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Abstract. In traditional data envelopment analysis (DEA), the ef-
ficiency and productivity changes computations are based on an opti-
mistic perspective and an efficient unit may perform rather poorly when
the realist weights are assigned to inputs and outputs. Hence, the re-
sults of productivity change of decision making units (DMUs) between
two time periods may change from progress to regress or vice versa
when the weights are modified. Because of the cross efficiency merits,
we use it to obtain a common set of weights so called common set of
cross weights. On the other hand, we need a base for comparing the
productivity change of DMUs. To this end, the common set of cross
weights are used to approximate the cross efficient frontier as a base for
determining cross Malmquist (CM) index for evaluating the productiv-
ity change. This leads to introduce a new efficiency, weight efficiency,
and the decomposition of the cross efficiency. Some DEA and cross
efficiency models are modified to find the value of the proposed CM
index and its components. An empirical example is used to compare
the proposed method and the technical Malmquist index.
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1 Introduction

The basic idea of the cross efficiency is to use data envelopment analysis
(DEA) [6] in a peer-evaluation instead of a self-evaluation [11]. The best
relative efficiency can be achieved for each decision making unit (DMU)
by the weights obtained in self evaluations, while in peer-evaluation each
DMU to be evaluated with the weights determined by the other DMUs.
These are some of the advantages of the cross efficiency method: The
producer eliminates unrealistic weight schemes without requiring the
elicitation of weight restrictions from application area experts as well
as the cross efficiency discriminates effectively to differentiate between
good and poor performance [1].

Doyle and Green [10] presented mathematical formulations for possi-
ble implementations of aggressive and benevolent cross efficiencies. The
aggressive models are focused on obtaining the set of optimal weights
where not only maximize the efficiency of the DMU under evaluation
but also to minimize the average efficiency of the other DMUs. The idea
in the benevolent method is to choose the set of optimal weights maxi-
mizing not only the efficiency of the DMU under evaluation but also the
average efficiency of other DMUs. To avoid the difficulty of choosing
between the aggressive and benevolent formulations, Wang and Chin
[28] proposed the neutral DEA model to determine a set of input and
output weights for each DMU without being aggressive or benevolent to
the others which maximizes the relative efficiency of each output and re-
duces the number of zero weights of outputs. However, the neutral DEA
model cannot reduce the number of zero weights among inputs. To re-
solve this problem, Wang et al. [29] proposed a simultaneously input-and
output-oriented weight determination DEA model for the cross efficiency
evaluation.

DEA allows individual DMUs to select the most advantageous weights
in calculating their efficiency. Therefore, there is a high flexibility in
DEA for selecting the weights and it leads to comparison of DMUs on
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uncommon bases. To this end, the Common Set of Weights (CSW)
method in DEA was initially introduced by Cook et al. [8] and de-
veloped by Roll et al. [23]. In this paper, we use cross efficiency of
DMUs to obtain a common set of weights (CSW) so called common set
of cross weights. Accordingly, we need a common base to determine the
productivity changes of DMUs from one periods to another.

To estimate productivity change of a DMU over time, Malmquist
index (MI) that was first introduced in literature by Caves et al. [5] have
been the most commonly used [7, 15]. Using DEA efficiency scores, Färe
et al. [13] decomposed the constant returns to scale Malmquist index
(MI) into technical efficiency change (TEC) and technical change (TC).
Infeasibility can occur when linear programming (LP) techniques are
used to compute and decompose of this index. Pastor and Lovell [20]
demonstrated that the source of above problem is the specification of
adjacent period technologies. A global index with technology formed
from data of all DMUs in all periods. It is immune to LP infeasibility
and it satisfies circularity. In other words, a common base technology
can be used to make the circular Malmquist index [21]. Maniadakis
and Thanassoulis [18] developed a productivity index that accounts not
only for technical efficiency and technical changes but also for allocative
efficiency and for the effects of input price change. The cost Malmquist
index was extended by Tohidi et al. [27] into the profit Malmquist index.
Also, Tohidi et al. [26] proposed a global cost Malmquist productivity
index, that used the weighted average of the inputs’ costs for different
periods of time and obtained a global cost efficient frontier. To calculate
the global Malmquist productivity index, Kao [17] proposed a common-
weights DEA model for time-series evaluates. Tohidi and Razavyan [25]
suggested a new index referred to as the circular global profit Malmquist
productivity index to remove the difficulty caused by different frontiers
in calculating profit efficiency changes and profit efficiency components
changes. This index is applicable when the input costs and output prices
are known.

