, xk−1, wk−1, yk−1}, {wk, xk, xk−1, wk−1, yk−1}, and {yk, wk, xk, xk−1,

wk−1, yk−1}, respectively. This situation has been well studied in [10,11,27,28,39]. Such

methods are not adaptive. To construct a recursive adaptive method with memory,we

use the information not only in the current and its previous iterations, but also in all

the previous iterations, i.e., from the beginning to the current iteration. Thus, as itera-

tions proceed, the degree of interpolation polynomials increases, and the best updated

approximations for computing the self-accelerator γk, qk, and λk are obtained. Let

x0, γ0, q0, and λ0 be given suitably. Then,
γk = − 1

N ′
3k(xk)

, qk = − N ′′
3k+1(wk)

2N ′
3k+1(wk)

, λk =
N ′′′

3k+2(yk)
6 , k = 1, 2, 3, . . . ,

yk = xk − f(xk)
f [xk,wk]+qkf(wk)

, k = 0, 1, 2, · · · ,
xk+1 = yk − f(yk)

f [wk,yk]+qkf(wk)+λk(yk−xk)(yk−wk)
(1 +

f(yk)
f(xk)

).

(23)

In what follows, we discuss the general convergence analysis of the recursive adaptive

method with memory (23). It should be noted that the convergence order varies as the

iteration go ahead. First, we need the following lemma.

Lemma 2 If γk = − 1
N ′

3k(xk)
, qk = − N ′′

3k+1(wk)

2N ′
3k+1(wk)

, and λk =
N ′′′

3k+2(yk)
6 , then :

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,wes,y, (24)

(c2 + qk) ∼
k−1∏
s=0

eses,wes,y, (25)

(λk + f ′(α)q2(1 + γkf
′(α)) + f ′(α)c2(2q(2 + γkf

′(α)) + (3 + γkf
′(α))c2)− f ′(α)c3)

∼
k−1∏
s=0

eses,wes,y, (26)

where es = xs − α, es,w = ws − α, es,y = ys − α.

Proof : The proof is similar to Lemmas 2.1 and 2.2 in [46].

Theorem 5 Let x0 be a suitable initial guess to the simple root α of f(x) = 0. Also, suppose

the initial values γ0, q0, and λ0 are chosen appropriately. Then the R-order of the re-

cursive adaptive method with memory (23) can be obtained from the following system

of nonlinear equations:
rkp1 − (1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0,

rkp2 − 2(1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0,

rk+1 − 4(1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− 4rk = 0,

(27)

where r, p1 and p2 are the order of convergence of the sequences {xk}, {wk},
and {yk}, respectively. Also, k, indicates the number of iterations.

Proof : Let {xk}, {wk}, and {yk}, be convergent with orders r, p1, and p2,

respectively. Then: 
ek+1 ∼ erk ∼ er

2

k−1 ∼ . . . ∼ er
k+1

0 ,

ek,w ∼ ep1

k ∼ ep1r
k−1 ∼ . . . ∼ ep1r

k

0 ,

ek,y ∼ ep2

k ∼ ep2r
k−1 ∼ . . . ∼ ep2r

k

0 ,

(28)
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where ek = xk − α, ek,w = wk − α and ek,y = yk − α. Now, by Lemma (2)

and Eq (27), we obtain

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,wes,y = (e0e0,we0,y) . . . (ek−1ek−1,wek−1,y)

= (e0e
p1

0 ep2

0 )(er0e
p1r
0 ep2r

0 ) . . . (er
k−1

0 er
k−1p1

0 er
k−1p2

0 )

= e
(1+p1+p2)+(1+p1+p2)r+...+(1+p1+p2)r

k−1

0

= e
(1+p1+p2)(1+r+...+rk−1)
0 . (29)

Similarly, we get :

(qk + c2) ∼ e
(1+p1+p2)(1+r+...+rk−1)
0 , (30)

and

(λk + f ′(α)q2(1 + γkf
′(α)) + f ′(α)c2(2q(2 + γkf

′(α)) + (3 + γkf
′(α))c2)− f ′(α)c3)

∼ e
(1+p1+p2)(1+r+...+rk−1)
0 . (31)

