Journal of Mathematical Extension
Vol. 15, No. 1, (2021), 41-60

ISSN: 1735-8299
URL: https://doi.org/10.30495/JME.2021.1443

Original Research Paper

Complexity and Approximability of the
Marking Problem

M. Valizadeh
Iran Telecommunication Research Center

M. H. Tadayon*
Iran Telecommunication Research Center

Abstract. Let G be a digraph with positive edge weights as well as
s and t be two vertices of G. The marking problem (MP) states how
to mark some edges of G with T" and F', where every path starting at
source s will reach target ¢ and the total weight of the marked edges
is minimal. When traversing the digraph, T-marked edges should be
followed while F-marked edges should not. The basic applications and
properties of the marking problem have been investigated in [1]. This
paper provides new contributions to the marking problem as follows: (i)
the MP is NP-Complete even if the underlying digraph is an unweighted
binary DAG; (ii) the MP cannot be approximated within «wlogn in an
unweighted DAG and even in an unweighted binary DAG with n ver-
tices, where « is a constant. Moreover, a lower bound to the optimal
solution of the MP is provided. We also study the complexity and chal-
lenges of the marking problem in program flow graphs.

AMS Subject Classification: 68R10; 68Q17; 68Q25; 68W25; 90C59
Keywords and Phrases: Marking problem, reachability, approxima-
bility, complexity, feasibility

1. Introduction

Let G be a weighted digraph and s and ¢ be two vertices of G. The reachability
assurance (RA) problem states how to label the edges of G where every path

Received: May 2019; Accepted: November 2019
*Corresponding author

41

42 M. VALIZADEH AND M. H. TADAYON

starting at s finally reaches ¢, while the sum of the weights of the labeled
edges, called the reachability cost, is minimal. Various practical problems can
be modeled with the RA problem. For instance, in the context of graph-based
test case generation, the main problem is to generate test cases in order to
cover the vertices or edges of a given digraph [2].

The common solution to the RA problem is path finding, in which a path p is
sought from s to ¢, and then every edge of p is labeled as T', which implies that
those edges should be followed [3, 4]. The lower bound of the reachability cost
of this solution is the shortest path weight. Although the path finding solution
is efficient, it is generally not effective, especially when the size of G grows.

Reachability assurance is a serious challenge to software testing [2]. In order to
test a computer program, we should provide some input to the program where
every statement of the program is reached at least once. Let G be the flow
graph of a given program and s be the start vertex of G. To extract such a test
data using the path finding approach, we should find a path from s to each
vertex of G, and then satisfy the labels (Boolean expressions) of all edges of
the path. If G is a small digraph, this may not be difficult. However, if G is
large enough, this goal can become very hard to achieve, which implies that it
might not be solvable using the current SAT solvers [5].

We provided the MP approach to solve the reachability assurance problem
effectively [1]. We revealed the reachability cost of the MP approach is far less
than that of the path finding approach [1]. We demonstrated the fundamental
properties of the MP and presented its application in software testing [1]. In this
paper, we scrutinize the complexity and approximbility of the MP in general
and restricted digraphs.

This article is structured as follows. Section 2 presents the required notation and
terminology. Section 3 discusses the computational complexity of the marking
problem in unweighted binary DAGs. Moreover, this section examines approx-
imability of the marking problem in both general and restricted digraphs. Sec-
tion 4 deals with the marking problem in program flow graphs. Finally, Section
5 concludes the research findings and proposes future work.

2. Preliminaries and Notation

Let G = (V, E) be a digraph. The set of reachable vertices from vertex v is
denoted as reach(v). The set of outgoing edges of a vertex v is represented as
oe(v). The out-degree of a vertex v of G is denoted as od(v) and the out-degree
of G is the maximum out-degree of the vertices of G.

Digraph G is said to be a binary DAG if G has no cycle and the out-degree

COMPLEXITY AND APPROXIMABILITY OF THE 43

of G is 2. A flow graph (FG) is a triple (V, E,s), where (V, E) is a digraph,
s € V is the unique start vertex of the digraph and there is a path from s to
each vertex of G [6]. If G = (V, E) is a digraph and v; € V, then a flow graph
can be formed with start vertex v; by the removal of every vertex of G (and
its adjacent edges) which is non-reachable from v;. A complete flow graph is
a quadruple G = (V, E, s, f), where (V| E,s) is a flow graph with the unique
start vertex s and f € V is the unique final vertex of G; there is a path from s
to each vertex of G and there is also a path from each vertex of G to f [1]. The
edge e = (v;,v;) of the flow graph (V, E, s) is a back edge if every path from s
to v; goes through v;. A flow graph is said to be reducible if the removal of its back
edges leads to an acyclic digraph where each vertex can be reached from s.

Let G = (V,E) be a digraph with positive edge weights and v;,v; € V. The
marking problem (MP) is how to assign marks T and F' to some edges of G
where every path starting at source v; will reach target v;. When the digraph
is being traversed and a vertex vy is visited, these marks find the following
interpretations: (a) If some outgoing edges of v, are marked with T, then
we must pass through one of these edges; (b) If some outgoing edges of vy, are
marked with F', then these edges must not be chosen; (c) If some outgoing edges
of vy, are not marked, then any of these edges may be chosen. The optimization
problem involves minimizing the total weight of the marked edges [1].

