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Abstract. In the current work, we present some innovative solutions for
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1 Introduction

Fractional calculus and q-calculus are one of the significant branches
in mathematical analysis and have countless applications [2, 3, 9, 26,
28, 33]. Similarly, the subject of fractional differential equations ranges
from the theoretical views of existence and uniqueness of solutions to
the analytical and mathematical methods for finding solutions [4, 6,
7, 10, 11, 13–16, 18, 24]. During the last two decades, the fractional
differential equations and inclusions, in two type differential and q-
differential, were developed intensively by many authors for a variety
of subjects [1, 5, 8, 12, 19, 23, 32, 34, 38–42]. There are many published
papers about the attractivity of solutions for fractional and fractional
functional differential equations [17, 21, 22, 31, 43].

The subject of q-difference equations introduced in 1910 by Jackson
[25]. In 2011, Chen et al. studied the attractivity of the fractional func-
tional differential equation and the global attractivity of the nonlinear
fractional differential equation with boundary value condition cDαx(t) =
h1(t, xt), x(t) = ϕ(t), and Dαu(t) = h2(t, u(t)), Dα−1u(t)|t=t0 = u0, for
each t ≥ t0 and all t0 − δ ≤ t ≤ t0, respectively, where t0 ≥ 0, δ > 0,
α ∈ (0, 1), u0 is a constant, cD is the standard Caputo fractional deriva-
tive, D is the standard Riemann-Liouvill fractional derivative, function
ϕ belongs to C([t0 − δ, t0],R), h1 and h2 map (t0,∞) × C([−δ, 0],R)
and (t0,∞) × R into R, respectively, are function with some proper-
ties [21, 22].

In 2013, Baleanu et al. by using fixed-point methods, studied the
existence and uniqueness of a solution for the nonlinear fractional dif-
ferential equation boundary-value problem Dαu(t) = f(t, u(t)) with
a Riemann-Liouville fractional derivative via the different boundary-
value problems u(0) = u(T ), and the three-point boundary condition
u(0) = β1u(b) and u(T ) = β2u(b), where T > 0, t ∈ [0, T ], 0 < α < 1,
b ∈ (0, T ) and 0 < β1 < β2 < 1 [18]. Also, Zhao et al. reviewed
the nonlocal q-integral boundary value problem of nonlinear fractional
q-derivatives equation

(Dα
q f)(t) + T (t, f(t)) = 0,

with conditions f(0) = 0 and f(1) = µIβq f(η), for t ∈ (0, 1) and q ∈
(0, 1), where α ∈ (1, 2], β ∈ (0, 2], η ∈ (0, 1), positive real number
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µ, Dα
q is the q-derivative of Riemann-Liouville type of order α and T

maps [0, 1]× [0,∞) to [0,∞) is continuous [41]. In 2015, Agarwal et al.
analyzed the existence of solutions for the Caputo fractional differential
inclusion with the boundary value conditions{

cDσu(t) ∈ F (t, u(t), cDαu(t)),
u(0) = 0, u(1) + u′(1) =

∫ η
0 u(s)ds,

such that 0 < η < 1, 1 < σ ≤ 2, 0 < α < 1, σ − α > 1 and cDσu(t) ∈
F (t, u(t)) under conditions u(0) = a

∫ ν
0 u(s)ds and x(1) = b

∫ η
0 u(s)ds,

where ν, η ∈ (0, 1), σ ∈ (1, 2], a, b ∈ R [4]. In 2016, Ahmad et al.
investigate the existence of solutions for a a q-antipriodic boundary value
problem of fractional q-difference inclusions given by

cDα
q f(t) ∈ T

(
t, f(t), Dqf(t), D2

qf(t)
)
,

f(0) + f(1) = 0,
Dqf(0) +Dqf(1) = 0,
D2
qf(0) +D2

qf(1) = 0,

for t ∈ [0, 1], where α ∈ (2, 3], β ∈ [0, 3], cDα
q denote Caputo fractional

q-derivative, q ∈ (0, 1) and T maps [0, 1] × A to P(R) is a multivalued
map with P(R) a class of all subsets of R, where A = R3 [5].

In 2017, Losada et al. by applying the Schauder fixed point theo-
rem in conjunction with the technique of measure of non-compactness,
presented some alternative results concerning with the existence and
attractivity dependence of solutions for the following of nonlinear frac-
tional functional differential equations{

CDαu(t) =
∑m

i=1
CDαiTi(t, ut) + f0(t, ut), t ∈ (t0,∞),

u(t) = ϕ(t), t ∈ [t0 − δ, t0],

where CDα and CDαi denote Caputo’s fractional derivative of order
α > 0 and αi ∈ (0, α), respectively, δ is a positive constant, ϕ belongs to
C([t0− δ, t0],R) and for all i ∈ {1, 2, . . . ,m} and Ti maps I×C([δ, 0],R)
into R, such that I = [t0,∞), is a given function [31]. After that, in 2018,
Zhou et al. studied the existence and attractivity of fractional evolution
equations with Riemann-Liouville fractional derivative

LD
α
0+u(t) = Au(t) + f(t, u(t)),
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I1−α
0+

u(0) = u0, for all t ∈ [0,∞), where LD
α
0+ and I1−α

0+
are is Riemann-

Liouville fractional derivative of order α ∈ (0, 1), and Riemann-Liouville
fractional integral of order 1 − α, respectively, A is the infinitesimal
generator of a C0-semigroup of bounded linear operators {τ(t)}t≥0 ⊂ X,
f maps [0,∞) ×X into X is a given function, and u0 ∈ X where X is
a Banach space [43].

In 2019, Balkani et al. studied the existence of approximate solutions
for the fractional q-difference equation

(cDσ
q u)(t) = w(t, u(t), Iαq u(t)),

with the q-integral boundary value conditions u(0)u(1) = 0, where cDσ
q

denote the fractional q-derivative of the Caputo type of order σ, t ∈ [0, 1],
σ ∈ (1, 2], q ∈ (0, 1) α ∈ (0, 2] and w : [0, 1] × R2 → R is a continuous
map [19]. In Addition to, Samei et al. discussed the fractional hybrid
q-differential inclusions

cDα
q

(
x

f (t, x, Iα1
q x, · · · , Iαnq x)

)
∈ F

(
t, x, Iβ1q x, · · · , Iβkq x

)
,

with the boundary conditions x(0) = x0 and x(1) = x1, where 1 <
α ≤ 2, q ∈ (0, 1), x0, x1 ∈ R, αi > 0, for i = 1, 2, . . . , n, βj > 0, for
j = 1, 2, . . . , k, n, k ∈ N, cDα

q denotes Caputo type q-derivative of order

α, Iβq denotes Riemann-Liouville type q-integral of order β, f : J×Rn →
(0,∞) is continuous and F : J ×Rk → P (R) is multifunction [40]. Also,
Ntouyas et al. [32] studied the existence and uniqueness of solutions for
a multi-term nonlinear fractional q-integro-differential equations under
some boundary conditions

cDα
q x(t) = w

(
t, x(t), (ϕ1x)(t), (ϕ2x)(t),

cDβ1
q x(t), cDβ2

q x(t), . . . , cDβn
q x(t)

)
.

Similar results have been presented in other studies [27, 30, 36, 37, 39].