By considering the errors of wk, yk, and xk+1 in Eq. (27), and Eqs. (29)-(31), we con-

clude:

ek,w ∼ (1 + γkf
′(α))ek ∼ e

(1+p1+p2)(1+r+...+rk−1)
0 er

k

0 , (32)

ek,y ∼ (1 + γkf
′(α))(qk + c2)e

2
k ∼ e

((1+p1+p2)(1+r+...+rk−1))2

0 e2r
k

0 , (33)

ek+1 ∼ (1 + γkf
′(α))2(qk + c2)(λk + f ′(α)q2(1 + γkf

′(α)) + f ′(α)c2(2q(2 + γkf
′(α))+

(3 + γkf
′(α))c2)− f ′(α)c3)e

4
k ∼ e

((1+p1+p2)(1+r+...+rk−1))4

0 e4r
k

0 . (34)

To obtain the desired result, it is enough to match the right-hand-side of the Eqs. (27),

(32), (33), and (34). Then
rkp1 − (1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0, k = 1, 2, . . . ,

rkp2 − 2(1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0,

rk+1 − 4(1 + p1 + p2)(1 + r + r2 + r3 + . . .+ rk−1)− 4rk = 0.

This completes the proof of the Theorem. □
Remark 2 Positive solution of system (23), (k = 1), is specified through (It been

shown by TAM7): p1 = 1
8 (7 +

√
65) ≃ 1.88, p2 = 1

4 (7 +
√
65) ≃ 3.76 and r = 1

2 (7 +√
65) ≃ 7.53. Therefore, the convergence order of the new method with memory (23) is

at least 7.5311.

And, if k = 2, we obtain the order of convergence: p1 ≃ 1.98612, p2 ≃ 3.97225 and r ≃
7.94449. Also, k = 3, the system of equations(27) has the solution : p1 ≃ 1.99829, p2 ≃
3.99657 and r ≃ 7.99315.

Likewise, for k = 4, we obtain the order of convergence:

p1 ≃ 1.99979, p2 ≃ 3.99957 and r ≃ 7.99915 (35)

(been shown by TAM8). In this case the efficiency index is 7.99915
1
3 = 1.99993 ∼= 2

which shows that our developed method compets all the existing methods with memory.
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3.3 Three-steps adaptive method

This section introduced a new efficient adaptive method with memory.We continue

as before, and develope a three steps method with memory with the best efficiency

index. Indeed,we achieve the efficiency index 2.Also, note that we have considered the

best approximations (8). Hence
γk = − 1

N ′
4(xk)

≃ −1
f ′(α)

,

qk = − N ′′
5 (wk)

2N ′
5(wk)

≃ − f ′′(α)
2f ′(α)

,

λk =
N ′′′

6 (yk)
6 ≃ f ′(α)c3 =

f ′′′(α)
6 ,

βk =
N ′′′

7 (zk)
24 ≃ f ′(α)c4 =

f ′′′′(α)
24 .

(36)

where N ′
4(xk), N

′′
5 (wk), N

′′′
6 (yk) and N ′′′′

7 (zk) are Newton’s interpolation polynomials

go through the nodes {xk, xk−1, wk−1, yk−1, zk−1}, {wk, xk, xk−1, wk−1, yk−1, zk−1},
{yk, wk, xk, xk−1, wk−1, yk−1, zk−1}, and {zkyk, wk, xk, xk−1, wk−1, yk−1, zk−1},
respectively. The degree of interpolation polynomials increases, and the best updated

approximations for computing the self-accelerator γk, qk, λk and βk are obtained.Now,we

can present the first three-step adaptive memory method as follows:(Let w0 = x0 +

γ0f(x0), x0, γ0, q0, λ0 and β0 be given suitably.)
γk = − 1

N ′
4k(xk)

, qk = − N ′′
4k+1(wk)

2N ′
4k+1(wk)

, λk =
N ′′′

4k+2(yk)
6 , βk =

N ′′′′
4k+3(zk)

24 , k = 1, 2, 3, . . . ,

wk = xk + γkf(xk), yk = xk − f(xk)
f [xk,wk]+qkf(wk)

, k = 0, 1, 2, · · · ,
zk = yk − f(yk)

f [yk,xk]+f [wk,xk,yk](yk−xk)+λk(yk−xk)(yk−wk)
,

xk+1 = zk − f(zk)
f [xk,zk]+(f [wk,xk,yk]−f [wk,xk,zk]−f [yk,xk,zk])(xk−zk)+βk(zk−yk)(zk−xk)(zk−wk)

.

(37)

In what follows, we discuss the general convergence analysis of the recursive adaptive

method with memory (37). It should be noted that the convergence order varies as the

iteration go ahead.We need the following lemma.