A solution to the marking problem MP = (G,s,t) is a partial function from
domain E(G) to co-domain {T, F'}. In a pure (non-labeled) digraph, marking
an edge e with F' means removal of the edge while marking e with 7" signifies the
removal of every sibling edge of e. If G denotes the flow graph of a computer
program, marking e with T'/F is equivalent to making TRUE/FALSE the
label (logical expression) of e. Let G = (V, E, s) be a flow graph, M P = (G, s,)
be an instance of the marking problem, and v; be an arbitrary vertex of G. In
an optimal solution to the M P, we have [1] : (a) The outgoing edges of v;
cannot be marked with both marks T and F'; (b) If v; has only one outgoing
edge, it cannot be marked with F’; (¢) At most one outgoing edge of v; can
be marked with F; (d) If G is unweighted, the M P has a solution using only
T-mark.

The MP is a problem in reachability context. It is interesting to know whether
such a reachability problem can be reduced to and solved by a corresponding
problem in unreachability context, such as cut problem. This topic has been
discussed in [7].

44 M. VALIZADEH AND M. H. TADAYON

3. Complexity and Approximability of the Mark-
ing Problem

The decision versions of the marking and hitting set problems are presented
in Tables 1 — 2. We will use the hitting set problem to prove the complexity
and approximability of the marking problem. The MP is an NP optimization
problem [1].

Table 1. Decision version of the marking problem (MP).

Input: A digraph G = (V, F) with positive edge weights plus ver-
tices s and t of GG and a real value wy.

Parameter: w;

Question: Is it possible to mark some edges of G with {7, F'},
where every path starting at s will reach ¢ and the total weight of
the marked edges is at most wy?

Table 2. Decision version of the hitting set (HS) problem.

Input: A ground set {aj, a2, -+ ,an}, a collection of n subsets s;
of that ground set and an integer k.

Parameter: k;

Question: Is there any subset A of the ground set, such that |A| <
ki1 and foreachi=1,--- ' n,sNAF#¢ 7

Theorem 3.1. If the underlying digraph is a weighted DAG, then the marking
problem cannot be approzrimated within alogn for some constant a where n is
the number of vertices of the digraph.

Proof. We reduce the hitting set problem to the marking problem as fol-
lows. Suppose S = {s1, 82, ,8,} are the given sets and {ay,as, -+ ,a;,} is
the union of all the sets. Given the number ki, the hitting set problem states
whether or not there exists a set A with ki or fewer elements such that every
element of S (every set s; where i = 1,--- ,n) contains at least one element
of A. The hitting set problem instance is denoted as HS(S). The DAG G is
constructed from the given set S as follows (Figure 1). Consider s as the start
vertex of G. For each set s; of HS where ¢ =1,--- ,n, consider the correspond-
ing vertex s; and add an edge with an infinite weight from s to each s;. Then,
for each element a; of the union of the input sets where j = 1,--- ,m, consider
the corresponding vertex a; and add an edge with weight 1 from each s; to any

COMPLEXITY AND APPROXIMABILITY OF THE 45

a; where a; € s; in HS. Furthermore, consider two final vertices called £ and
t and add two edges with weights n * m from each a; where j =1,---,m to
both final vertices. Finally, each vertex s; where ¢ = 1,--- ,n is connected to
vertex k with weight 1. Clearly, G can be constructed in polynomial time. It is
now shown that HS(S) has a solution with k; or fewer elements if and only if
MP = (G, s,t) has a solution with the total weight n +mnk; or less of marked
edges where n = |S|.

Figure 1. Digraph G of the marking problem corresponding to the hitting
set problem H.S(S) where n = |S| and m is the size of the union of all the
given sets.

HS — MP.

Suppose A is a set with k; or fewer elements such that every element of S
contains at least one element of A. It will now be indicated that M P = (G, s, t)
has a solution with a total weight n + mnk; or less of marked edges. For each
element a; € A, edge (a;,t) is marked with T. Furthermore, as A contains at
least one element of any element of S, for each set s; € S, one and only one
outgoing edge of s; called (s;,a,) is marked with T' where a, € s; N A. As the
weight of every outgoing edge of s is infinite in G, no outgoing edges of s are
marked. Now when moving from vertex s of G, vertex s; where ¢t =1,--- nis
reached first. Since one outgoing edge of every element of S has been marked,
by starting from s;, vertex a, where a, € A will be reached. Finally, as the
outgoing edge (ap,t) of any element of A has been marked, ¢ will be reached,
with the sum of the weights of marked edges being at most n + mnky.

MP — HS.

Suppose function f; : By — {T,F} is a solution to MP = (G, s,t) where
E;, C E(G). Any solution to the marking problem needs to mark one and only
one outgoing edge of every s; where i = 1,--- n. At least one outgoing edge of
each s; must be marked because vertex s; has a direct edge to vertex k which
never reaches t. In addition, at most one outgoing edge of s; must be marked as
either edge (s;, k) can be marked with F or edge (s;, a;) with T', where a; € s;
in HS(S) and the weights of both edges are the same. Furthermore, one and
only one outgoing edge must be marked of some a;’s where 1 < j < m. Indeed,