In this article, motivated by [17, 31], among these achievements, we
are working to stretch out the analytical and computational methods of
check of attractivity of fractional functional q-differential equations in a
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k-dimensional system with boundary value conditions

cDα1
q u1(t) = F1 (t, u1t , u2t , . . . , ukt) , t ∈ J,
u1(t) = ϕ1(t), t ∈ [t0 − δ, t0],

cDα2
q u2(t) = F2 (t, u1t , u2t , . . . , ukt) , t ∈ J,
u2(t) = ϕ2(t), t ∈ [t0 − δ, t0],

...

cDαk
q uk(t) = Fk (t, u1t , u2t , . . . , ukt) , t ∈ J,
uk(t) = ϕk(t), t ∈ [t0 − δ, t0],

(1)

where αi ∈ I = (0, 1), t0 ∈ J = [t0,∞), δ > 0 is a real constant, cDq

is the standard Caputo fractional type of q-derivative, functions ϕi in
C ([t0 − δ, t0],Rn), and Fi : J ×Ck → Rn is a function, for any i belongs
to Nk = {1, 2, . . . , k}, where J = (t0,∞) and

Ck =
∏
i∈Nk

C(J−δ,Rn),

where J−δ = [−δ, 0]. We define function ut by ut(η) = u(t + η) for u
in C

(
J
∞
−δ,Rn

)
, where η ∈ J−δ, t ∈ J , and J

∞
−δ = [t0 − δ,∞). Also, we

investigate the global attractivity of nonlinear fractional q-differential
equations in a k-dimensional system with boundary value conditions

Dα1
q u1(t) = G1 (t, u1(t), u2(t), . . . , uk(t)) , t ∈ J,
Dα1−1
q u1(t) = u0

1, t = t0,

Dα2
q u2(t) = G2 (t, u1(t), u2(t), . . . , uk(t)) , t ∈ J,
Dα2−1
q u2(t) = u0

2, t = t0,

...

Dαk
q uk(t) = θk (t, u1(t), u2(t), . . . , uk(t)) , t ∈ J,
Dαk−1
q uk(t) = u0

k, t = t0,

(2)

where αi ∈ I, t ∈ J , Dq is the Riemann-Liouville fractional q-derivative,
u0
i are constants for all i ∈ Nk, and Gi : J ×Rk → Rn is an integrable

function where Rk =
∏
i∈Nk R

n. The functions Fi and Gi in Eq. (1)
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and (2) have some properties for i ∈ Nk which will be defined in Sec. 3.

The rest of the paper is arranged as follows: In Sec. 2, we recall some
preliminary concepts, fundamental results of q-calculus and some theo-
rems which were used in the our results. Sec. 3 is devoted to the main
results, while example illustrating the obtained results and algorithm
for the problems are presented in Sec. 4. Finally in Sec. 5, we state the
conclusion.

2 Preliminaries

Below, we recall some known facts on the fractional q-calculus and fun-
damental results of it (for more information, consider [2, 9, 25, 33]).
Then, some well-known theorems of fixed point theorem and definition
are expressed.

Let q ∈ (0, 1) and a ∈ R. Define [a]q = 1−qa
1−q [25]. The power function

(a− b)nq with n ∈ N0 is

(a− b)(n)
q =

n−1∏
k=0

(a− bqk)

and (a − b)(0)
q = 1 where a, b ∈ R and N0 := {0, 1, 2, . . .} [33]. Also, for

α ∈ R and a 6= 0, we have

(a− b)(α)
q = aα

∞∏
k=0

a− bqk

a− bqα+k
.

If b = 0, then it is clear that a(α) = aα (Algorithm 1). The q-Gamma
function is given by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
,

where x ∈ R\{0,−1,−2, · · · } [25]. Note that, Γq(x+1) = [x]qΓq(x). The
value of q-Gamma function, Γq(x), for input values q and x with counting
the number of sentences n in summation by simplifying analysis. For
this design, we prepare a pseudo-code description of the technique for
estimating q-Gamma function of order n which show in Algorithm 2.
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Algorithm 1 The proposed method for calculated (a− b)(α)
q

Input: a, b, α, n, q
1: s← 1
2: if n = 0 then
3: p← 1
4: else
5: for k = 0 to n do
6: s← s ∗ (a− b ∗ ak)/(a− b ∗ qα+k)
7: end for
8: p← aα ∗ s
9: end if

Output: (a− b)(α)

Algorithm 2 The proposed method for calculated Γq(x)

For any positive number α and β, the q-Beta function define by

Bq(α, β) =

∫ 1

0
(1− qs)(α−1)

q sβ−1 dqs. (3)

For function f , the q-derivative is defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x

and (Dqf)(0) = limx→0(Dqf)(x) which is shown in Algorithm 3
[2].

Input: n, q ∈ (0, 1), x ∈ R\{0,−1, 2, · · · }
1: p← 1
2: for k = 0 to n do
3: p← p(1− qk+1)(1− qx+k)
4: end for
5: Γq(x)← p/(1− q)x−1

Output: Γq(x)
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Algorithm 3 The proposed method for calculated (Dqf)(x)

Input: q ∈ (0, 1), f(x), x
1: syms z
2: if x = 0 then
3: g ← lim((f(z)− f(q ∗ z))/((1− q)z), z, 0)
4: else
5: g ← (f(x)− f(q ∗ x))/((1− q)x)
6: end if

Output: (Dqf)(x)

Also, the higher order q-derivative of a function f is defined by

(Dn
q f)(x) = Dq(D

n−1
q f)(x),

for all n ≥ 1, where (D0
qf)(x) = f(x) [2]. The q-integral of a function f

defined on [0, b] is define by

Iqf(x) =

∫ x

0
f(s) dqs = x(1− q)

∞∑
k=0

qkf(xqk),

for x ∈ [0, b], provided that the sum converges absolutely [2]. If a ∈ [0, b],
then∫ b

a
f(u) dqu = Iqf(b)− Iqf(a) = (1− q)

∞∑
k=0

qk
[
bf(bqk)− af(aqk)

]
,

whenever the series exists. The operator Inq is given by (I0
q f)(x) = f(x)

and (Inq f)(x) = (Iq(I
n−1
q f))(x) for all n ≥ 1 [2]. It has been proved

that (Dq(Iqf))(x) = f(x) and (Iq(Dqf))(x) = f(x) − f(0) whenever f
is continuous at x = 0 [2]. The fractional Riemann-Liouville type q-
integral of the function f on [0, 1], of α ≥ 0 is given by (I0

q f)(x) = f(x)
and

(Iαq f)(x) =
1

Γq(α)

∫ x

0
(t− qs)(α−1)f(s) dqs

= tα(1− q)α
∞∑
k=0

qk
∏k−1
i=1

(
1− qα+i

)∏k−1
i=1 (1− qi+1)

f(xqk),
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for x ∈ [0, 1] and α > 0 [5, 9, 23]. Also, the fractional Caputo type
q-derivative of the function f is given by(

cDα
q f
)

(x) =
(
I [α]−α
q (D[α]

q f)
)
(x)

=
1

Γq ([α]− α)

∫ x

0
(x− qs)([α]−α−1)

(
D[α]
q f

)
(s) dqs,

(4)

for x ∈ [0, 1] and α > 0 [5, 23]. It has been proved that (Iβq (Iαq f))(x) =

(Iα+β
q f)(x), and (Dα

q (Iαq f))(x) = f(x), where α, β ≥ 0 [23]. By using
Algorithm 2, we can calculate (Iαq f)(x) which is shown in Algorithm 4.

Algorithm 4 The proposed method for calculated (Iσq f)(x)

Input: q ∈ (0, 1), σ, x, n, f(x),
1: p← 0
2: for k = 0 to n do
3: s1← 1
4: s2← 1
5: for i = 0 to k − 1 do
6: s1← s1× (1− qi+σ)
7: s2← s2× (1− qi+1)
8: end for
9: p← P + qk ∗ s1 ∗ f(x ∗ qk)/s2

10: end for
11: g ← round((xσ) ∗ ((1− q)σ) ∗ p, 6)
Output: (Iαq f)(x)

In the following, we point out and improvement of the well-known fixed
point theorem of Schauder and Krasnoselskii, respectively, due to Burton
which one can get those in [20, 29, 35].

Theorem 2.1. Consider a nonempty subset A of the Banach space X .
The completely continuous self-map Θ : A→ X has a fixed point, when-
ever A is closed, bounded and convex.