Han et al. [16] used an improved DEA cross-model to analyze the
performance of China ethylene plants. They used cross model to allo-
cate weights for inputs and outputs, and determined the productivity
change of China ethylene plants by using their improved DEA cross-
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model. However, there may be alternative optimal solutions in relation
to their improved DEA cross-model, and so the optimal weights for the
inputs and outputs may not be unique, while the current paper uses
two modified cross efficiency models with unique optimal solution. This
development leads to generate unique inputs and output weights for
determining unique cross efficiencies under different periods of time.

In traditional DEA, a DMU receives the most favorable efficiency
score relative to its peers [19]. This may lead to distorted view of per-
formance and productivity change by producing scores for some DMUs
that overestimated their efficiency. To this end, this paper uses cross
efficiency of DMUs to obtain a CSW so called common set of cross
weights. The proposed weights are used to approximate the cross effi-
cient frontier as a same base to determine cross Malmquist (CM) index
for evaluating the productivity change. This leads to introduce a new
efficiency, weight efficiency (WE), and the decomposition of the cross
efficiency. Then, some DEA and cross efficiency models are modified to
find the value of the proposed CM index and its components. The mod-
ified cross efficiency models have unique optimal solution. This leads
to generate unique input and output weights for determining cross ef-
ficiencies. Therefore, all of DMUs are compared with a unique point,
which is considered as reference point.This is a fundamental matter to
investigate the productivity changes. An empirical example is used to
compare the proposed method and the technical Malmquist index.

The rest of this paper is organized as follows. The next section de-
scribes a background of DEA. The cross efficient frontier and its prop-
erties are presented in Section 3. The CM index and its components
are provided in Section 4. In Section 5, we modify some DEA and cross
efficiency models to obtain the CM index and its components. Section
6 presents an illustrative empirical example, and finally conclusions are
made in Section 7.

2 Background

Let xij and yrj be the positive levels of the ith(i = 1, . . . ,m) input and
rth(r = 1, . . . , s) output, respectively, of the jth(j = 1, . . . , n) DMU. The
efficiency scores which is called the technical efficiency (TE), of DMUs,



CROSS EFFICIENCY MALMQUIST INDEX TO ... 5

say DMUk, can usually be measured by the following CCR model [6]:

Ekk = max
s∑
r=1

urkyrk

s.t.
m∑
i=1

vikxik = 1

s∑
r=1

urkyrj −
m∑
i=1

vikxij ≤ 0, j = 1, . . . , n

urk, vik ≥ 0, r = 1, . . . , s, i = 1, . . . ,m,

(1)

where urk(r = 1, . . . , s) and vik(i = 1, . . . ,m) are decision variables
which represent the relative importance of outputs and inputs of the un-
der evaluation DMU, DMUk, respectively.By using the optimal weights
of model (1),(v∗k, u

∗
k) = (v∗1k, . . . , v

∗
mk, u

∗
1k, . . . , u

∗
sk), the cross efficiency

of DMUj(j = 1, . . . , n, j 6= k) is calculated as follows:

Ekj =

∑s
r=1 u

∗
rkyrj∑m

i=1 v
∗
ikxij

.

For DMUj(j = 1, . . . , n), the average of Ekj(k = 1, . . . , n),
C(xj , yj) = 1

n

∑n
k=1Ekj , is treated as the cross efficiency (CE) score

for DMUj .

To solve the problem of non-uniqueness of the optimal weights, the
aggressive and benevolent models were introduced [10]. The aggressive
and benevolent cross efficiencies are usually not the same. To avoid the
difficulty of choosing between the aggressive and benevolent formula-
tions, and to reduce simultaneously the number of zero weights of inputs
and outputs, Wang et al. [29] proposed the following neutral model to
determine a set of input and output weights for each DMU.
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max δ + γ

s.t.

s∑
r=1

urkyrk = Ekk

m∑
i=1

vikxik = 1

s∑
r=1

urkyrj −
m∑
i=1

vikxij ≤ 0, j = 1, . . . , n, j 6= k

urkyrk − δ ≥ 0, r = 1, . . . , s
vikxik − γ ≥ 0, i = 1, . . . ,m
δ, γ, urk, vik ≥ 0, r = 1, . . . , s, i = 1, . . . ,m.

(2)

where δ and γ represent the minimum relative efficiency of the s outputs
and m inputs of DMUk, respectively. So, the economic meaning of model
(2) can be interpreted as a set of input weights for DMUk to choose its
each output and each input as efficient, while keeping its CCR efficiency
(Ekk) unchanged, such that each input can be sufficiently utilized and
every output can produce sufficient efficiency as an individual.