46 M. VALIZADEH AND M. H. TADAYON

depending on which outgoing edge of any element of .S is marked, the outgoing
edges of the corresponding a;’s, but not all a;’s, must be marked. Again, at
least one outgoing edge of each such a; must be marked, since vertex a; has a
direct edge to vertex k which never reaches ¢. Also, at most one outgoing edge
of each such a; must be marked because either (a;,k) can be marked with F
or (aj,t) with T and the weights of both edges are equal. Thus, the solution
to M P has used total weight n + mnk; or less of marked edges where n is the
number of marks used in the form of ((s;,a;) — T or (s;,k) — F) for all s;’s
and k; is the number of marks used in the form of ((a;,t) — T or (a;, k) — F)
for some a;’s. So, the solution to M P can be considered to be fi = f2U f3 such
that fo : (s;,2) — {T, F} where (t =a;orz=k,i=1,---,n,1 <j<m)and
fs: (aj,y) = {T,F} where (y =t or y = k,1 < j < m). The tail set of the
domain of function f3, here called hit edges, can be denoted as A;. It is claimed
that A; with the size k; is a solution to HS(S). Suppose that A; does not hit
one of the elements of S,e.g.,s;. This means that in digraph G, no outgoing
edges have been marked of some a;’s where a; € s; in HS(S). Hence, the path
s5.8;.a;5.k in G starts at s but does not reach ¢, which is a contradiction as f; is
a solution to the marking problem M P = (G, s, t).

The hitting set problem cannot be approximated within «logn for some con-
stant « [8]. Accordingly, we can see that the marking problem cannot be ap-
proximated within alogn for some constant a. Suppose that the size of the
optimal solution of an instance of the hitting set problem is B. Then, the size of
the optimal solution of the corresponding marking problem in the constructed
digraph G (Figure 1) will be mnB + n. If we can find a marking in which the
total number of all hit edges is B, then the marking has a weight mnB; + n.

Assume WTTS < aq log(n * m) for some constant ;. Note that the size of
the digraph G is O(n * m). Then, we have % < %ﬂ +0(1) < aylog(n *

m). For the hitting set problem with n sets and m = poly(n) elements, it cannot
be approximated within «logn [8]. Since m is bounded by some polynomial
in n, we can observe that 2 < ajlog(n * m) < ajaslog(n), where as is
another constant. If we choose a3 < «/ag, then % < log(n). Now we have
a contradiction, implying that the marking problem cannot be approximated

within alogn. 0O

Theorem 3.2. The marking problem cannot be approrimated within alogn for
some constant o even if the underlying digraph with n vertices is an unweighted
DAG.

Proof. Let G be a weighted DAG, s and ¢ be two vertices of G, MPX = (G, s,t)
be the marking problem instance constructed from HS(S) in Theorem 3.1.
Every edge of G is unit-weighted except the outgoing edges of the start vertex

COMPLEXITY AND APPROXIMABILITY OF THE 47

s as well as the outgoing edges of every vertex a; where a; is the ground set
of HS (j = 1,--- ,m). Initially, we reduce the M PX to another instance M P
of the marking problem as follows: Construct one square digraph M, with
(mn|E(G)| + 1) * (mn|E(G)| + 1) vertices where each vertex of any row of My
is connected to all vertices of its next row (Figure 2.a). Further, construct m
square digraphs, M; (j =1,--- ,m), each one with (mn—1)*(mn—1) vertices
where each vertex of any row of M; is connected to all vertices of its next row
(Figure 2.b). Now, the unweighted DAG G’ = (V’, E’) is constructed from the
weighted DAG G in two stages as follows: Stage I: Remove every outgoing edge
of s in G. Then connect s to each vertex of the first row of M. Also connect
each vertex of the last row of My to every successor of s in G. Stage II: Remove
every outgoing edge of every vertex a; of G where a; is the ground set of HS
(j = 1,---,m). Then, for each a;, connect the a; to each vertex of the first
row of M. Also connect each vertex of the last row of M; to both vertices k
and t of G (Figure 2.b).

Figure 2. a) The square digraph My with r * r vertices where
r = (mn|E(G)|) + 1. (b) Each square digraph M; (j =1,---,m) with p*p
vertices where p = mn — 1. Note that G is digraph of the marking problem
corresponding to the hitting set problem H.S(S) where n = |S| and m is the
size of the union of all the given sets.

Note that the structure of DAG G’ is similar to the structure of DAG G, except
that the subgraph My is added between the vertex s and its successors as well as
each subgraph M; (j =1,--- ,m) is added between the vertex a; and the final
vertices k and t of G. Clearly, G’ can be constructed in polynomial time and its
size is O(E(G)|) + O((mnE(G)])?) +m* O((mn —1)?)) = O(m* xn?). Now, it
is demonstrated that M PX has a solution with a total weight n+mnk; or less
of marked edges in the weighted digraph G if and only if M P has a solution

48 M. VALIZADEH AND M. H. TADAYON

with the total weight n + mnk; or less of marked edges in the unit-weighted
digraph G’, implying a one-to-one reduction.

MPX — MP.

Let the function f1 : E1 — {T,F} be a solution to M PX in DAG G where
FEy C E and the total weight of F4 is n + mnk;. If function f; is applied to
G’, then the reachability of ¢ from s is assured in G’ and total weight of the
marked edges is n + mnk;.

MP — MPX.