Theorem 2.2. The operator equation H1(u) + H2(u) = u has a solu-
tion in a nonempty A subset of Banach space X whenever A is closed,
convex and bounded, where self-map H1 define on X is a contraction
with constant k < 1, function H2 maps A into X is a continuous which
H2(A) resides in a compact subset of X such that u = H1(u) + H2(v)
and v ∈ A implies u ∈ A.
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The solution (u1(t), u2(t), . . . , uk(t)) of the problem (1) and u(t) of
the problem (2) are said to be attractive and globally attractive, when-
ever if there exists a constant c0

i (t0) > 0 such that |ϕi(s)| ≤ c0
i for all

i ∈ Nk, s ∈ J
t0
−δ = [t0 − δ, t0], then limt→∞ ui(t, t0, ϕi) tends to zero and

each solution tends to zero as t→∞, respectively. We consider the Ba-
nach space of all continuous functions define on J into Rn endowed with
the norm ‖u‖ = supt∈J |u(t)|, and denote by A = C (J,Rn), where |.| is
a norm on Rn somehow that is suitable complete. It is readable that the
product space

(
Ak, ‖.‖∗

)
is also a Banach space, where Ak =

∏
i∈Nk A

and

‖(u1, u2, . . . , uk)‖∗ =

k∑
i=1

‖ui‖.

3 Main results

In this section by using the last two results and basic definition, we inves-
tigate attractive solutions and zero solution of the problem (1) and (2),
respectively.

3.1 Attractivity of solution for the problem (1)

Let J
0
−δ = [−δ, 0]. Consider the problem (1) and the supremum norm

‖ut‖ = sup
{
|u(t+ η)| : η ∈ J0

−δ

}
,

for almost all t ∈ J , Lebesgue measurable functions Fi(t, u1t , x2t , . . . , ukt)
with respect to t on J and continuous functions Fi (t, ϕ1, ϕ2, . . . , ϕk) with
respect to ϕj on C for i and j belong to Nk. For finding the attractivity of
solution of problem (1), we consider the equivalent system of equations

ui(t) = ϕi(t0) +
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)F̃i (s, uis) dqs,
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and ui(t) = ϕi(t) for almost all t ∈ J and each t ∈ J t0−δ, respectively, or

ui(t) =
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)

×
[

ϕi(t0)

Γq(1− αi)
(s− t0)−αi + F̃i (s, uis)

]
dqs,

and ui(t) = ϕi(t) for almost all t ∈ J and all t ∈ J t0−δ, respectively, for
i ∈ Nk, where

F̃i (s, uis) = Fi (s, u1s , u2s , . . . , uks) .

We take the operator Θ : Ak → Ak by

Θ (u1, u2, . . . , uk) (t) =
(
θ̃1(t), θ̃2(t), · · · , θ̃k(t)

)
,

where

θ̃i(t) = ϕi(t0) +
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)F̃i (s, uis) dqs,

and θ̃i(t) = ϕi(t) whenever t ∈ J and t ∈ J t0−δ, respectively, for i ∈ Nk,

where θ̃i(t) = θi (u1, u2, . . . , uk) (t). By simple to go over that, we accept
(u1(t), u2(t), . . . , uk(t)) is a solution of the problem (1) if and only if
(u1(t), u2(t), . . . , uk(t)) is a fixed point of the operator Θ.

Theorem 3.1. Let J
∞
−δ = [t0− δ,∞). The problem (1) has at least one

attractive solution (u1, u2, . . . , uk) with ui ∈ C(J
∞
−δ,Rn) for all i ∈ Nk,

whenever, for each i ∈ Nk, there exist β1i > 0 and κ1i belong to (0, αi)
such that∣∣∣∣ϕi(t0) +

1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)F̃i (s, uis) dqs

∣∣∣∣ ≤ (t− t0)−β1i ,

for all t ∈ J and Fi ∈ L
1
κ1i

(
J × Ck

)
where

F̃i (s, uis) = Fi (s, u1s , u2s , . . . , uks) .
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Proof. Let Ω1 is the set of all (u1, u2, . . . , uk) with ui ∈ C(J
∞
−δ,Rn),

such that |ui(t)| ≤ (t − t0)−β1i , for all i ∈ Nk and t ∈ [τ1,∞), where
τ1 > t0 is a constant. It is clear that Ω1 ⊆ Rk is a closed, bounded
and convex. We show that the operator Θ has a fixed point in S1. This
implies that the problem (1) has a solution. Note that,

|θi (u1, u2, . . . , uk) (t)| ≤ (t− t0)−β1i ,

for all i in Nk and so Θ(Ω1) ⊂ Ω1. At present, we prove that Θ is contin-
uous. Assume that (um1 , u

m
2 , . . . , u

m
k ) for all m ≥ 1, and (u1, u2, . . . , uk)

belong to Ω1 such that limm→∞ |umi (t)−ui(t)| = 0 for all i ∈ Nk. Then,
we have

lim
m→∞

Fi
(
t, um1t , u

m
2t , . . . , u

m
kt

)
= Fi (t, u1t , u2t , . . . , ukt) ,

for all i and t ∈ J . Choose τ̃1 ∈ J such that (t − t0)−β1i < ε
2 whenever

τ̃1 ≤ t, where ε > 0 be given. Let λ1i = αi−1
1−κ1i and note that 1 + λ1i > 0

for i ∈ Nk. Also, we obtain∣∣∣θ̃i (umi ) (t) −θ̃i (ui) (t)
∣∣∣

≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)
∣∣∣F̃i (umis )− F̃i (uis)

∣∣∣ dqs

≤ 1

Γq(αi)

[ ∫ t

t0

[
(t− qs)(αi−1)

] 1
1−κ1i dqs

]1−κ1i

×
[ ∫ t

t0

∣∣∣F̃i (umis )− F̃i (uis)
∣∣∣ 1
κ1i dqs

]κ1i
≤ 1

Γq(αi)

[
1

1 + λ1i
(t− t0)1+λ1i

]1−κ1i

×
[ ∫ τ̃1

t0

∣∣∣F̃i (umis )− F̃i (uis)
∣∣∣ 1
κ1i dqs

]κ1i
≤ 1

Γq(αi)

[
1

1 + λ1i
(τ̃1 − t0)1+λ1i

]1−κ1i
(τ̃1 − t0)κ1i

× sup
s∈[t0,τ̃1]

∣∣∣F̃i (umis )− F̃i (uis)
∣∣∣ ,
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for t ∈ (t0, τ̃1], where

θ̃i (umi ) (t) = (um1 , u
m
2 , . . . , u

m
k ) (t),

θ̃i (ui) (t) = θi (u1, u2, . . . , uk) (t), and

F̃i
(
umis
)

= Fi
(
s, um1s , u

m
2s , . . . , u

m
ks

)
,

F̃i (uis) = Fi (s, u1s , u2s , . . . , uks) .

Thus, for all t0 < t ≤ τ̃1, we have

lim
m→∞

∣∣∣θ̃i (umi ) (t)− θ̃i (ui) (t)
∣∣∣ = 0.

Also, we obtain

∣∣∣θ̃i (umi ) (t)− θ̃i (ui) (t)
∣∣∣ =

∣∣∣∣ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)F̃i
(
umis
)

dqs

− 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)F̃i (uis) dqs

∣∣∣∣
≤ 2(t− t0)−β1i ≤ ε,

for τ̃1 < t. Hence, for almost all t ∈ J , we have

lim
m→∞

∣∣∣θ̃i (umi ) (t)− θ̃i (ui) (t)
∣∣∣ = 0.