3 Cross Efficient Frontier

To determine the productivity change and its components by using the
cross efficiency, it is necessary to approximate the cross efficient frontier.
To this end, this paper uses the cross efficiency scores of DMUs and
generates a common set of cross weights. To obtain a common set of
cross weights the following model is proposed:

min δ
s.t. δ ≥ z+j , j = 1, . . . , n

δ ≥ z−j , j = 1, . . . , n∑s
r=1 uryrj + z+j∑m
i=1 vixij − z

−
j

= C(xj , yj), j = 1, . . . , n

ur, vi ≥ ε > 0, z−j , z
+
j ≥ 0, r = 1, . . . , s, i = 1, . . . ,m, j = 1, . . . , n,

(3)
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where ε is a non-Archimedean infinitesimal positive number. Let (v, u)
is the optimal weights of model (3). The cross efficient frontier (CEF) is
defined as CEF = {(x, y)|uy − vx = 0}. In other words, for DMUj(j =

1, . . . , n) the term
uyj
vxj

is considered as an approximation of its cross

efficiency. In order to approximation of CEF, the fraction
∑s

r=1 uryrj∑m
i=1 vixij

must be increased by the numerator increasing and/or the denominator
decreasing. To implement this, the DMU must minimize the sum of the
total virtual gaps to the CEF by adding z+j to

∑s
r=1 uryrj and taking z−j

away from
∑m

i=1 vixij . The objective function δ minimizes the maximum
deviations from z+j and z−j .

Indeed, model (3) determines (v, u) as a common set of cross weights

to approximate C(xj , yj) by
uyj
vxj

. Model (3) can be converted to the

following linear programming model:

min δ
s.t. δ ≥ z+j , j = 1, . . . , n

δ ≥ z−j , j = 1, . . . , n
s∑
r=1

uryrj + z+j − C(xj , yj)(

m∑
i=1

vixij − z−j ) = 0, j = 1, . . . , n

ur, vi ≥ ε > 0, z−j , z
+
j ≥ 0, r = 1, . . . , s, i = 1, . . . ,m, j = 1, . . . , n.

(4)
Model (4) is feasible and it has a finite optimal value. Hence, model

(4) always provides a common set of weights to determine the cross
efficient frontier as a base for finding the productivity change and its
components by cross efficiency score.

Using (v∗, u∗, z+∗, z−∗, δ∗) as optimal solution of model (4) the CEF
is defined as CEF = {(x, y)|u∗y − v∗x = 0}, where z+∗ = (z+∗

1 , . . . ,
z+∗
n ), z−∗ = (z−∗

1 , . . . , z−∗
n ), v∗ = (v∗1, . . . , v

∗
m) and u∗ = (u∗1, . . . , u

∗
s). The

hyperplane CEF = {(x, y)|u∗y−v∗x = 0} divides the space of Rm+s into
two halfspaces where Tc = {(x, y)|x ≥

∑n
j=1 λjxj , y ≤

∑n
j=1 λjyj , λj ≥

0, j = 1, . . . n, } is in one of its halfspaces. We assume a pair of non-
negative input x ∈ Rm and output y ∈ Rs an activity and express them
by the notation (x, y).

If DMUk is cross efficient, CEF is a supporting hyperplane of Tc at
(xk, yk), otherwise CEF is not a supporting hyperplane of Tc. The fol-
lowing Theorems and Corollary demonstrate these properties.
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Theorem 1: Let (v∗, u∗, z+∗, z−∗, δ∗) be an optimal solution of model

(4). Then,
u∗yj
v∗xj
≤ C(xj , yj) for j = 1, . . . , n.

Proof: The proof is evident. �
Theorem 2: Let (v∗, u∗, z+∗, z−∗, δ∗) be an optimal solution of model
(4) and H− = {(x, y)|u∗y − v∗x ≤ 0}. If (x, y) ∈ Tc, then (x, y) ∈ H−.
Proof: Since z−∗

j , z+∗
j ≥ 0, j = 1, . . . , n, we have 1 ≥ C(xj , yj) =

u∗yj+z
+∗
j

v∗xj−z−∗
j

≥ u∗yj
v∗xj

and so u∗yj−v∗xj ≤ 0, j = 1, . . . , n. Therefore, for each

j ∈ {1, . . . , n}, (xj , yj) ∈ H−. On the other hand, for each (x, y) ∈ Tc
there exists λ̂ such that x ≥

∑n
j=1 λ̂jxj and y ≤

∑n
j=1 λ̂jyj . Hence,

using v∗ ≥ 0 and u∗ ≥ 0 we have −v∗x ≤ −
∑n

j=1 v
∗λ̂jxj and u∗y ≤∑n

j=1 u
∗λ̂jyj , and therefore, u∗y − v∗x ≤

∑n
j=1 λ̂j(u

∗yj − v∗xj) ≤ 0.