Lemma 1 If γk = − 1
N ′

4k(xk)
, qk = − N ′′

4k+1(wk)

2N ′
4k+1(wk)

, λk =
N ′′′

4k+2(yk)
6 ,

and βk =
N ′′′′

4k+3(zk)
24 , then :

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,wes,yes,z , (38)

(c2 + qk) ∼
k−1∏
s=0

eses,wes,yes,z , (39)

(λk + f ′(α)c2(qk + c2)− f ′(α)c3) ∼
k−1∏
s=0

eses,wes,yes,z , (40)

(βk + c2(λk + f ′(α)c2(qk + c2)− f ′(α)c3)− f ′(α)c4) ∼
k−1∏
s=0

eses,wes,yes,z , (41)

where es = xs − α, es,w = ws − α, es,y = ys − α, es,z = zs − α.

Proof : The proof is similar to Lemma 1 in [46].
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Theorem 6 Let x0 be a suitable initial guess to the simple root α of f(x) = 0. Also, suppose

the initial values γ0, q0, λ0, and β0 are chosen appropriately.

Then the R-order of the recursive adaptive method with memory (37) can be obtained

from the following system of nonlinear equations:
rkp1 − (1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0,

rkp2 − 2(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0,

rkp3 − 4(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 4rk = 0,

rk+1 − 8(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 8rk = 0,

(42)

where r, p1, p2, and p3 are the order of convergence of the sequences {xk}, {wk},
{yk}, and {zk}, respectively. Also, k, indicates the number of iterations.

Proof : Let {xk}, {wk}, {yk} and {zk} be convergent with orders r, p1, p2 and p3
respectively. Then: 

ek+1 ∼ erk ∼ er
2

k−1 ∼ . . . ∼ er
k+1

0 ,

ek,w ∼ ep1

k ∼ erp1

k−1 ∼ . . . ∼ ep1r
k

0 ,

ek,y ∼ ep2

k ∼ erp2

k−1 ∼ . . . ∼ ep2r
k

0 ,

ek,z ∼ ep3

k ∼ erp3

k−1 ∼ . . . ∼ ep3r
k

0 ,

(43)

where ek = xk − α, ek,w = wk − α, ek,y = yk − α and ek,z = zk − α. Now, by Lemma

(1) and Eq. (43), we obtain

(1 + γkf
′(α)) ∼

k−1∏
s=0

eses,wes,yes,z = (e0e0,we0,ye0,z) . . . (ek−1ek−1,wek−1,yek−1,z)

= (e0e
p1

0 ep2

0 ep3

0 )(er0e
p1r
0 ep2r

0 ep3r
0 ) . . . (er

k−1

0 er
k−1p1

0 er
k−1p2

0 er
k−1p3

0 )

= e
(1+p1+p2+p3)+(1+p1+p2+p3)r+...+(1+p1+p2+p3)r

k−1

0

= e
(1+p1+p2+p3)(1+r+...+rk−1)
0 . (44)

Similarly, we get

(qk + c2) ∼ e
(1+p1+p2+p3)(1+r+...+rk−1)
0 , (45)

and

(λk + f ′(α)c2(qk + c2)− f ′(α)c3) ∼ e
(1+p1+p2+p3)(1+r+...+rk−1)
0 , (46)

(βk + c2(λk + f ′(α)c2(qk + c2)− f ′(α)c3)− f ′(α)c4)

∼ e
(1+p1+p2+p3)(1+r+...+rk−1)
0 . (47)

By considering the errors of wk, yk, zk and xk+1 in Eq. (37) and Eqs. (44)-(47),

we conclude:

ek,w ∼ (1 + γkf
′(α))ek ∼ e

(1+p1+p2+p3)(1+r+...+rk−1)
0 er

k

0 , (48)

ek,y ∼ (1 + γkf
′(α))(qk + c2)e

2
k ∼ e

((1+p1+p2+p3)(1+r+...+rk−1))2

0 e2r
k

0 , (49)
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ek,z ∼ (1 + γkf
′(α))2(qk + c2)(λk + f ′(α)c2(qk + c2)− f ′(α)c3)e

4
k

∼ e
((1+r1+r2+r3)(1+r+...+rk−1))4

0 e4r
k

0 , (50)

ek+1 ∼ (1 + γkf
′(α))4(qk + c2)

2(λk + f ′(α)c2(qk + c2)− f ′(α)c3)

(βk + c2(λk + f ′(α)c2(qk + c2)− f ′(α)c3)− f ′(α)c4)e
8
k

∼ e
((1+p1+p2+p3)(1+r+...+rk−1))8

0 e8r
k

0 . (51)

To obtain the desired result, it is enough to match the right-hand-side of the Eqs.