Let s1,-- -, sp be the successors of s in G. DAG G’ has been constructed in a
way that the reachability cost of any vertex s; from s is at least (mn|E(G)|)+1,
where 1 < ¢ < n. For instance, consider a path from s to s; in G’ and mark
every edge of the path with T'. As the length of p in G’ is (mn|E|+2), then the
(mn|E| + 2) edges are marked with T. Also consider the edge set connecting
the last row of My to s; and mark them with T'. In this case, the (mn|E| + 1)
edges are marked with T. So, the reachability cost of any s; from s in G’ is
at least (mn|E(G)|) + 1, implying that it is impossible to reach an s; from s
in G’ with a total weight (mn|E(G)|) of marked edges (i = 1,---,n). Note
that (n +mnky) < mn|E(G)|, because |E(G)| > (m + n) and k1 < m . So, no
solution to the M P marks the edges of the subgraph My in G’. In addition,
each subgraph M; (j =1,--- ,m) in G’ has been constructed in a way that the
cost of reaching ¢ (or k) from an a; in G’ is mn, which is equal to the cost of
reaching ¢ (or k) from an a; in G.

Let the function fo : E{ — {T, F} be a solution to MP in DAG G’, where
Ej C E'. Further, let the total weight of E] be n 4+ mnk;. If the function f; is
applied to G, the reachability of ¢ from s is assured in G and the total weight
of the marked edges is n + mnk;.

As the reduction of M PX to M P is one-to-one, by Theorem 3.1, it follows that
Theorem 3.2 holds. Note that the size of digraph G in the problem M PX is
O(m*n), whereas the size of G’ in the problem M P is O(m*xn*). However, in
the proof of Theorem 3.1, the term oy log(n*m) is just replaced with a; log(n**
m*) which equals o} log(n * m) where o} = 16a;. O

Theorem 3.3. The marking problem is NP-Complete and cannot be approxi-
mated within alogn for some constant o even if the underlying digraph with n
vertices is an unweighted binary DAG.

Proof. In the unweighted DAG G’ constructed in the proof of Theorem 3.2,
the out-degree of the vertices s, s;’s (i = 1,---,n) and a;’s (j = 1,--- ,m)
is larger than 2. In order to prove Theorem 3.3, we should construct a new
unweighted DAG G’ from the weighted DAG G in polynomial time and size
such that out-degree of all vertices of G’ is 2.

COMPLEXITY AND APPROXIMABILITY OF THE 49

This is demonstrated by an example using n = 3 and m = 5. Figure 3.a
displays the DAG G of HS(S) with n = 3 and m = 5. First, the weight
of every outgoing edge of each vertex s; (i = 1,---n) in G is changed to the
out-degree of s;. So, the weight of every outgoing edge of s in Figure 3.a will be 3.

Then, the outgoing edges of s in G are substituted with the binary DAG given
in Figure 3.b. The reachability cost of any s; from s in Figure 3.b is greater
than mn|E(G)|, implying that no solution to the MP = (G, s,t) marks the
edges of Figure 3.b. So, replacement of the outgoing edges of s with the binary
DAG presented in Figure 3.b will not change the solution to M P in G.

Thirdly, for each vertex s; of G (i = 1, -+ ,n), its outgoing edges are substituted
with the binary DAG given in Figure 3.c. Let i = 1. In order to guarantee
reaching ¢, we should reach an a; from each s; (in this case s1) where aj € 8;
in HS(S) and j = 1,--- ;m. The binary DAG represented in Figure 3.c is
constructed in a way that the reachability cost of any a; from an s; is the same
and equals the weight of any outgoing edge of s; in G. Figure 4.b illustrates
how to convert outgoing edges of an s; to binary mode when s; has more
outgoing edges, e.g., 4 outgoing edges including 3 vertices a;’s and 1 vertex
k. For arbitrary values of n and m, only the height of the binary DAG given
in Figure 4.b grows polynomially.

Finally, for each vertex a; of G (j = 1,---,m), its outgoing edges are substi-
tuted with the binary DAG given in Figure 4.a. The binary DAG presented in
Figure 4.a is constructed such that the reachability cost of the vertex ¢ (or k)
from each vertex a; is the same and equals mn.

Thus, substituting the outgoing edges of s, s;’s and a;’s with the unit-weighted
binary DAGs given in Figure 3.b, Figure 3.c (or Figure 4.b) and Figure 4.a
does not change the cost of marking to reach ¢, implying that (G,s,t) =
(G', s,t). Hence, digraph G’ can be considered instead of G in the proof of The-
orem 3.2, so the theorem holds. Obviously, G’ can be constructed in polynomial
time whose size is O(E(G)|) + O((mn|E(G)])?) + m* O((mn)?)) + nxO(m?) =
O(m*xn*). Also, the term oy log(n *m) is replaced with a; log(n* * m*) which
equals o) log(n * m) where of = 16c;. O

Lemma 3.4. Let G be an unweighted binary DAG and s and t be two vertices
of G. The lower bound of the optimal solution to the marking problem (G, s,t)
is min — cut(s, k) where k is the representative of all vertices unreachable to t.

Proof. Let K be the set of all vertices of G which are not reachable to t. We
condense all vertices of K and their adjacent edges in a new vertex called k
and call G’ the new digraph. Consider any edge e = (v;,v;) of G such that
v; ¢ K but v; € K. We replace the head of every such an edge e with the
vertex k in G’. Now, we claim that M = min — cut(s, k) in G’ is a lower bound

50 M. VALIZADEH AND M. H. TADAYON

to the optimal solution of the marking problem MP = (G, s,t) in G. Since G
is an unweighted binary DAG, the marking problem M P has an answer using
only T-mark [1]. Suppose the number of the T-marked edges of the optimal
solution to the M P is N where N < M. For each T-marked edge e, consider
its sibling edge ¢’. We call E’ the set of all edges e’. Marking all edges of E’ with
F (equivalently, the removal of all edges E’ from G’) assures the reachability
of ¢t from s or equivalently the unreachability of k from s where the size of
E’ is less than M, which is a contradiction, since M is the size of minimum
cut. Note that min-cut (s, k) in G’ is not an answer to the marking problem
MP = (G, s,t) in G as the min-cut (s, k) does not guarantee the reachability
of t from s in general. [

00|58 5l o on,

i=(r-1mod n)+1
(a) (b) (©)

Figure 3. (a) Digraph G of a marking problem corresponding to a hitting set

problem with n = 3 and m = 5; (b) The conversion of outgoing edges of s to

binary mode where r = (mn|E(G)|) + 1; (c) The conversion of outgoing edges
of s1 to binary mode.