Hence, (x, y) ∈ H−. �

Corollary: If C(xj , yj) < 1, j = 1, . . . , n, then CEF ∩ Tc = φ.

Theorem 3: For one input and one output case, the technical frontier
and the CEF are the same under the constant returns-to-scale (CRS)
assumption.
Proof: In the case of one input and one output, and under the CRS
assumption, the optimal solutions of CCR model for all DMUs are pro-
portional. Therefore, there is only one CCR efficient face. In this case,
all rows of the cross matrix are the same and for each j ∈ {1, . . . , n},
C(xj , yj) = Ejj , where Ejj is the optimal objective value of the model
(1). This completes the proof. �

3.1 Illustrative Example

Table 1 shows ten units with two inputs (x1 and x2) and 1 output (y).

The vector (v∗, u∗) = (v∗1, v
∗
2, u

∗) = (0.00010, 0.00010, 0.00042) is
the optimal solution of model (4). Therefore, the CEF is as CEF =
{(x1, x2, y) : 0.0001x1 + 0.0001x2 = 0.00042y}. For y = 1 we have
CEF = {(x1, x2, 1) : x1 + x2 = 4.2}. Indeed, the CEF is a straight line

with a slop of −v∗1
v∗2

= −1
1 = −1 as designated by the CEF in Fig. 1. The

last row of the Table 1, indicates the cross efficiency of DMUs by the
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Table 1: The data of example, the technical and the cross efficiencies

DMU A B C D E F H I J K

Input1 4 7 8 4 2 10 9 8.5 5.5 5
Input2 3 3 1 2 4 1 2 3.5 4 4.5
Output 1 1 1 1 1 1 1 1 1 1
Ejj 0.8571 0.6316 1 1 1 1 0.7059 0.5333 0.6316 0.6316
C(xj , yj) 0.6978 0.7224 0.7224 0.6978 0.6978 0.4675 0.7224 0.7224 0.6978 0.6978
CE 0.5981 0.4187 0.4652 0.6978 0.6978 0.3806 0.3806 0.3489 0.4407 0.4407

cross efficient frontier. For instance, for DMUA, CEA = OA1
OA = 0.5981 <

TEA = OA2
OA = 0.8571.

In Fig. 1, OG⊥CEF , BG⊥OG and AG3⊥OG; ”⊥” is a perpendic-
ular symbol. Therefore, AG3 and GB are parallel to A1B1 and hence,
using the trigonometric properties, we have:

CEB = OB1
OB = OB1

OB2
× OB2

OB = OG1
OG (BG‖B1G1),

CEA = OA1
OA = OA1

OA2
× OA2

OA = OG1
OG3

(AG3‖A1G1).

It can be seen that the DMUs A and B are compared with the differ-
ent points A2 and B2 on different faces of the technical efficient frontier.
Therefore, the DMUs A and B cannot be compared with toghether,
while all of the DMUs are compared with the point G1, as a unique point,
on the CEF . In other words, all of DMUs are compared with a unique
point, which is considered as reference point. This is a fundamental mat-
ter to investigate the productivity changes [17]. For DMUA, we consider
the relative distance of A1 and A2 to obtain the ratio 0 ≤ OA1

OA2
≤ 1, and

we refer to the OA1
OA2

as weight efficiency (WE) score of DMUA. When
the most preferred weights, say the CCR model optimal weights, are as-
signed to the inputs and outputs, we have OA1

OA2
= 1, otherwise OA1

OA2
< 1.

Therefore, the weight efficiency (WE) provides a measure of effect
the changing of the weights (v, u) from the most preferred weights to
the common set of cross weights. Hence, the WE is defined as follows:

WE = CE
TE . (5)
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Figure 1. Illustration of the cross efficient frontier (CEF)

According to (5), the cross efficiency (CE) is decomposed as a prod-
uct of the CCR efficiency score (TE) and the weight efficiency (WE).

4 The Cross Malmquist Productivity Index

This paper uses the cross efficient frontier at periods t and t + 1, and
proposes a new Malmquist index, the cross efficiency Malmquist index,
to investigate the productivity change over time.