(43), (48), (49), (50) and (51). Then:
rkp1 − (1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− rk = 0, k ∈ N
rkp2 − 2(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 2rk = 0,

rkp3 − 4(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 4rk = 0,

rk+1 − 8(1 + p1 + p2 + p3)(1 + r + r2 + r3 + . . .+ rk−1)− 8rk = 0.

This completes the proof of the Theorem. □

Remark 3 For k = 1, we use the information from the current and the one previous

steps. In this case, the order of convergence of the with memory method (37) can be

computed from the following system
rp1 − (1 + p1 + p2 + p3)− r = 0,

rp2 − 2(1 + p1 + p2 + p3)− 2r = 0,

rp3 − 4(1 + p1 + p2 + p3)− 4r = 0,

r2 − 8(1 + p1 + p2 + p3)− 8r = 0.

(52)

After solving these equations, we have: p1 = 1
16 (15 +

√
257) ≃ 1.93945, p2 = 1

8 (15 +√
257) ≃ 3.8789, p3 = 1

4 (15 +
√
257) ≃ 7.7578 and r = 1

2 (15 +
√
257) ≃ 15.5156.

This special case determines the given result by Lotfi-Assari [27].

If k = 2, we obtain the order of convergence: r1 ≃ 1.99632, r2 ≃ 3.99265,

r3 ≃ 7.9853 and r ≃ 15.9706.

And, if k = 3, The positive real solution (42) is: p1 ≃ 1.99977, p2 ≃ 3.99954, p3 ≃
7.99908 and r ≃ 15.9982.

Also, for k = 4, the system (42) has the solution :( shown by TAM16)

p1 = 2, p2 = 4, p3 = 8, and r = 16. (53)

This shows that the R-order of convergence for (37) is 16.

Remark 4 As can be easily seen that the improvement the order of convergence

from 2, 4 and 8 to 4, 8 and 16 (100% of an improvement) is attained without any

additional functional evaluations, which points to very high computational efficiency of

the proposed methods. Therefore, the efficiency index of the proposed method (11), (23)

and (37) is 41/2 = 81/3 = 161/4 = 2.
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4 Numerical results and comparisons

The errors |xk − α| of approximations to the sought zeros, produced by the different

methods at the first three iterations are given in Table 2 where m(−n) stands for

m× 10−n. Tables 2− 4 also include, for each test function, the initial estimation values

and the last value of the computational order of convergenceCOC [18] computed by

the expression

COC =
log |f(xn)/f(xn−1)|

log |f(xn−1)/f(xn−2)|
, (54)

The package Mathematica 10, with 5000 arbitrary precision arithmetic, has been used

in our computations. Iterative methods with and without memory, for comparing with

our proposed scheme have been chosen as comes next.

Four-step without memory Geum et al. order 16 (GKM) [17]:

yk = xk − f(xk)
f ′(xk)

, uk =
f(yk)
f(xk)

,mk =
1+2uk−4u2

k

1−3u2
k

, k = 0, 1, 2, . . . ,

zk = yk −mk
f(yk)
f ′(xk)

, vk =
f(zk)
f(yk)

, wk =
f(zk)
f(xk)

, hk = 1+2uk
1−vk−2wk

, tk =
f(sk)
f(zk)

,

Wk = 1+2uk
1−vk−2wk−tk−2vkwk

−
1
2 (ukwk(6 + 12uk + 2u2k + 48u3k − 8)) + (−2uk + 2)w2

k,

sk = zk − hk
f(zk)
f ′(xk)

, xk+1 = sk −Wk
f(sk)
f ′(xk)

.