Figure 4. (a) Conversion of outgoing edges of each a; (j =1,---,m) to
binary mode, where r = mn. (b) The conversion of outgoing edges of an s; to
binary mode where s; has 4 outgoing edges including 3 vertices a;’s and 1
vertex k.

COMPLEXITY AND APPROXIMABILITY OF THE 51

4. Marking Problem in Program Flow Graphs

4.1 Complexity of the marking problem in program flow
graphs

There are two types of the reachability problem: syntactic reachability vs. se-
mantic reachability [2]. The semantic reachability problem is studied in the
context of program flow graphs. An edge of a program flow graph has a la-
bel indicating a Boolean expression. Unlike the pure flow graphs, we cannot
mark any two arbitrary edges of a program flow graph with T'/F as their la-
bels (Boolean expressions) might be contradictory. The main complexity of the
semantic reachability problem originates from the feasibility problem. An arbi-
trary path of a program flow graph is not necessarily feasible and it might be
semantically infeasible. The feasibility problem was proven to be undecidable
by Goldberg et al. [9] and DeMillo and Offutt [10]. Some partial solutions have
been presented by Gallagher et al. [11], Goldberg et al. [9], R. Jasper et al. [12],
and Offutt and Pan [13].

This section indicates that the reachability problem is NP-Complete even when
the label of each edge of the underlying flow graph is a Boolean variable. The
decision versions of the one-variable feasible path problem (1-VAR-FP) and 3-
DNF-SAT problem are shown in Tables 3-4. We use the later problem to prove
NP-Completeness of the 1-VAR-FP problem.

Table 3: 1-VAR-FP problem.

Input: A program flow graph G = (V, E,s), where the label of
each edge of GG is a Boolean variable, and a vertex ¢ of G.
Question: Is there any feasible path from s to t in G?

Table 4: 3-DNF-SAT problem.

Input: A Boolean expression consisting of m clauses in 3-DNF, as
disjunctive normal form, where any clause consists of three distinct
literals.

Question: Is there any Boolean assignment to all literals where the
truth value of the Boolean expression becomes FFALSE?

52 M. VALIZADEH AND M. H. TADAYON

Theorem 4.1.1. The 1-VAR-FP problem is NP-Complete.

Proof. The 1-VAR-FP problem is NP; when given an answer P, we can verify
in polynomial time whether P; is both a path and feasible. It is enough to
verify that the sequence of the edges of the path P; do exist in G and there are
no two edges in P; having the complement labels. Since the label of each edge
of G is a Boolean variable, this verification can be performed linearly.

Now, we should show that 1-VAR-FP problem is NP-Hard. To do this, we
reduce 3-DNF-SAT problem to 1-VAR-FP problem. The 3-DNF-SAT problem
is the dual of 3-CNF-SAT problem (also known as 3-SAT), which is one of the
21 classic NP-complete problems proved by Karp in 1972 [14]. The 3-CNF-SAT
problem states that determination of satisfiability of a given Boolean expression
in 3-CNF is NP-complete. By duality, determination of unsatisfiability of a
given Boolean expression in 3-DNF is NP-complete. We can convert the given
Boolean expression BE = ¢1 VeV - Ve, where ¢; = £1;Axo; Axg; (1 < i< m)
to an acyclic program flow graph by Algorithm 1

Algorithm 1. SAT2AcyclicFG (BE)

.G=(V,E,s),V ={v,vu}, E=¢
. for each ¢; = x1; A x9; N\ x3; do
V=VuU {'Uh', V24, 1}31'}
E = EU{(v15,v2), (v2i, v3i), (v3s,v1) }
label(’uli, ’1)22‘) = T14, label(vgi, ’U3i) = T2, label(vgi, Ul) = X3;
end for
.fori=1to (m—1)do
E = EU{(v1i, v1(i41))> (V205 V13i41))s (V305 V13i41)) }
label ('Ulz‘, 'Ul(i-f—l)) = NOT(QZ‘M'), label(vgi, Ul(i+1)) = NOT(Z’Qi),
label(vgi, Ul(iJrl)) = NOT(.CCgZ‘)
10. end for
11. E=FU {(Ulm, 1)2), (Ugm, 1)2), (U3m7 'UQ)}
12. label(vim,v2) = NOT(x1m),label(v2m,v2) = NOT(x2m),label(v3m,v2) =
NOT (x3m)
13. s = V11
14. return G

© 0 NS U W

COMPLEXITY AND APPROXIMABILITY OF THE 53

It is obvious that G (return value of Algorithm 1) is a labeled DAG and the label
of each edge of G is a Boolean variable. It is also a flow graph, as each vertex of
G is reachable from the start vertex s = v1;. The digraph G is a program flow
graph as the label of each edge of G is a Boolean expression. Each clause ¢; of
the Boolean expression BFE is equivalent to the ith-column of G. We intend to
show it is NP-Hard to decide whether there exists a feasible path from s = vy
to t = vy in G. According to the structure of the digraph G, we claim that
BE equals FALSE if and only if there exists a feasible path from s to t in
G, implying that the 1-VAR-FP problem is NP-Hard. To prove the claim, the
digraph G is constructed in a way that for reaching v;, at least one of clauses of
BE must be TRUE. The vertices v; and v are the final vertices of G, implying
that if we start moving from the start vertex s = v11, we finally reach either
v1 Or vo, but not both of them.