Let (vt, ut) and (vt+1, ut+1) be the common set of cross weights ob-
tained by model (4) for the DMUs of the periods of time t and t + 1,
respectively. Using (vt, ut) and (vt+1, ut+1), the CEF at time periods t
and t+ 1 are defined as follows, respectively:

CEF t = {(x, y)|uty − vtx = 0},
and CEF t+1 = {(x, y)|ut+1y − vt+1x = 0}.

Let t be the reference time period. Using Ct(xtj , y
t
j) and Ct(xt+1

j ,

yt+1
j ) respectively as the cross efficiencies of DMUj(j = 1, . . . , n) at

time periods t and t+1, the cross Malmquist (CM) index for DMUj(j =
1, . . . , n) is defined as

CM t(xtj , y
t
j , x

t+1
j , yt+1

j ) =
Ct(xt+1

j ,yt+1
j )

Ct(xtj ,y
t
j)

. (6)
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Similarly, when t+ 1 is the reference time period, using Ct+1(xtj , y
t
j)

and Ct+1(xt+1
j , yt+1

j ) the CM index for DMUj(j = 1, . . . , n) is defined
as

CM t+1(xtj , y
t
j , x

t+1
j , yt+1

j ) =
Ct+1(xt+1

j ,yt+1
j )

Ct+1(xtj ,y
t
j)

. (7)

Since the reference time periods are not the same, to avoid an ar-
bitrary choice of a reference period, the geometric mean of CM t(xtj , y

t
j ,

xt+1
j , yt+1

j ) and CM t+1(xtj , y
t
j , x

t+1
j , yt+1

j ) is considered as the CM index
as shown in (8):

CM(xtj , y
t
j , x

t+1
j , yt+1

j ) =
[
CM t(xtj , y

t
j , x

t+1
j , yt+1

j )× CM t+1(xtj , y
t
j , x

t+1
j , yt+1

j )
]1/2

.

(8)

CM > 1 indicates progress in the productivity of DMUj from period
t to t+ 1, while CM = 1 and CM < 1, respectively indicate statue quo
and deterioration in productivity.

The indexes (6), (7) and (8) are similar to those used by Balk [3, 2]
and Färe and Grosskopf [13]. Fig. 2 illustrates the CM(xtj , y

t
j , x

t+1
j , yt+1

j )
index, where units A1, B1, C1 and D1 observed in time period t use two
inputs (x1, x2) to produce one output y = 1. These units move to
A2, B2, C2 and D2, respectively, in time period t+ 1. The frontier tech-
nologies at periods t and t + 1 are L1A1B1C1M1 and L2A2B2C2M2,
respectively. In addition, CEF t and CEF t+1 are the cross efficient
frontiers at time periods t and t + 1,respectively. By using CEFt and
CEFt+1 in Fig. 2, for unit D1 we have:

CM t(D1, D2) = OG/OD2

OK/OD1
and CM t+1(D1, D2) = OE/OD2

OI/OD1
.

Therefore,

CM(D1, D2) =
[
OG/OD2

OK/OD1
× OE/OD2

OI/OD1

]1/2
.
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Figure 2. The interpretation of the CEF under the CRS assumption

4.1 Decomposition of the CM Index

4.1.1 The First Stage of Decomposition

The proposed index, CM(xtj , y
t
j , x

t+1
j , yt+1

j ), can be decomposed into the
cross efficiency change (CEC) and the cross technical change (CTC) as
follows:

CM(xtj , y
t
j , x

t+1
j , yt+1

j ) = CEC(xtj , y
t
j , x

t+1
j , yt+1

j )× CTC(xtj , y
t
j , x

t+1
j , yt+1

j )

=
ct+1(xt+1

j ,yt+1
j )

ct(xtj ,y
t
j)

×
[
ct(xt+1

j ,yt+1
j )

ct+1(xt+1
j ,yt+1

j )
× ct(xtj ,y

t
j)

ct+1(xtj ,y
t
j)

]1/2
,

where the component outside the brackets (CEC) is the cross efficiency
change and the term inside the brackets (CTC) is the cross techni-
cal change. The CEC provides a new measure of the cross technical
change and shows the catch up effect from the period t to the pe-
riod t + 1. CEC(xtj , y

t
j , x

t+1
j , yt+1

j ) > 1 indicates that there is an in-
crease in the cross efficiency score of DMUj from period t to t + 1,
while CEC(xtj , y

t
j , x

t+1
j , yt+1

j ) < 1 and CEC(xtj , y
t
j , x

t+1
j , yt+1

j ) = 1 re-
spectively show regress and no change in the cross efficiency score of
DMUj .