(55)

One-step with memory Dzunic order 3.56 (DM) [14]:{
γk = −1

N ′
2(xk)

, qk =
N ′′

3 (wk)
−2N ′

3(wk)
, k = 1, 2, . . . ,

wk = xk − γkf(xk), xk+1 = xk − f(xk)
f [xk,wk]+qkf(wk)

, k = 0, 1, 2, . . . .
(56)

One-step Abbasbandy’s method order 3 (AM) [1]:

xk+1 = xk − f(xk)

f ′(xk)
− f2(xk)f

′′(xk)

2f ′3(xk)
+

f3(xk)f
′′(xk)

2f ′5(xk)
. (57)

Two-step with memory Soleymani et al. order 7.22 (SLTKM) [39]:
γk = − 1

N ′
3(xk)

, qk = − N ′′
4 (wk)

2N ′
4(wk)

, λk =
N ′′′

5 (wk)
6 , k = 1, 2, 3, . . . ,

yk = xk − f(xk)
f [xk,wk]+qkf(wk)

, k = 0, 1, 2, · · · ,
xk+1 = yk − f(yk)

f [wk,yk]+qkf(wk)+λk(yk−xk)(yk−wk)
(1 +

f(yk)
f(xk)

).

(58)

Three-step without memory Thukral-Petkovic. order 8 (TPM) [41]:
yk = xk − f(xk)

f ′(xk)
, uk =

f(yk)
f(xk)

, k = 0, 1, 2, . . . ,

zk = yk − f(yk)
f ′(xk)

f(xk)+bf(yk)
f(xk)+(b−2)f(yk)

,

ϕk = 1 + 2uk + (5− 2b)u2k + (2b2 − 12b+ 12)u3k,

xk+1 = zk − f(zk)
f ′(xk)

(ϕk +
f(zk)

f(yk)−af(zk)
+

4f(zk)
f(xk)

).

(59)

Table 1 lists the exact roots α and initial approximations x0. Tables 2 − 4 show that

the proposed methods compete the previous methods. In addition, its efficiency index is

much better than the previous works. In other words, TAM4,TAM7,TAM8 and TAM16

have efficiency indices 4
1
2 = 2, 7.53

1
3 ≃ 1.96, 8

1
3 = 2 and 16

1
4 = 2, respectively. In order
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to check the effectiveness of the proposed iterative methods, we have considered 10 test

nonlinear functions. All the numerical computations are carried out on the computer

algebra system MATHEMATICA 10 using 3000 digits floating-point arithmetic. The

results of comparisons are given in Tables 2− 4.The errors |xk −α| of approximations

to the sought zeros, produced by the different methods at the first, two, and three it-

erations. These tables also include, for each test function, the initial estimation values

and the last value of the computational order of convergence in companion with con-

vergence rate and EI the each method.A comparison between without memory,with

memory and adaptive methods in terms of the maximum convergence order alongside

the number of steps per cycle is given in Figure. 1.

Nonlinear function Zero Initial guess

f1(x) = t log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx) α = 0 x0 = 0.6

f2(x) = 1 + 1
x4 − 1

x
− x2 α = 1 x0 = 1.4

f3(x) = ex
3−x − cos(x2 − 1) + x3 + 1 α = −1 x0 = −1.65

f4(x) =
−5x2

2
+ x4 + x5 + 1

1+x2 α = 1 x0 = 1.5

f5(x) = log(1 + x2) + e−3x+x2
sin(x) α = 0 x0 = 0.5

f6(x) = x log(1− π + x2)− 1+x2

1+x3 sin(x2) + tan(x2) α =
√
π x0 = 1.7

f7(x) = x3 + 4x2 − 10 α = 1 x0 = 1.3652

Table 1: Test functions

Fig. 1: Comparison of methods without memory,with memory and adaptive

(%25, %50, %75, and %100 of improvements) in terms of highest possible convergence

order.
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f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6, q0 = γ0 = 0.1

Methods |x1 − α| |x2 − α| |x3 − α| COC EI
AM [1] 0.60000(0) 0.44377(0) 0.10028(0) 3.0000 1.44225
DM [14] 0.60000(0) 0.36450(0) 0.54166(−1) 3.4590 1.85984
TM [43] 0.60000(0) 0.47811(0) 0.56230(−1) 2.3950 1.54758
TAM4 (11) k=4 0.36450(0) 0.54166(−1) 0.23973(−5) 4.0148 2.00370

f2(x) = 1 + 1
x4 − 1

x
− x2, α = 1, x0 = 1.4, q0 = γ0 = 0.1

AM [1] 0.40000(0) 0.69117(−1) 0.84282(−3) 3.0000 1.44225
DM [14] 0.40000(0) 0.46538(−1) 0.12681(−3) 3.5552 1.88552
TM [43] 0.40000(0) 0.60801(−1) 0.28094(−2) 2.4157 1.55425
TAM4 (11) k=4 0.46538(−1) 0.12681(−3) 0.35998(−15) 3.9986 1.99965