Now, if BE equals FALSE, then none of the clauses of BE is TRU E, implying
that if we start moving from the start vertex s = v11, then we never reach vy,
so we definitely reach t = vy. In contrast, if there exists a feasible path from
s = w11 to t = vg in G, then none of clauses of BE is TRUE (otherwise, we
reach vy, so we never reach ¢, which is a contradiction). Thus, BE will equal
FALSE. Obviously, an instance of a 3-DNF-SAT expression can be converted
to an acyclic program flow graph in linear time. Indeed, if a 3-DNF-SAT prob-
lem has m clauses, its corresponding program flow graph will have 3m + 2
vertices and 6m edges. [J

Corollary 4.1.2. The 1 — VAR — FP problem is NP-Complete, even if the
underlying digraph is a binary DAG.

Figure 5. The acyclic program flow graph of the Boolean expression
(11 A @21 Ax31) V (w12 A Taz A T32) V (T13 A T23 A T33).

54 M. VALIZADEH AND M. H. TADAYON

Proof. In the proof of Theorem 4.1.1, we have that the return value of Algo-
rithm 1 is a DAG with an out-degree of 2. Hence, the corollary holds. [

Example 4.1.3. Figure 5 demonstrates the acyclic program flow graph of the
Boolean expression (z11 A %21 Axz1) V (X12 Axos Ax32) V (T13 A Ta3 Axsz). The
symbol — denotes ‘NOT".

Corollary 4.1.4. The marking problem is NP-Complete if the underlying pro-
gram flow graph is an unweighted binary DAG.

Proof. The corollary holds according to either Theorem 3.3 or Theorem 4.1.1. In-
terestingly, either minimality or feasibility of the marking problem makes it
NP-Complete. O

4.2 A heuristic algorithm to the marking problem in
program flow graph’s

In order to solve the marking problem in program flow graphs, we can use
the heuristic algorithm provided in [1]. However, a feasibility checking func-
tion should be added to this algorithm in order to consider only the feasible
solutions.

Suppose that G = (V) E,s) is an acyclic flow graph of a computer program
and v; and v; are two vertices of G. Moreover, suppose that the label of any
edge of G is a Boolean variable. We use the function CFG(v;, v;) to construct
a complete flow graph, H, with the start and final vertices v; and v;, respec-
tively, where every path starting at v; will finally reaches v;, implying that
the reachability of v; from v; is guaranteed (Algorithm 2). The digraph H
is constructed as follows: (i) consider the induced sub-graph G[H]| such that
H = {k € V|k € reach(v;) and v; € reach(k)}; (ii) remove (mark with F') every
outgoing edge of H, namely every e of G where tail(e) € H and head(e) & H;
(iil) instead of F-marking multiple sibling outgoing edges e, e, - - - of H, their
another sibling edge e; should be marked with T, if head(e;) € H and the
weight of ey, is less than the sum of the weights of F-marked edges. Since the
weights of all outgoing edges of a vertex of program flow graphs are the same,
we can use only the mark T' [1].

Let By and E; and E5 be the subsets of E(G), s and ¢ be two vertices of
G,MP = (G, s,t) be an instance of the marking problem, f; : E; — {T, F} be
an optimal solution to the M P, fo : E5 — {T, F'} be a heuristic solution to the
MP and SP : E3 — {T'} be the T-marked edges of the shortest path from s
to t in G. |F;| denotes the sum of the edge weights, where E; C E. According
to the definition of the marking problem, we have |E;| < |Fs|, which means
that the shortest path length is an upper bound to the solution of the marking

COMPLEXITY AND APPROXIMABILITY OF THE 95

problem. Thus, the solution of a good heuristic algorithm to the M P would be
better than SP(s,t), which means that |E;| < |Eq| < |Es.

Algorithm 2. CFG(G,v;, v;)

H=9¢

. for each v, € V(G) do
if (vy € reach(v;) and v; € reach(v;)) then H = H U {v;}

end for

. markedEdges = ¢

. for each v, € H do

if exist e € outgoingEdges(vy) in G such that head(e) ¢ H then
¢/ = a sibling edge of e such that head(e) € H

9. markedEdges = markedEdges U {(¢/,T)}

10. end if

11. end for

12. return markedEdges

PN T W

One trivial way to compute fs is to compute SP(s,t) and then mark every edge
of the shortest path with 7. However, in order to compute f2, we can consider
marking a set of edges instead of marking the sequential edges of a path (the
CFG@ function). In some cases, the value of the function CFG(s,t) is a good
initial value for the solution of the M P. However, the value of CFG(s,t) may
be greater than the value of SP(s,t). Hence, the minimum value of SP(s,t)
and CFG(s,t) should be considered as the initial value for the solution of the
M P, namely, the one with the minimal total weight of the marked edges. Al-
gorithm 3 improves this initial value using an iterative improvement technique
[1]. As G is a program flow graph, we cannot mark an arbitrary edge set of G
with T. So, we should check the feasibility of the return value of the SP and
CFG@ functions. The function FIZ is used for this purpose (Algorithm 4). The
provided algorithm can also be used for cyclic flow graphs which are reducible

[1].
Lemma 4.2.1. Algorithm 8 provides a heuristic solution to the marking prob-
lem in a given acyclic program flow graph.