By using CEFt and CEFt+1 in Fig. 2, for units D1 and D2 we have:
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CM(D1, D2) = OE/OD2

OK/OD1

[
OG/OD2

OE/OD2
× OK/OD1

OI/OD1

]1/2
= OE/OD2

OK/OD1

[
OG
OE ×

OK
OI

]1/2
.

Using the cross efficiency change (CEC) and the technical efficiency
change (TEC), the weight efficiency change (WEC) is defined as

WEC(xtj , y
t
j , x

t+1
j , yt+1

j ) =
CEC(xtj , y

t
j , x

t+1
j , yt+1

j )

TEC(xtj , y
t
j , x

t+1
j , yt+1

j )
(9)

=

Ct+1(xt+1
j ,yt+1

j )

Ct(xtj ,y
t
j)

Dt+1(xt+1
j ,yt+1

j )

Dt(xtj ,y
t
j)

=

Ct+1(xt+1
j ,yt+1

j )

Dt+1(xt+1
j ,yt+1

j )

Ct(xtj ,y
t
j)

Dt(xtj ,y
t
j)

where Dp(xpj , y
p
j ) = max{θ|(x

p
j

θ , y
p
j ) ∈ T

p
c } for p = t, t+ 1 is the distance

function of DMUj in the periods of time t and t + 1 [24]. Therefore,
the weight change factor is the ratio of the weight effects of periods t
and t+ 1. By using Fig. 2 the weight change factor, WEC(D1, D2), is
approximated as

WEC(D1, D2) =

OE/OD2

OF/OD2

OK/OD1

OL/OD1

=
OE/OF

OK/OL
.

4.1.2 The Second Stage of Decomposition

In the second stage of decomposition, CEC is separated into the effect
of the common set of weights and the technical change when DMUj

moves from the time period t to t + 1. Hence, the CEC component is
decomposed as
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CECj(x
t
j , y

t
j , x

t+1
j , yt+1

j ) =
Ct+1(xt+1

j , yt+1
j )

Ct(xtj , y
t
j)

(10)

=
Dt+1(xt+1

j , yt+1
j )

Dt(xtj , y
t
j)

×

Ct+1(xt+1
j ,yt+1

j )

Dt+1(xt+1
j ,yt+1

j )

Ct(xtj ,y
t
j)

Dt(xtj ,y
t
j)

.

The first term on the right hand side of (10) is the catch-up compo-
nent [9] and the second term refers to the weight change factor (see (9))
between time periods t and t+ 1.

The CEC decomposition in (10) indicates that part of the cross effi-
ciency change occurs due to the change in the technical efficiency score
and the other part occurs due to the change in the weight efficiency
score. The first term on the right hand side of (10) is the technical
efficiency change (TEC), and the second term refers to the weight effi-
ciency change (WEC) between time periods t and t+1. Clearly, TEC
component represents a change in technical efficiency score of DMUj

due to changes in the most favorable input/output weights from period
t to period t+1.

The numerator and the denominator of WEC component represent
the weight efficiency scores of DMUj respectively in time periods t and
t+1. As stated before, the weight efficiency score determines the rate
of change of the efficiency of DMUj when the proposed common cross
weights are assigned to the inputs and outputs instead of the most fa-
vorable weights for this DMU. Therefore, WEC>1 indicates that, in pe-
riod t+1 compared to the period t, the proposed common input/output
cross weights were closer to the most favorable input/output weights of
DMUj , while WEC<1 indicates that the difference between the common
cross weights and the most favorable input/output weights of DMUj in-
creases from period t to period t+1. Also, WEC=1 means the difference
between the two sets of weights is the same in two periods t and t+1.

In Fig. 2, for units D1 and D2, the component CEC(D1, D2) is
computed by using CEFt and CEFt+1 as follows:
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CEC(D1, D2) =
OF/OD2

OL/OD1
×

OE/OD2

OF/OD2

OK/OD1

OL/OD1

=
OE/OD2

OK/OD1
.

The second component of CM index, CTC, can be decomposed as

CTC(xtj , y
t
j , x

t+1
j , yt+1

j ) =
[ Dt(xt+1

j , yt+1
j )

Dt+1(xt+1
j , yt+1

j )
×

Dt(xtj , y
t
j)

Dt+1(xtj , y
t
j)

]1/2

×

[ Ct(xt+1
j ,yt+1

j )

Dt(xt+1
j ,yt+1

j )

Ct+1(xt+1
j ,yt+1

j )

Dt+1(xt+1
j ,yt+1

j )

×

Ct(xtj ,y
t
j)

Dt(xtj ,y
t
j)

Ct+1(xtj ,y
t
j)

Dt+1(xtj ,y
t
j)

]1/2
. (11)

The first term in the right hand side of (11) is the technical change
(TC) component [12] that reflects the shift of the production boundary
between periods t and t+1, measured along rays (xt+1

j , yt+1
j ) and (xtj , y

t
j).