Therefore, we conclude that θi is continuous for i ∈ Nk and so Θ is
continuous. Assume that ε > 0 be given. Since for i in Nk, we have
limt→∞(t − t0)−β1i = 0, there is a τ̃2 ∈ J such that (t − t0)−β1i < ε

2 for
all τ̃2 < t and i ∈ Nk. Let ν1 and ν2 belong to J somehow that ν1 < ν2.
At present, we consider three cases.
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1) If ν1, ν2 ∈ (t0, τ̃2], then

∣∣∣θ̃i (ui) (ν2)− θ̃i (ui) (ν1)
∣∣∣

≤
∣∣∣∣ 1

Γq(αi)

∫ ν2

t0

(ν2 − qs)(αi−1)F̃i (uis) dqs

− 1

Γq(αi)

∫ ν1

t0

(ν1 − qs)(αi−1)F̃i (uis) dqs

∣∣∣∣
≤ 1

Γq(αi)

∫ ν1

t0

[
(ν1 − qs)(αi−1) − (ν2 − qs)(αi−1)

]
|F̃i (uis) |dqs

+
1

Γq(αi)

∫ ν2

ν1

(ν2 − qs)(αi−1)|F̃i (uis) |dqs

≤ 1

Γq(αi)

[ ∫ ν1

t0

[
(ν1 − qs)(αi−1) − (ν2 − qs)(αi−1)

] 1
1−κ1i dqs

]1−κ1i

×
[ ∫ ν1

t0

∣∣∣F̃i (uis)
∣∣∣ 1
κ1i dqs

]κ1i
+

1

Γq(αi)

[ ∫ ν2

ν1

(ν2 − qs)
(
αi−1

1−κ1i
)
dqs

]1−κ1i

×
[ ∫ ν2

ν1

∣∣∣F̃i (uis)
∣∣∣ 1
κ1i ds

]κ1i
≤ 1

Γq(αi)

[
1

1 + λ1i

]1−κ1i

×
[
(ν1 − t0)

αi−1

1−κ1i
+1

+ (ν2 − ν1)
αi−1

1−κ1i
+1 − (ν2 − t0)

αi−1

1−κ1i
+1
]1−κ1i

×
[ ∫ τ̃2

t0

∣∣∣F̃i (uis)
∣∣∣ 1
κ1i ds

]κ1i
+

1

Γq(αi)

[
1

1 + λ1i

]1−κ1i[
(ν2 − ν1)

αi−1

1−κ1i
+1
]1−κ1i

×
[ ∫ τ̃2

t0

∣∣∣F̃i (uis)
∣∣∣ 1
κ1i ds

]κ1i
≤ 1

Γq(αi)

[
1

1 + λ1i

]1−κ1i[ ∫ τ̃2

t0

∣∣∣F̃i (uis)
∣∣∣ 1
κ1i ds

]κ1i
(ν2 − ν1)αi−κ1i ,
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and so limν2→ν1

∣∣∣θ̃i (ui) (ν2)− θ̃i (ui) (ν1)
∣∣∣ = 0.

2) If ν1, ν2 ∈ (τ̃2,∞), then∣∣∣θ̃i (ui) (ν2) −θ̃i (ui) (ν1)
∣∣∣ =

∣∣∣∣ 1

Γq(αi)

∫ ν2

t0

(ν2 − qs)(αi−1)F̃i (uis) dqs

− 1

Γq(αi)

∫ ν1

t0

(ν1 − qs)(αi−1)F̃i (uis) dqs

∣∣∣∣
≤ (ν2 − t0)−β1i + (ν1 − t0)−β1i

≤ ε.

3) If ν1 ∈ (t0, τ̃2) and ν2 ∈ (τ̃2,∞), then by triangle inequality∣∣∣θ̃i (ui) (ν2)− θ̃i (ui) (ν1)
∣∣∣ ≤ ∣∣∣θ̃i (ui) (ν2)− θ̃i (ui) (τ̃2)

∣∣∣
+
∣∣∣θ̃i (ui) (τ̃2)− θ̃i (ui) (ν1)

∣∣∣ ,
we get limν2→ν1

∣∣∣θ̃i (u1) (ν2)− θ̃i (u1) (ν1)
∣∣∣ = 0.

Regarding all cases, we conclude that the set Θ(Ω1) is equi-continuous.
So, Θ(Ω1) is relatively compact, because Θ(Ω1) ⊂ Ω1 is uniformly
bounded. At present, by employing Theorem 2.1, we have the prob-
lem (1) has a solution u(t) = (u1(t), u2(t), . . . , uk(t)) ∈ Ω1, which is
fixed point of Θ. Hence, limt→∞ u(t) = 0. Indeed, u(t) is an attractive
solution for the problem (1). �

Theorem 3.2. The k-dimensional system (1) has at least one attractive
solution (u1, u2, . . . , uk) with ui ∈ C(J

∞
−δ,Rn) for all i ∈ Nk, whenever,

for each i there exist β2i > 0, κ2i ∈ (0, αi) and µi ∈ L
1
κ2i (J, (0,∞)) such

that

1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)µi(s)(s− t0)−β2i dqs ≤ (t− t0)−β2i ,

and ∣∣∣∣ ϕi(t0)

Γq(1− αi)
(t− t0)−αi + F̃i (uit)

∣∣∣∣ ≤ µi(t)‖uit‖,
for each i ∈ Nk, t ∈ J and ui ∈ C(J

∞
−δ,Rn), where

F̃i (uit) = Fi (t, u1t , u2t , . . . , ukt) .
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Proof. By similarly techniques of proof in Theorem 3.1, sufficient we
consider the set Ω2 of all (u1, u2, . . . , uk) with ui ∈ C(J

∞
−δ,Rn) such that

‖uit‖ ≤ (t− t0)−β2i for i ∈ Nk and t belongs to [τ,∞), where τ > t0 is a
constant, one can show that Θ(Ω2) ⊂ Ω2, Θ is continuous and Θ(Ω2) is
relatively compact. At present, by applying Theorem 2.1, we conclude
that the problem (1) has a solution u(t) = (u1(t), u2(t), . . . , uk(t)) ∈ Ω2

which is a fixed point of Θ. Hence, u(t) is an attractive solution, because
limt→∞ u(t) = 0. �

Theorem 3.3. The k-dimensional system (1) has at least one attractive
solution (u1, u2, . . . , uk) with ui ∈ C(J

∞
−δ,Rn), whenever for each i ∈ Nk

there exists κ′1i ∈ (αi, 1) such that∣∣∣∣ ϕi(t0)

Γq(1− αi)
(t− t0)−αi + F̃i (uit)

∣∣∣∣ ≤ Γq(1 + αi − κ′1i)
Γq(1− β′1i)

(t− t0)−β
′
1i ,

for all t ∈ J , where F̃i (uit) = fi(t, x1t , x2t , . . . , xkt).

Proof. We consider the set Ω3 of all (u1, u2, . . . , uk) and ui ∈ C(J
∞
−δ,Rn),

such that |ui(t)| ≤ (t − t0)β
′
1i−αi , for all i ∈ Nk and t ∈ [τ,∞), where

constant τ is more than t0. Now, by employing a similar techniques in
proof of Theorem 3.1, we conclude that Θ(Ω3) subset of Ω3, Function
Θ is continuous and Θ(Ω3) is relatively compact. Hence, by employing
the Theorem 2.1, we get the problem (1) has a solution

u(t) = (u1(t), u2(t), . . . , uk(t)) ∈ Ω3,

which is a fixed point of Θ. Thus, u(t) is an attractive solution, because,
limt→∞ u(t) = 0. �

3.2 Global attractivity of solution for the system (2)

In the second part, we discuss to global attractivity of the k-dimensional
system (2). Let us, we consider the integrable function

Gi(t, u1(t), u2(t), . . . , uk(t))

is Lebesgue measurable with respect to t on J and there exists a constant

κ1i in (0, αi) such thatGi ∈ L
1
κ1i (J×Rk) andGi(t, u1(t), u2(t), . . . , uk(t))



ATTRACTIVITY AND GLOBAL ATTRACTIVITY FOR ... 17

is continuous with respect to uj on J , for any i and j belong to Nk. For
finding the global attractivity of solution of problem (2), we consider
the equivalent system of equations

ui(t) =
u0
i

Γq(αi)
(t− t0)αi−1

+
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)G̃i (s, ui(s)) dqs,

for all t ∈ J and i ∈ Nk where

G̃i(s, ui(s)) = Gi (s, u1(s), u2(s), . . . , uk(s)) .