Proof. Obviously, the removal of the outgoing edges of ¢t has no effect on
the solution of the marking problem (line 1). In the initialization phase of
Algorithm 3, for each pair (v;,v;) where v; € reach(v;), the minimum value of
SP(v;,v;) and CFG(v;,v;) is considered as the initial value of the solution of
the marking problem (G, v;,v;) [lines 3-8]. The function (v;,v;) is a T-marking
of the shortest path from v; to v; in G. The function CFG(v;,v;) uses the
marking approach to guarantee reaching v; from v; in G. It considers the set of
every vertex reachable from v; and to v;. This vertex set with all edges among

56 M. VALIZADEH AND M. H. TADAYON

them creates the induced subgraph H. Now, in order to guarantee reaching t
from s in G, it is enough to mark the outgoing edges of H with F', or to mark
a sibling edge of the F-marked edges with T, if the weight of T-marked edge
is less than the total weight of the F-marked edges. The function FIZ checks
the feasibility of the answers of the SP and CFG functions before using them.

Algorithm 3. MP_DAG(G = (V,E), s,t).

1. E = FE — outgoingFEdges(t)
2. MP : a matrix |V|*|V| such that each cell is a set of tuples (e, X),
where e € E and X € {T, F}

3. for each v; € V do

4. for each v; € reach(v;) do

5. SP(vi, Uj) = U{(e, T)}eEShortestPath(vi,vj)

6. MP(vi,vj) = min(FIZ(SP(vi,v;)), FIZ(CFG(vi,v5)))
7. end for

8. end for

9.

vertex List = reverseT opological Sort(G)

10. for each v; in vertexList do // t is the first element of the list
11. for each v; € reach(v;) do

12. if (M P(v;,vj) # oo and M P(vj,t) # oo) then

13. MP(v;,t) = min(MP(v;, t), F1Z(M P (v;,v;) U MP(vj,t)))
14. end if

15. end for

16. end for

17. return M P(s,t)

Algorithm 4. FIZ(S). //S is a set of tuples (e, x), where e € E(G) and

x e {T,F}.
1. for each (e,z) in S do
2. if there exist a tuple (¢/,2') in S where 2/ = NOT(z) then
3. return oo
4. end if
5. end for
6.

return |S| //size of S

COMPLEXITY AND APPROXIMABILITY OF THE Y4

To find a better solution to the marking problem MP = (G, s,t), an iterative
improvement technique is used to guarantee reaching the intermediate vertex
v from s (for each vertex v of V' where v € reach(s) and t € reach(v)) and
then reaching the vertex ¢ from v. To apply this technique, G is sorted reverse-
topologically [line 9] where ¢ and predecessors of ¢ become the first vertices of G
for the computation of the M P. For each vertex v; in the reverse-topologically
sorted vertex list of G, the formula provided in line 13 of Algorithm 3 is used
to guarantee reaching the intermediate vertex v; from v;, for each vertex w;
between v; and ¢, and then reaching ¢ from v;. As the order of v; is less
than the order of v; in the sorted list, M P(v;,t) should be computed prior
to M P(v;,t). The feasibility of the intermediate solutions is checked in lines
12-13. When execution of lines 10-16 is finished, M P(v;,t) is computed for the
last vertex of the list, namely for v; = s. Hence, M P(s,t) is a heuristic solution
to the given marking problem, as it guarantees reaching ¢ from s. [

Complexity. The complexity of finding single-source shortest paths in the
weighted DAG G is O(|V| + |E|) [15]. Thus, the complexity of finding all-
pairs shortest paths is O((|V| + |E|) % |[V|) which equals ©(|V| % |E|) in a
flow graph. Suppose that the function shortestPath stores the shortest path
between every pair of vertices in a matrix |V'|*|V| for subsequent access. More-
over, suppose that the function reach has already been computed and stored in
matrix |V| * |V|. Hence, the memory consumption of Algorithm 3 is O(|V|? +
|E|). The complexity of Algorithm 2 for computing the function CFG is ©(|V |+
|E|). Further, the complexity of Algorithm 4 for computing the function FIZ is
O(|E|). Hence, the complexity of lines 3-8 of Algorithm 3 is O(|V|?x(|V|+|E)),
which equals ©(|V|? % |E|) in a program flow graph. Moreover, the complex-
ity of lines 10-16 of Algorithm 3 is ©(|V|? * |E|) because of the union of two
edge sets as well as the feasibility checking. The complexity of other parts of
Algorithm 3 is linear or constant. Thus, total complexity of Algorithm 3 is
O(|V|? * |E|). If G indicates the flow graph of a computer program, then usu-
ally O(|E|) = ©(|V]). Therefore, in this particular case, total complexity of
Algorithm 3 is O(|V|?).

Algorithm 3 is designed for the flow graphs with highly feasible solutions. In
fact, we have assumed that there are limited number of edges having con-
tradictory labels. For the flow graphs having frequently contradictory labels,
Algorithm 3 may provide no answer. In this case, the algorithm should be
modified.