The second square brackets in (11), refers to the residual impact (RI)
component. It is clear that the numerator and the denominator of the
first ratio in the RI component represent the weight efficiency scores of
(xt+1
j , yt+1

j ), which have been evaluated by considering the production
technologies of periods t and t+1 as the reference time period, respec-
tively. This means the first ratio of the IR component captures the
change in the weight efficiency score of (xt+1

j , yt+1
j ) that occurs due to

the change in the best practice gap between the production boundary
and the cross efficient boundary from period t to period t+1, along ray
(xt+1
j , yt+1

j ). The second ratio of the IR component can also be inter-

preted similarly, but along ray (xtj , y
t
j). It can be said that the two

ratios that make the IR component measure the residual impact of rela-
tive common weight changes on the shift of the cross efficient boundary
from period t to period t+1.

For units D1 and D2 in Fig. 2, the CTC(D1, D2) is determined as

CTC(D1, D2) =
[
OH/OD2

OF/OD2
× OL/OD1

OJ/OD1

]1/2
×
[ OG/OD2

OH/OD2
OE/OD2
OF/OD2

×
OK/OD1
OL/OD1
OI/OD1
OJ/OD1

]1/2
=
[
OG
OE ×

OK
OI

]1/2
.
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Further decompositions of the CM index by using the pure technical
and the scale efficiency is possible [13]. For instance, by CE = WE×TE
and three-factor decomposition of [22] a four-factor decomposition for
CM index is obtained. Similarly, using CE = WE×TE and four-factor
decomposition of [4] a five-factor decomposition for CM index can be
generated.

5 Computation of the CM Index and Its Com-
ponents

Assume that, in time period t(t = 1, . . . , T ), DMUj(j = 1, . . . , n) con-
sumes the amount xtij of input i(i = 1, . . . ,m) to produce the amount
ytrj of output r(r = 1, . . . , s). For DMUj , the cross efficiency score is
considered as

Cp(xqj , y
q
j ) =

1

n

n∑
k=1

Ekj =
1

n

n∑
k=1

∑s
r=1 u

p∗
rky

q
rj∑m

i=1 v
p∗
ik x

q
ij

, p, q = t, t+1, j = 1, . . . , n.

To determine Cp(xqj , y
q
j ) when p = q = t, t+ 1, the optimal weights,

i.e. (vp∗1k, . . . , v
p∗
mk, u

p∗
1k, . . . , u

p∗
sk), can be determined by the following

model:

max δp + γp

s.t.
s∑
r=1

uprky
p
rk = Ekk

m∑
i=1

vpikx
p
ik = 1

s∑
r=1

uprky
p
rj −

m∑
i=1

vpikx
p
ij ≤ 0, j = 1, . . . , n

uprky
p
rk − δ

p ≥ 0, r = 1, . . . , s
vpikx

p
ik − γ

p ≥ 0, i = 1, . . . ,m
δp, γp, uprk, v

p
ik ≥ 0, r = 1, . . . , s, i = 1, . . . ,m.

(12)

Theorem 4: The optimal solution of model (12) is unique.
Proof: In the case of p = q, p, q = t, t + 1, the efficiency score Ekk is
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determined by the corresponding CCR model. By summing the con-
straints uprky

p
rk− δ

p ≥ 0, r = 1, . . . , s, we have Ekk =
∑s

r=1 u
p
rky

p
rk ≥ sδ

p,

and hence, 0 ≤ δp ≤ Ekk
s . Similarly, the constraints vpikx

p
ik − γp ≥

0, i = 1, . . . ,m leads to 1 =
∑m

i=1 v
p
ikx

p
ik ≥ mγp. Therefore, 0 ≤

γp ≤ 1
m . If we set δp∗ = Ekk

s , and γp∗ = 1
m , then we have uprk ≥

δp∗

yprk
= Ekk

syprk
, r = 1, . . . , s and vpik ≥

γp∗

xpik
= 1

mxpik
, i = 1, . . . ,m. Let Ψ∗ =

(up∗1k, . . . , u
p∗
sk, v

p∗
1k, . . . , v

p∗
mk, δ

p∗, γp∗) = ( Ekk

syp1k
, . . . , Ekk

sypsk
, 1
mxp1k

, . . . , 1
mxpmk

,

Ekk
s , 1

m). We prove that the Ψ∗ is the unique optimal solution of model
(12). Ψ∗ satisfies the constraints Ekk =

∑s
r=1 u

p
rky

p
rk and 1 =

∑m
i=1 v

p
ikx

p
ik.