We define the operator Θ on Ak to Ak by

Θ(u1, u2, . . . , uk)(t) =
(
θ̃1(t), θ̃2(t), · · · , θ̃k(t)

)
,

where

θ̃i(t) =
u0
i

Γq(αi)
(t− t0)αi−1

+
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)G̃i (s, ui(s)) dqs,

for each i ∈ Nk, where θ̃i(t) = θi(u1, u2, . . . , uk)(t). At present, we define
two operators

H1(u1, u2, . . . , uk)(t) =
(
h̃11(ui), h̃12(ui), . . . , h̃1k(ui)

)
,

H2(u1, u2, . . . , uk)(t) =
(
h̃21(ui), h̃22(ui), . . . , h̃2k(ui)

)
,

where

h̃1i(ui) = h1i(u1, u2, . . . , uk)(t) =
u0
i

Γq(αi)
(t− t0)αi−1,

h̃2i(ui) = h2i (u1, u2, . . . , uk) (t)

=
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)G̃i (s, ui(s)) dqs,
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for all i ∈ Nk. Therefor, it can be concluded that

(u1(t), u2(t), . . . , uk(t)),

is a solution of the k-dimensional system (2) if and only if it is a fixed
point of the operator Θ. As you can see, the contraction constant of the
operator H1 is zero.

Theorem 3.4. The zero solution of the k-dimensional system (2) is
globally attractive, whenever there exist κ′1i ∈ (αi, 1) and positive real
number pi ≥ 0 such that∣∣∣G̃i (s, ui(s))

∣∣∣ ≤ pi(t− t0)−κ
′
1i ,

for all t ∈ J and ui ∈ C(J,Rn), for each i ∈ Nk.

Proof. We define the set Ω′1 of all (u1, u2, . . . , uk) with ui belong to
C(J,Rn) such that

|ui(t)| ≤ (t− t0)−κ
′
1i ,

for all i ∈ Nk and t ∈ [t0 +τ,∞), where β′1i = 1
2(κ′1i−αi) and τ is chosen

such that

|u0
i |Γq(1 + αi − κ′1i)τ

1
2

(αi−1) + piΓq(1− κ′1i)Γq(αi)
≤ Γq(αi)Γq(1 + αi − κ′1i),

for each i belongs to Nk. Foremost, we prove that H2 is self-maps on
Ω′1. It is leisurely to get over that the subset Ω′1 of Rk is a bounded,
closed and convex. On the other hand,

|h2i (v1, v2, . . . , vk) (t)|

≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)
∣∣∣G̃i (s, ui(s))

∣∣∣ dqs

≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)pi(s− t0)−κ
′
1i ds

≤ piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(t− t0)−(κ′1i−αi),
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and

piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(t− t0)−
1
2

(κ′1i−αi) ≤ piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

τ−
1
2

(κ′1i−αi)

≤ 1,

for all i ∈ Nk and t ∈ [t0 + τ,∞). Thus,

|h2i (v1, v2, . . . , vk) (t)| ≤
[

piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(t− t0)−
1
2

(κ′1i−αi)
]

× (t− t0)−
1
2

(κ′1i−αi)

≤ (t− t0)−β
′
1i ,

for almost all t ∈ [t0+τ,∞) and for all i ∈ Nk. Hence, H2(Ω′1) ⊂ Ω′1. Let
(vm1 , v

m
2 , . . . , v

m
k ) for all natural numbers m, and (v1, v2, . . . , vk) belong

to Ω′1 somehow that limm→∞ |vmi (t)− vi(t)| = 0. Then, one can get

lim
m→∞

Gi (t, vm1 (t), vm2 (t), . . . , vmk (t)) = Gi (t, v1(t), v2(t), . . . , vk(t)) ,

for all t belongs to [t0 + τ,∞). Choose τ1 ∈ [t0 + τ,∞) such that

piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(τ1 − t0)−(κ′1i−αi) <
ε

2
,

for all t ∈ (τ1,∞), where ε > 0 be given. Take λ′1i = αi−1
1−κ′1i

for i ∈ Nk.

Therefore, we get∣∣∣h̃2i (vmi ) (t) −h̃2i (vi) (t)
∣∣∣ ≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)

×
∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))

∣∣∣ dqs

≤ 1

Γq(αi)

[ ∫ t

t0

[
(t− qs)(αi−1)

] 1
1−κ′

1i dqs

]1−κ′1i

×
[ ∫ t

t0

∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))
∣∣∣ 1
κ′
1i dqs

]κ′1i
≤ 1

Γq(αi)

[
1

1 + λ′1i
(t− t0)1+λ′1i

]1−κ′1i
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×
[ ∫ τ2

t0

∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
≤ 1

Γq(αi)

[
1

1 + λ′1i
(τ̃2 − t0)1+λ′1i

]1−κ′1i
(τ1 − t0)κ

′
1i

× sup
s∈[t0,τ1]

∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))
∣∣∣ ,

for all t ∈ [t0 + τ, τ1], where

h̃2i (vmi ) (t) = h2i (vm1 , v
m
2 , . . . , v

m
k ) (t),

h̃2i (vi) (t) = h2i (v1, v2, . . . , vk) (t), and

G̃i (s, vmi (s)) = Gi (s, vm1 (s), vm2 (s), . . . , vmk (s)) ,

G̃i (s, vi(s)) = Gi (s, v1(s), v2(s), . . . , vk(s)) .

Hence,

lim
m→∞

∣∣∣h̃2i (vmi ) (t)− h̃2i (vi) (t)
∣∣∣ = 0,

for each t ∈ [t0 + τ, τ1]. Also,∣∣∣h̃2i (vmi ) (t) −h̃2i (vi) (t)
∣∣∣ ≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)

×
∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))

∣∣∣ dqs

≤ 1

Γq(αi)

[ ∫ t

t0

[
(t− qs)(αi−1)

] 1
1−κ′

1i dqs

]1−κ′1i

×
[ ∫ t

t0

∣∣∣G̃i (s, vmi (s))− G̃i (s, vi(s))
∣∣∣ 1
κ′
1i dqs

]κ′1i
≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)

[ ∣∣∣G̃i (s, vmi (s))
∣∣∣

+
∣∣∣G̃i (s, vi(s))

∣∣∣ ]dqs

≤ 1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)[2pi(s− t0)−κ
′
1i ] ds
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≤ 2piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(t− t0)−(κ′1i−αi)

≤ 2piΓq(1− κ′1i)
Γq(1 + αi − κ′1i)

(τ1 − t0)−(κ′1i−αi)

≤ ε,

for all t ∈ [τ1,∞), and so

lim
m→∞

∣∣∣h̃2i (vmi ) (t)− h̃2i (vi) (t)
∣∣∣ = 0,

for all t ∈ [t0 + τ,∞). Hence, for i in Nk, function h2i is continuous on
[t0 + τ,∞). Therefore, H2 is also continuous on [t0 + τ,∞). Since

lim
t→∞

(t− t0)−β
′
1i = 0,

there exists τ ′1 ∈ (t0+τ,∞) somehow that (t−t0)−β
′
1i < ε

2 for t ∈ (τ ′1,∞),
where ε > 0 be given. Assume that t1, t2 ∈ [t0 + τ,∞) such that t2 > t1.
We consider three cases.