f3(x) = ex
3−x − cos(x2 − 1) + x3 + 1, α = −1, x0 = −1.5, q0 = γ0 = 0.1

AM [1] 0.50000(0) 0.48941(−1) 0.16236(−3) 3.0000 1.44225
DM [14] 0.50000(0) 0.15659(−1) 0.10877(−5) 3.4075 1.84594
TM [43] 0.50000(0) 0.22068(−1) 0.12109(−5) 2.3993 1.54897
TAM4 (11) k=4 0.15659(−1) 0.10877(−5) 0.83019(−24) 4.0020 2.00050

f4(x) =
−5x2

2
+ x4 + x5 + 1

1+x2 , α = 1, x0 = 1.5, q0 = γ0 = 0.1

AM [1] 0.50000(0) 0.18311(0) 0.33638(−1) 3.0000 1.44225
DM [14] 0.50000(0) 0.41826(0) 0.71739(−1) 3.5453 1.88290
TM [43] 0.50000(0) 0.41154(0) 0.13304(0) 2.2867 1.51218
TAM4 (11) k=4 0.41826(0) 0.71739(−1) 0.30353(−3) 3.9997 1.99992

f5(x) = log(1 + x2) + e−3x+x2
sin(x), α = 0, x0 = 0.5, q0 = γ0 = 0.1

AM [1] 0.50000(0) 0.88441(−4) 0.45840(−12) 3.0000 1.44225
DM [14] 0.50000(0) 0.64108(−1) 0.12721(−2) 3.5500 1.88414
TM [43] 0.50000(0) 0.42599(−1) 0.11207(−2) 2.4134 1.55351
TAM4 (11) k=4 0.64108(−1) 0.12721(−2) 0.10199(−10) 3.9993 3.99982

f6(x) = x log(1− π + x2)− 1+x2

1+x3 sin(x2) + tan(x2), α =
√
π, x0 = 1.7, q0 = γ0 = 0.1

AM [1] 0.72454(−1) 0.58079(−3) 0.33518(−9) 3.0000 1.44225
DM [14] 0.72454(−1) 0.10543(−1) 0.44438(−6) 3.5005 1.87096
TM [43] 0.72454(−1) 0.11486(−1) 0.28170(−5) 2.4090 1.55210
TAM4 (11) k=4 0.10543(−1) 0.44438(−6) 0.48786(−24) 3.9992 1.99980
f7(x) = x3 + 4x2 − 10, α = 1.3652, x0 = 1, q0 = γ0 = 0.1

AM [1] 0.36520(0) 0.47568(−1) 0.22845(−4) 3.0000 1.44225
DM [14] 0.36520(0) 0.36340(0) 0.34044(−3) 3.7222 1.92930
TM [43] 0.36520(0) 0.27996(0) 0.64692(−2) 2.4053 1.55090
TAM4 (11) k=4 0.36340(0) 0.34044(−3) 0.30013(−4) 4.0000 2.00000

Table 2: Comparison of the absolute error of proposed method with one-step methods

at first, second and third iterations for the test functions
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f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6, q0 = γ0 = λ0 = 0.1

Methods |x1 − α| |x2 − α| |x3 − α| COC EI
SLTKM [39] 0.60000(0) 0.22353(0) 0.30292(−5) 7.1871 1.92982
TAM7 (23) k=3 0.60000(0) 0.22353(0) 0.24015(−5) 7.5523 1.96197
TAM8 (23) k=4 0.22353(0) 0.24015(−5) 0.61245(−39) 8.1640 2.01357

f2(x) = 1 + 1
x4 − 1

x
− x2, α = 1, x0 = 1.4, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.40000(0) 0.37115(−2) 0.28982(−15) 7.2315 1.93379
TAM7 (23) k=3 0.40000(0) 0.37115(−2) 0.37500(−16) 7.5218 1.95933
TAM8 (23) k=4 0.37115(−2) 0.37500(−16) 0.79732(−112) 8.1885 2.01559

f3(x) = ex
3−x − cos(x2 − 1) + x3 + 1, α = −1, x0 = −1.5, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.50000(0) 0.48587(−4) 0.32385(−4) 7.2038 1.93132
TAM7 (23) k=3 0.50000(0) 0.48587(−4) 0.67397(−26) 7.4964 1.95712
TAM8 (23) k=4 0.48587(−4) 0.67397(−26) 0.54183(−180) 8.2048 2.01692