We have evaluated the quality of the heuristic algorithm based on hundreds
of program flow graphs generated by various graph generators. In most cases,
the heuristic algorithm gives the optimal feasible solution to the marking prob-
lem. In order to compute the optimal solution, an exponential-time algorithm

58 M. VALIZADEH AND M. H. TADAYON

was implemented considering different combinations of edges to be marked. The
algorithms were implemented and tested in Java 1.7 with 1 GB of heap mem-
ory. The computer used for testing was an ASUS X554L laptop running Win-
dows 8.1 equipped with an Intel Core i5-5200U CPU running at 2.20 GHz with
7.90 GB of usable main memory. The result of benchmarking Algorithm 3 on
3000 marking problem instances in 150 program flow graphs shows that the
heuristic algorithm gives the optimal solution in 98.5% of the cases.

5. Conclusion and Future Work

We demonstrated that the marking problem is NP-complete in an arbitrary
unweighted binary DAG. We also indicated that the marking problem cannot
be approximated within alogn in an unweighted binary DAG with n ver-
tices. Then, we provided a lower bound to the optimal solution of the marking
problem. Further, we investigated the complexity of the marking problem in
program flow graphs. Given the results presented in this paper, new areas for
further works are:

e Providing an algorithm for the marking problem in program flow graphs
having highly infeasible paths.

e Studying the complexity and approximability of the marking problem in
special flow graphs.

Acknowledgements
The authors would like to appreciate Mohsen Amini and Reza Sadraei for
reviewing the Theorem 3.1.

Abbreviations

RA Reachability Assurance
MP Marking Problem

HS Hitting Set

DAG Directed Acyclic Graph
CFG Complete Flow Graph

References

[1] Valizadeh, M. and Tadayon, M.H. and Bagheri, M. ”Marking problem : a
new approach to reachability assurance in digraphs”, Volume 25, Issue 3,
pp- 1441-1455, 2018.

2]

[10]

[11]

COMPLEXITY AND APPROXIMABILITY OF THE 29

Ammann, P. and Offutt, J. ”"Introduction to Software Testing”, first ed.,
Cambridge University Press, pp. 29-33, 120, 2008.

Sharma, P. and Khurana, N. ”Study of optimal path finding techniques”,
Int. J. Adv. Technol., vol. 4, no. 2, 2013.

Dellin, C. and Srinivasa, S. 7A Unifying Formalism for Shortest Path
Problems with Expensive Edge Evaluations via Lazy Best-First Search
over Paths with Edge Selectors”, ICAPS-2016, London, UK, 2016.

Anand, S. and Burke, E. and Chen, T.Y. and Clark, J. and Cohen, M.B.
and Grieskamp, W. and Harman, M. and Harrold, M.J. and McMinn, P.
” An Orchestrated Survey on Automated Software Test Case Generation”,
Journal of Systems and Software, vol. 86, no. 8, pp. 1978-2001, 2013.

Saito, N. and Nishizeki, T. ”Graph Theory and Algorithms”, 17th Sym-
posium of Research Institute of Electrical Communication, Tohoku Uni-
versity, Sendai, Japan, p. 66, 1980.

Valizadeh, M. and Tadayon, M.H. ”Logical s-t Min-Cut Problem: An
Extension to the s-t Min-Cut Problem”, Accepted to Iranian Journal of
Mathematical Sciences and Informatics (IJMST), 2019.

Feige, U. 7 A threshold of In n for approximating set cover”, J.ACM 45
314-318, 1998.

Goldberg, A. and Wang, T.C. and Zimmerman, D. ” Applications of fea-
sible path analysis to program testing, In 1994 International Symposium
on Software Testing and Analysis”, pp. 80-94, Seattle, WA, 1994.

DeMillo, R.A. and Offutt, J. ” Constraint-based automatic test data gener-
ation”, IEEE Transactions on Software Engineering, 17(9):900-910, 1991.

Gallagher, L. and Offutt, J. and Cincotta, T. "Integration testing of ob-
ject oriented components using finite state machines”, Software Testing,
Verification, and Reliability, 17(1):215-266, 2007.

Jasper, R. and Brennan, M. and Williamson, K. and Currier, B . and
Zimmerman, D. ” Test data generation and feasible path analysis”, In 1994
International Symposium on Software Testing and Analysis, pp. 95-107,
Seattle, WA, 1994.

Offutt, J. and Pan, J. ”Detecting equivalent mutants and the feasible
path problem”, Software Testing, Verification, and Reliability, 7(3):165-
192, 1997.

60 M. VALIZADEH AND M. H. TADAYON

[14] Karp, R.M. ”Reducibility Among Combinatorial Problems”, In R. E.
Miller and J. W. Thatcher (editors), Complexity of Computer Compu-
tations, New York: Plenum, pp. 85-103, 1972.

[15] Cormen, T.H, and Leiserson, C.E. and Rivest, R.L. and Stein, C. ”In-
troduction to Algorithms”, second edition, MIT Press and McGraw-Hill,
ISBN 0-262-03293-7, p. 592, 2001.

Mohammad Valizadeh

Ph.D of Software Engineering
Department of Engineering

Iran Telecommunication Research Center
Tehran, Iran

E-mail: valizadeh80@gmail.com

Mohammad Hesam Tadayon
Associate Professor of Engineering
Department of Engineering

Iran Telecommunication Research Center
Tehran, Iran

E-mail: tadayon@itrc.ac.ir