1) If t1, t2 ∈ [t0 + τ, τ ′1], then we have∣∣∣h̃2i (vi) (t2)− h̃2i (vi) (t1)
∣∣∣

=

∣∣∣∣ 1

Γq(αi)

∫ t2

t0

(t2 − qs)(αi−1)G̃i (s, vi(s)) dqs

− 1

Γq(αi)

∫ t1

t0

(t1 − qs)(αi−1)G̃i (s, vi(s)) dqs

∣∣∣∣
≤ 1

Γq(αi)

∫ t1

t0

[
(t1 − qs)(αi−1) − (t2 − qs)(αi−1)

]
×
∣∣∣G̃i (s, vi(s))

∣∣∣ dqs

+
1

Γq(αi)

∫ t2

t1

(t2 − qs)(αi−1)
∣∣∣G̃i (s, vi(s))

∣∣∣ dqs

≤ 1

Γq(αi)

[ ∫ t1

t0

[
(t1 − qs)(αi−1) − (t2 − qs)(αi−1)

] 1
1−κ′

1i dqs

]1−κ′1i

×
[ ∫ t1

t0

∣∣∣G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
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+
1

Γq(αi)

[ ∫ t2

t1

(t2 − s)
αi−1

1−κ′
1i ds

]1−κ′1i

×
[ ∫ t1

t0

∣∣∣G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
≤ 1

Γq(αi)

[
1

1 + λ′1i

]1−κ′1i

×
[
(t1 − t0)1+λ′1i − (t2 − t0)1+λ′1i + (t2 − t1)1+λ′1i

]1−κ′1i

×
[ ∫ τ̃ ′2

t0

∣∣∣G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
+

1

Γq(αi)

[
1

1 + λ′1i

]1−κ′1i[
(t2 − t1)1+λ′1i

]1−κ′1i

×
[ ∫ τ̃ ′2

t0

∣∣∣G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
≤ 2

Γq(αi)

[
1

1 + λ′1i

]1−κ′1i[ ∫ τ̃ ′2

t0

∣∣∣G̃i (s, vi(s))
∣∣∣ 1
κ′
1i ds

]κ′1i
× (t2 − t1)αi−κ

′
1i ,

and so limt2→t1

∣∣∣h̃2i (vi) (t2)− h̃2i (vi) (t1)
∣∣∣ = 0.

2) If t1, t2 ∈ [τ ′1,∞), then∣∣∣h̃2i (vi) (t2) −h̃2i (vi) (t1)
∣∣∣

≤ 1

Γq(αi)

∫ t2

t0

(t2 − qs)(αi−1)
∣∣∣G̃i (s, vi(s))

∣∣∣ dqs

+
1

Γq(αi)

∫ t1

t0

(t1 − qs)(αi−1)
∣∣∣G̃i (s, vi(s))

∣∣∣ dqs

≤ (t2 − t0)−β
′
1i + (t1 − t0)−β

′
1i

≤ ε.

3) If t1 ∈ [t0 + τ, τ ′1) and t2 ∈ (τ ′1,∞), then by triangular inequality,
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we get

∣∣∣h̃2i (vi) (t2)− h̃2i (vi) (t1)
∣∣∣ ≤ ∣∣∣h̃2i (vi) (t2)− h̃2i (vi) (τ̃ ′2)

∣∣∣
+
∣∣∣h̃2i (vi) (τ̃ ′2)− h̃2i (vi) (t1)

∣∣∣ ,
and so limt2→t1

∣∣∣h̃2i (vi) (t2)− h̃2i (vi) (t1)
∣∣∣ = 0.

Thus, by regarding all cases, we conclude thatH2(Ω′1) is equi-continuous.
Thus, H2(Ω′1) is relatively compact, because the subset H2(Ω′1) of Ω′1
is uniformly bounded. At present, we consider u = (u1, u2, . . . , uk) and
v = (v1, v2, . . . , vk) belong to

∏
i∈Nk C(J,Rn) and Ω′1, respectively, such

that u = H1u+H2v. Then,

|ui(t)| ≤ |H1i (u1, u2, . . . , uk) (t)|+ |H2i (v1, v2, . . . , vk) (t)|

≤ |u0
i |

Γq(αi)
(t− t0)αi−1 +

1

Γq(αi)

×
∫ t

t0

(t− qs)(αi−1) |Gi (s, v1(s), v2(s), . . . , vk(s))| dqs

≤ |u0
i |

Γq(αi)
(t− t0)αi−1

+
piΓq(1− κ′1i)

Γq(1 + αi − κ′1i)
(t− t0)−(κ′1i−αi).

Since a non-zero element κ′1i belongs to (αi, 1) for i ∈ Nk, we get

|u0
i |(t− t0)

1
2

(αi−1)Γq(1 + αi − κ′1i)

+ piΓq(1− κ′1i)Γq(αi)(t− t0)−
1
2

(κ′1i−αi)

≤ |u0
i |τ

1
2

(αi−1)Γq(1 + αi − κ′1i)

+ piΓq(1− κ′1i)Γq(αi)τ−
1
2

(κ′1i−αi)

≤ 1.
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Therefore,

|ui(t)| ≤
[
|u0
i |

Γq(αi)
(t− t0)

1
2

(αi−1)

+
piΓq(1− κ′1i)

Γq(1 + αi − κ′1i)
(t− t0)−

1
2

(κ′1i−αi)
]
(t− t0)−β

′
1i

≤ (t− t0)−β
′
1i ,

for all t ∈ [t0 + τ,∞) and i in Nk. We conclude that u(t) ∈ Ω′1, for all
t ∈ [t0 + τ,∞). Therefore, by employing Theorem 2.2, the system (2)
has a solution, which is a fixed point Θ in Ω′1. Hence, the zero solution
of the k-dimension system (2) is globally attractive, because all elements
of the set Ω′1 tend to 0 as t→∞. �

Theorem 3.5. The zero solution of the problem (2) is globally attrac-
tive, whenever for all i ∈ Nk there exist κ′2i ∈ (αi

1
2(1 + αi)) and pi ≥ 0

such that

|Gi(t, u1(t), u2(t), . . . , uk(t))| ≤ pi(t− t0)−κ
′
2i |ui(t)|,

for any t ∈ J and ui ∈ C(J,Rn).

Proof. We just take the set Ω′2 of all (u1, u2, . . . , uk) with ui ∈ C(J,Rn)
such that |ui(t)| ≤ (t − t0)−β

′
2i for each i ∈ Nk and almost all t ∈

[t0 + τ,∞), where β′2i = 1
2(1− αi) and τ is chosen such that

|u0
i |τ

1
2

(αi−1)Γq(1 + αi − κ′2i − β′2i)

+ piΓq(1− κ′2i − β′2i)Γq(αi)τ
−(κ′2i−αi)
3

≤ Γq(αi)Γq(1 + αi − κ′2i − β′2i).

With the same use proof of Theorem 3.4, we conclude that Ω′2 is a
bounded, closed and convex set, H2 is a self-maps on Ω′2, the set H2(Ω′2)
is relatively compact and H2 is continuous on [t0 + τ,∞). Let u =
(u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) belong to

∏
i∈Nk C(J,Rn) and
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Ω2, respectively, somehow that u = H1u+H2v. Then,

|ui(t)| ≤ |h1i(u1, u2, . . . , uk)(t)|+ |h2i(v1, v2, . . . , vk)(t)|

≤ |u0
i |

Γq(αi)
(t− t0)αi−1

+
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)|G̃ (s, vi(s)) | dqs

≤ |u0
i |

Γq(αi)
(t− t0)αi−1

+
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)pi(s− t0)−κ
′
2i |vi(s)| dqs

≤ |u0
i |

Γq(αi)
(t− t0)αi−1

+
1

Γq(αi)

∫ t

t0

(t− qs)(αi−1)pi(s− t0)−κ
′
2i−β′2i ds

≤ |u0
i |

Γq(αi)
(t− t0)αi−1

+
piΓq(1− κ′2i − β′2i)

Γq(1 + αi − κ′2i − β′2i)
(t− t0)−(κ′2i−β′2i−αi)

for all i belongs to Nk. Since a non-zero element

κ′2i ∈ (αi,
1

2
(1 + αi)),

we get

|u0
i |

Γq(αi)
(t− t0)

1
2

(αi−1) +
piΓq(1− κ′2i − β′2i)