f4(x) =
−5x2

2
+ x4 + x5 + 1

1+x2 , α = 1, x0 = 1.5, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.50000(0) 0.31600(0) 0.42113(−2) 7.2133 1.93217
TAM7 (23) k=3 0.50000(0) 0.31600(0) 0.38872(−2) 7.9861 1.99884
TAM8 (23) k=4 0.31600(0) 0.38872(−2) 0.22090(−16) 8.0000 2.00000

f5(x) = log(1 + x2) + e−3x+x2
sin(x), α = 0, x0 = 0.5, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.50000(0) 0.22780(−1) 0.13805(−10) 7.2390 1.93446
TAM7 (23) k=3 0.50000(0) 0.22780(−1) 0.91585(−11) 7.4955 1.95704
TAM8 (23) k=4 0.22780(−1) 0.91585(−11) 0.54892(−74) 8.0000 2.00000

f6(x) = x log(1− π + x2)− 1+x2

1+x3 sin(x2) + tan(x2), α =
√
π, x0 = 1.7, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.72454(−1) 0.70222(−5) 0.25138(−29) 7.2120 1.93205
TAM7 (23) k=3 0.72454(−1) 0.70222(−5) 0.25789(−31) 7.4793 1.95563
TAM8 (23) k=4 0.70222(−5) 0.25789(−31) 0.33555(−214) 7.9996 1.99997
f7(x) = x3 + 4x2 − 10, α = 1.3652, x0 = 1, q0 = γ0 = λ0 = 0.1

SLTKM [39] 0.36520(0) 0.61026(0) 0.23768(−3) 8.0000 2.00000
TAM7 (23) k=3 0.36500(0) 0.61026(0) 0.23768(−3) 8.0000 2.00000
TAM8 (23) k=4 0.61026(0) 0.23768(−3) 0.23001(−3) 8.0000 2.00000

Table 3: Comparison evaluation function and efficiency index of the proposed method

by two-step methods with and without memory
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f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6, q0 = γ0 = λ0 = β0 = 0.1

Methods |x1 − α| |x2 − α| |x3 − α| COC EI
TPM [41] (a = b = 0) 0.60000(0) 0.15946(−1) 0.31506(−13) 8.0000 1.68179
LAM [27] 0.60000(0) 0.19386(−1) 0.12850(−28) 15.5240 1.98496
GKM [17] 0.60000(0) 0.20973(−3) 0.67159(−57) 16.0000 1.74110
SSSLM [35] 0.60000(0) 0.15176(−3) 0.77529(−57) 16.0000 1.74110
TAM16 (37) k=4 0.19386(−1) 0.12850(−28) 0.373(−464) 16.0010 2.00003

f2(x) = 1 + 1
x4 − 1

x
− x2, α = 1, x0 = 1.4, q0 = γ0 = λ0 = β0 = 0.1

TPM [41] (a = b = 0) 0.40000(0) 0.20584(−3) 0.94711(−27) 8.0000 1.68179
LAM [27] 0.40000(0) 0.33505(−4) 0.80238(−66) 15.5120 1.98457
GKM [17] 0.40000(0) 0.11559(−3) 0.22543(−57) 16.0000 1.74110
SSSLM [35] 0.40000(0) 0.11522(−2) 0.50671(−39) 16.0000 1.74110
TAM16 (37) k=4 0.33505(−4) 0.80238(−66) 0.12659(−1055) 16.0000 2.00000

f3(x) = ex
3−x − cos(x2 − 1) + x3 + 1, α = −1, x0 = −1.5, q0 = γ0 = λ0 = β0 = 0.1

TPM [41] (a = b = 0) 0.50000(0) 0.22661(−5) 0.12409(−44) 8.0000 1.68179
LAM [27] 0.50000(0) 0.32145(−6) 0.34397(−105) 15.5100 1.98451
SSSLM [35] 0.50000(0) 0.18741(−10) 0.23265(−170) 16.0000 1.74110
GKM [17] 0.50000(0) 0.71640(−9) 0.10752(−146) 16.0000 1.74110
TAM16 (37) k=4 0.32145(−6) 0.34397(−105) 0.70235(−1693) 16.0000 2.00000