Γq(1 + αi − κ′2i − β′2i)
(t− t0)−(κ′2i−αi)

≤ |u0
i |

Γq(αi)
τ

1
2

(αi−1) +
piΓq(1− κ′2i − β′2i)

Γq(1 + αi − κ′2i − β′2i)
τ−(κ′2i−αi)

≤ 1.
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Thus,

|ui(t)| ≤
[
|u0
i |

Γq(αi)
(t− t0)

1
2

(αi−1)

+
piΓq(1− κ′2i − β′2i)

Γq(1 + αi − κ′2i − β′2i)
(t− t0)−(κ′2i−αi)

]
(t− t0)−β

′
2i

≤ (t− t0)−β
′
2i ,

for each t ∈ [t0 + τ,∞) and i ∈ Nk. Hence, we conclude that u(t) ∈ Ω2,
for almost all t ≥ t0 + τ3. Thus, the zero solution of the k-dimension
system (2) is globally attractive, because all elements of the set Ω′2 tend
to zero as t→∞. �

4 Examples and algorithms for the problem

In this part, we give a complete computational techniques for checking
working to exists the attractivity of solutions for fractional functional
q-differential equations, and the global attractivity for nonlinear frac-
tional q-differential equations in k-dimensional system with the bound-
ary value conditions (1) and (2), respectively, and present numerical
examples. Foremost, we present a simplified analysis can be executed
to calculate the value of q-Gamma function, Γq(x), for input values q
and x by counting the number of sentences n in summation. To this
aim, we consider a pseudo-code description of the method for calculated
q-Gamma function of order n in Algorithm 2 (for more details, see the
following link https://en.wikipedia.org/wiki/Q-gamma_function).

Table 1 shows that when q is constant, the q-Gamma function is an
increasing function. Also, for smaller values of x, an approximate result
is obtained with less values of n. It has been shown by underlined rows.
Table 2 shows that the q-Gamma function for values q near to one is
obtained with more values of n in comparison with other columns. They
have been underlined in line 8 of the first column, line 17 of the second
column and line 29 of third columns of Table 2. Also, Table 3 is the
same as Table 2, but x values increase in 3. Similarly, the q-Gamma
function for values q near to one is obtained with more values of n in
comparison with other columns. Furthermore, we provided algorithms 3

https://en.wikipedia.org/wiki/Q-gamma_function
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Table 1: Some numerical results for calculation of Γq(x) with q = 1
3

that is
constant, x = 4.5, 8.4, 12.7 and n = 1, 2, . . . , 15 of Algorithm 2.

n x = 4.5 x = 8.4 x = 12.7 n x = 4.5 x = 8.4 x = 12.7

1 2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2 2.383247 11.468397 65.559266 10 2.340250 11.257095 64.351003
3 2.354446 11.326853 64.749894 11 2.340245 11.257074 64.350881
4 2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
5 2.341815 11.264786 64.394980 13 2.340243 11.257064 64.350828
6 2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
7 2.340418 11.257921 64.355725 15 2.340243 11.257063 64.350822
8 2.340301 11.257349 64.352456

Table 2: Some numerical results for calculation of Γq(x) with q = 1
3
, 1
2
, 2
3
, x = 5

and n = 1, 2, . . . , 35 of Algorithm 2.

n q = 1
3

q = 1
2

q = 2
3

n q = 1
3

q = 1
2

q = 2
3

1 3.016535 6.291859 18.937427 18 2.853224 4.921884 8.476643
2 2.906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707 9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107 9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853295 4.930899 8.833940 25 2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747

10 2.853232 4.924129 8.629588 27 2.853224 4.921875 8.470667
11 2.853226 4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438 8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14 2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15 2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522
17 2.853224 4.921893 8.479713 34 2.853224 4.921875 8.470517

and 4 which calculated (Dαq f)(x) and (Iσq f)(x), respectively.

Here, we provide two example to illustrate our results.

Example 4.1. For k = 3, t0 = 0, δ = 1, J = (0,∞), J = [0,∞), J−δ =

[−1, 0], J
t0
−δ = [−1, 0] and J

∞
−δ = [−1,∞) in k-dimensional system (1),
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Table 3: Some numerical results for calculation of Γq(x) with x = 8.4, q = 1
3
, 1
2
, 2
3

and n = 1, 2, . . . , 40 of Algorithm 2.

n q = 1
3

q = 1
2

q = 2
3

n q = 1
3

q = 1
2

q = 2
3

1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378 259.969903

10 11.257095 49.089202 265.756606 30 11.257063 49.065378 259.969044
11 11.257074 49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378 259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14 11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751 260.469369 36 11.257063 49.065378 259.967478
17 11.257063 49.065564 260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471 260.190310 38 11.257063 49.065378 259.967394
19 11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378 259.967357

we consider

cD
2
3
q u1(t) = A1(t+ 3)

−6
7

u3(t− 1) cos2 (u1(t− 1))

(1 + (u2(t− 1))2)(1 + |u3(t− 1)|)
,

cD
3
5
q u2(t) = A2 (t+ 2)

−9
10

sin4 (u1(t− 1))

1 + cos2 (u3(t− 1)) + |u2(t− 1)|
,

cD
1
4
q u3(t) = A3(t+ 1)

−5
8

(u1(t− 1))4

1 + ((u1(t− 1))4 + 6|u2(t− 1)|3
,

(5)

for any t ∈ (0,∞) and u1(t) = u2(t) = u3(t) = t for almost all t ∈ [−1, 0],
where q ∈ (0, 1), and

Ai =


Γq(

17
21

)

Γq(
1
7

)

Γq(
7
10

)

Γq(
1
10

)

Γq(
5
8

)

Γq(
1
4

)

 , ϕi =

 t
t
t

 .
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Define the maps

F1 (t, u1t , u2t , u3t) = A1(t+ 3)
−6
7

u3(t− 1) cos2 (u1(t− 1))

(1 + (u2(t− 1))2)(1 + |u3(t− 1)|)

∈ L
1
κ11 (J × C3),

F2 (t, u1t , u2t , u3t) = A2 (t+ 2)
−9
10

sin4 (u1(t− 1))

1 + cos2 ((u3(t− 1)) + |u2(t− 1)|

∈ L
1
κ12 (J × C3),

F3 (t, u1t , u2t , u3t) = A3(t+ 1)
−5
8

(u1(t− 1))4

1 + ((u1(t− 1))4 + 6|u2(t− 1)|3

∈ L
1
κ13 (J × C3).

On the other hand, by using (3), the facts

1

Γq(α)

∫ t

a
(t− qs)(α−1)(s− a)β dqs =

Γq(β + 1)

Γq(α+ β + 1)
(t− a)α+β,

with a = 0, and Bq(α, β) =
Γq(α)Γq(β)

Γq(α+β) , we obtain∣∣∣∣ ∫ t

t0

(t− qs)(−1
3

)

Γq(
2
3)

F1 (s, u1s , u2s , ust) dqs

∣∣∣∣
≤
∫ t

0

(t− qs)(−1
3

)

Γq(
2
3)

(
A1(s+ 3)

−6
7

)
dqs

≤ A1

Γq(
2
3)

∫ t

0
(t− qs)(−1

3
)s
−6
7 dqs

=
A1

Γq(
2
3)
t
−4
21

∫ 1

0
(1− qs)(−1

3
)s
−6
7 dqs

=
A1

Γq(
2
3)
t
−4
21 Bq

(
1

7
,
2

3

)
= t

−4
21 ,∣∣∣∣ ∫ t

t0

(t− qs)(−2
5

)

Γq(
3
5)

F2 (s, u1s , u2s , u3s) dqs

∣∣∣∣
≤
∫ t

0

(t− qs)(−2
5

)

Γq(
3
5)

(
A2(s+ 2)

−9
10

)
dqs
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≤ A2

Γq(
3
5)

∫ t

0
(t− qs)(−2

5
)s
−9
10 dqs

=
A2

Γq(
3
5)
t
−3
10

∫ 1

0
(t− qs)(−2

5
)s
−9
10 dqs

=
A2

Γq(
3
5)
t
−3
10 Bq

(
1

10
,
3

5

)
= t

−3
10 ,∣∣∣∣ ∫ t

t0

(t− qs)(−3
4

)

Γq(
1
4)

F3 (s, u1s , u2s , u3s) dqs

∣∣∣∣
≤
∫ t

0

(t− qs)(−3
4

)

Γq(
1
4)

(
A3(s+ 1)

−5
8

)
dqs

≤ A3

Γq(
1
4)

∫ t

0
(t− qs)(−3

4
)s
−5
8 dqs

=
A3

Γq(
1
4)
t
−3
8

∫ 1

0
(1− qs)(−3

4
)s
−5
8 dqs

=
A3

Γq(
1
4)
t
−3
8 Bq

(
1

4
,
3

8

)
= t

−3
8 .

Note that, β11 = 4
21 , β12 = 3

10 , and β13 = 3
8 . Now, we take

κ1i =

 1
7
1
10
1
8

 .
Then, ∫ ∞

t0

|F1 (t, u1t , u2t , u3t)|
7 dt ≤

∫ ∞
0

[
A1(t+ 3)

−6
7

]7
dt

=
1

1215
A7

1 = η1,

∫ ∞
t0

|F2 (t, u1t , u2t , u3t)|
10 dt ≤

∫ ∞
0

[
A2(t+ 2)

−9
10

]10

dt

=
1

2048
A10

2 = η2,
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Table 4: Some numerical results of ηi in Example 4.1 where q = 1
8

by Algorithmic 2.

n A1 A2 A3 η1 η2 η3

1 0.32041 0.24551 0.56155 0 0 0.00247
2 0.31762 0.24328 0.55871 0 0 0.00237
3 0.31727 0.24301 0.55836 0 0 0.00236
4 0.31723 0.24297 0.55831 0 0 0.00236
5 0.31722 0.24297 0.55831 0 0 0.00236
6 0.31722 0.24297 0.55831 0 0 0.00236
7 0.31722 0.24297 0.55831 0 0 0.00236

Table 5: Some numerical results of ηi in Example 4.1 where q = 1
2

by Algorithmic 2.

n A1 A2 A3 η1 η2 η3

1 0.26678 0.20349 0.3422 0 0 0.00005
2 0.24071 0.1844 0.34571 0 0 0.00005
3 0.22985 0.17648 0.35676 0 0 0.00007
4 0.22486 0.17283 0.36973 0 0 0.00009
5 0.22246 0.17109 0.38255 0 0 0.00011
6 0.22129 0.17023 0.3944 0 0 0.00015
7 0.22071 0.1698 0.40503 0 0 0.00018
8 0.22042 0.16959 0.41441 0 0 0.00022
9 0.22027 0.16949 0.42263 0 0 0.00025

10 0.2202 0.16944 0.4298 0 0 0.00029
11 0.22016 0.16941 0.43606 0 0 0.00033
12 0.22015 0.1694 0.44153 0 0 0.00036
13 0.22014 0.16939 0.44631 0 0 0.00039

∫ ∞
t0

|F3 (t, u1t , u2t , u3t)|
8 dt ≤

∫ ∞
0

[
A3(t+ 1)

−5
8

]8
dt

=
1

4
A8

3 = η3.

Tables 4, 5 and 6 show the some numerical value of η1, η2 and η3 for
q = 1

8 , 1
2 and 8

9 , respectively. Thus, all conditions of Theorem 3.1 hold
and so this system of fractional functional differential equations have an
attractive solution.
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Table 6: Some numerical results of ηi in Example 4.1 where q = 8
9

by Algorithmic 2.

n A1 A2 A3 η1 η2 η3

1 0.52085 0.37029 0.73247 0.00001 0 0.02071
2 0.41238 0.29787 0.64117 0 0 0.00714
3 0.35289 0.25793 0.58681 0 0 0.00351
4 0.31506 0.23239 0.55021 0 0 0.0021
5 0.28886 0.21461 0.52377 0 0 0.00142
6 0.26968 0.20153 0.50376 0 0 0.00104
7 0.25508 0.19153 0.48813 0 0 0.00081
8 0.24365 0.18368 0.47562 0 0 0.00065
9 0.2345 0.17738 0.46542 0 0 0.00055

10 0.22705 0.17224 0.457 0 0 0.00048
11 0.22091 0.16799 0.44996 0 0 0.00042
12 0.21578 0.16444 0.44403 0 0 0.00038
13 0.21147 0.16144 0.43898 0 0 0.00034
14 0.20781 0.1589 0.43467 0 0 0.00032
15 0.20469 0.15673 0.43097 0 0 0.0003
16 0.20201 0.15486 0.42777 0 0 0.00028
17 0.1997 0.15325 0.425 0 0 0.00027
18 0.1977 0.15185 0.42259 0 0 0.00025
19 0.19597 0.15064 0.42049 0 0 0.00024
20 0.19446 0.14959 0.41866 0 0 0.00024
21 0.19314 0.14867 0.41705 0 0 0.00023
22 0.19199 0.14786 0.41564 0 0 0.00022
23 0.19097 0.14715 0.4144 0 0 0.00022
24 0.19009 0.14653 0.41332 0 0 0.00021
25 0.18931 0.14598 0.41236 0 0 0.00021
26 0.18862 0.1455 0.41151 0 0 0.00021
27 0.18801 0.14508 0.41076 0 0 0.0002
28 0.18748 0.1447 0.4101 0 0 0.0002
29 0.18701 0.14437 0.40952 0 0 0.0002
30 0.18659 0.14408 0.409 0 0 0.0002
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Example 4.2. Consider the k-dimensional system of (2) for k = 3,

Dα1
q u1(t) =

p1u3(t) cos2(u2(t))

1.5 + |u3(t)|+ |u2(t)|
(t− a)−κ

′
11 ,

Dα2
q u2(t) =

p2t
2(u1(t))2

(7 + 5t2)(1 + 2(u1(t))2 + (u3(t))2)
(t− a)−κ

′
12 ,

Dα3
q u3(t) =

p3 cos3(u2(t))

8 + 3(u2(t))2 + |u3(t)|3
(t− a)−κ

′
13 ,

(6)

for almost all t ∈ J and

Dαi−1
q ui(t) = u0

i ,

for t = t0, where αi ∈ (0, 1), pi ∈ [0,∞), κ′1i ∈ (αi, 1) and u0
i is a

constant for i = 1, 2, 3. If we define maps

G1 (t, u1(t), u2(t), . . . , uk(t)) =
p1u2(t) cos2(u3(t))

1.5 + |u2(t)|+ |u3(t)|
(t− a)−κ

′
11 ,

G2 (t, u1(t), u2(t), . . . , uk(t)) =
p2t

2(u1(t))2

(7 + 5t2)(1 + 2(u1(t))2 + (u3(t))2)

× (t− a)−κ
′
12 ,

G3 (t, u1(t), u2(t), . . . , uk(t)) =
p3 cos3(u2(t))

8 + 3(u2(t))2 + |u3(t)|3
(t− a)−κ

′
31 ,

then, with a simple check, we will conclude that all conditions of Theo-
rem 3.4 hold and so this system of fractional q-differential equations has
a globally attractive solution.

5 Conclusions

The attractive and global attractivity solutions of the system of frac-
tional q-differential equations and their applications represent a matter
of high interest in the area of fractional q-calculus and its applications
in diverse fields of science and engineering. In this manuscript, we fo-
cused on the attractivity and global attractivity of solutions for two
k-dimensional systems of fractional q-differential equations. Two illus-
trative examples demonstrate the pertinence of the suggested methods.
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The techniques of the reported results can be applied to investigating the
attractivity and global attractivity of solutions of q-differential systems
of (singular) fractional q-differential equations.
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