f4(x) =
−5x2

2
+ x4 + x5 + 1

1+x2 , α = 1, x0 = 1.5, q0 = γ0 = λ0 = β0 = 0.1

TPM [41] (a = b = 0) 0.50000(0) 0.52236(−1) 0.29347(−5) 8.0000 1.68179
LAM [27] 0.50000(0) 0.73848(−1) 0.60939(−12) 15.6030 1.98748
GKM [17] 0.50000(0) 0.10118(−1) 0.29389(−19) 16.0000 1.74110
SSSLM [35] 0.50000(0) 0.25125(−1) 0.16956(−15) 16.0000 1.74110
TAM16 (37) k=4 0.73848(−1) 0.60939(−12) 0.10730(−188) 16.0000 2.00000

f5(x) = log(1 + x2) + e−3x+x2
sin(x), α = 0, x0 = 0.5, q0 = γ0 = λ0 = β0 = 0.1

TPM [41] (a = b = 0) 0.50000(0) 0.54581(−2) 0.75773(−15) 8.0000 1.68179
LAM [27] 0.50000(0) 0.55075(−3) 0.30763(−48) 15.5080 1.98444
GKM [17] 0.50000(0) 0.46311(−6) 0.28713(−94) 16.0000 1.74110
SSSLM [35] 0.50000(0) 0.55428(−3) 0.10344(−42) 16.0000 1.74110
TAM16 (37) k=4 0.55075(−3) 0.30763(−48) 0.11682(−771) 16.0000 2.00000

f6(x) = x log(1− π + x2)− 1+x2

1+x3 sin(x2) + tan(x2), α =
√
π, x0 = 1.7, q0 = γ0 = λ0 = β0 = 0.1

Methods |x1 − α| |x2 − α| |x3 − α| COC EI
TPM [41] (a = b = 0) 0.72454(−1) 0.21456(−8) 0.94711(−69) 8.0000 1.68179
GKM [17] 0.72454(−1) 0.43034(−19) 0.25205(−310) 16.0000 1.74110
LAM [27] 0.72454(−1) 0.27167(−6) 0.15849(−97) 15.5120 1.98457
SSSLM [35] 0.72454(−1) 0.11233(−14) 0.10052(−237) 16.0000 1.74110
TAM16 (37) k=4 0.27167(−6) 0.15849(−97) 0.19365(−1557) 16.0000 2.00000

f7(x) = x3 + 4x2 − 10, α = 1.3652, x0 = 1, q0 = γ0 = λ0 = β0 = 0.1

TPM [41] (a = b = 0) 0.36520(0) 0.69070(−3) 0.30013(−4) 8.0000 1.68179
LAM [27] 0.36520(0) 0.75262(−3) 0.30013(−4) 16.0000 2.00000
GKM [17] 0.36520(0) 0.84783(−3) 0.30013(−4) 16.0013 1.74392
SSSLM [35] 0.36520(0) 0.19417(−1) 0.30013(−4) 16.0000 1.74110

TAM16 (37) k=4 0.95262(−3) 0.23001(−3) 0.23001(−3) 16.0000 2.00000

Table 4: Comparison evaluation function and efficiency index of the proposed method

by three- and four-step methods with and without memory
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5 Conclusion

In this study,we have increased convergence - order methods 2, 4 and 8 without impos-

ing new evaluation on different recursive methods, with a convergence order of 4, 8 and

16, 100% improvement, respectively. To this end, based on Newton’s interpolation, the

parameters of self-evaluation are interpolated. The numerical results show that pro-

posed method is very useful to find an acceptable approximation of the exact solution of

nonlinear equations, specially when the function is non-differentiable. Table 2 compares

one-step iterative with and without memory and the proposed method on functions

fi(t), i = 1, 2, . . . , 7. Similarly, Table 3 compares two-step iterative methods.Also Table

4 compares three- and four-step iterative methods with the proposed schemes. Last col-

umn of Tables show efficiency index defined by EI = COC1/n, which is asymptotically

2. In other words, the proposed adaptive method with memory (11), (23), and (37) show

a behavior as optimal n-point methods without memory.Therefore, we have developed a

family iterative methods adaptive with memory which have efficiency index 2.The effi-

ciency index of the proposed adaptive family with memory is 4
1
2 = 8

1
3 = 16

1
4 = 2 which

is much better than optimal one-,..., five-point optimal methods without memory hav-

ing efficiency indexes 21/2 ≃ 1.414, 41/3 ≃ 1.587, 81/4 ≃ 1.681, 161/5 ≃ 1.741, 321/6 ≃
1.781, 641/7 ≃ 1.811, respectively.Adaptive methods with memory have minimum eval-

uation function, not evaluation derivative, and most efficiency index, hence compets

with existing methods with- and without memory.
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