By inserting Ψ∗ in the ratio of ratio form of the CCR model [9], we have

Ekk = max
upk≥0,vpk≥0

∑s
r=1 u

p
rk

y
p
rk∑m

i=1
v
p
ik

x
p
ik

max
1≤j≤n

{∑s
r=1 u

p
rk

y
p
rj∑m

i=1
v
p
ik

x
p
ij

} = Ekk

max
1≤j≤n

{∑s
r=1 u

p∗
rk

y
p
rj∑m

i=1
v
p∗
ik

x
p
ij

} . Therefore, 1 =

max
1≤j≤n

{∑s
r=1 u

p∗
rky

p
rj∑m

i=1 v
p∗
ik x

p
ij

}
= max

1≤j≤n


∑s

r=1

Ekky
p
rj

sy
p
rk∑m

i=1

x
p
ij

mx
p
ik

 . and hence,

∑s
r=1

Ekky
p
rj

sy
p
rk∑m

i=1

x
p
ij

mx
p
ik

≤

1 and then
∑s

r=1

Ekky
p
rj

syprk
−
∑m

i=1

xpij
mxpik

≤ 0 and
∑s

r=1 u
p∗
rjy

p
rj−
∑m

i=1 v
p∗
ij x

p
ij =∑s

r=1

Ekky
p
rj

syprk
−
∑m

i=1

xpij
mxpik

≤ 0, j = 1, . . . , n. Therefore, Ψ∗ satisfies

all of the constraints of model (12) and is its feasible solution. To
complete the proof, let there is another optimal solution, say Ψ̂ =
(ûp1k, . . . , û

p
sk, v̂

p
1k, . . . , v̂

p
mk, δ̂

p, γ̂p) 6= Ψ∗. Since 0 ≤ δp, δ̂p ≤ Ekk
s , 0 ≤

γp, γ̂p ≤ 1
m , δp∗ = Ekk

s and γp∗ = 1
m , we must have δp∗ = δ̂p = Ekk

s and

δp∗ = δ̂p = 1
m . Now, let there is f ∈ {1, . . . , s} such that ûpfk 6= up∗fk.

There are two cases:
Case 1: ûpfk < up∗fk. Since δp∗ = δ̂p = Ekk

s and ûpfk ≥
δ̂p

ypfk
= Ekk

sypfk
, hence

the case ûpfk < up∗fk is impossible.

Case 2: ûpfk > up∗fk. Since Ekk =
∑s

r=1 u
p∗
rky

p
rk =

∑s
r=1 û

p
rky

p
rk and

up∗rk, y
p
rk, û

p
rk ≥ 0, in this case we must have e ∈ {1, . . . , s} such that

ûpek < up∗ek. According to case 1, ûpek < up∗ek is impossible. Therefore,
(up∗1k, . . . , u

p∗
sk) = (ûp1k, . . . , û

p
sk). Since

∑m
i=1 v

p∗
ik x

p
ik =

∑m
i=1 v̂

p
ikx

p
ik = 1,

similarly, it can be proven that (vp∗1k, . . . , v
p∗
sk) = (v̂p1k, . . . , v̂

p
sk), and hence

Ψ̂ = Ψ∗. This concludes the proof. �

In calculating Cp(xqj , y
q
j ) when p, q = t, t + 1, p 6= q the optimal
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weights are the optimal solution of the following modified model:

max δp + γp

s.t.

s∑
r=1

uprky
q
rk = Ekk

m∑
i=1

vpikx
q
ik = 1

s∑
r=1

uprky
p
rj −

m∑
i=1

vpikx
p
ij ≤ 0, j = 1, . . . , n

uprky
q
rk − δ

p ≥ 0, r = 1, . . . , s
vpikx

q
ik − γ

p ≥ 0, i = 1, . . . ,m
δp, γp, uprk, v

p
ik ≥ 0, r = 1, . . . , s, i = 1, . . . ,m.

(13)

Theorem 5: The optimal solution of model (13) is unique.
Proof: The proof of this theorem is similar to the proof of Theorem 4. �

According to Theorem 5, the unique optimal solution of model (13)
is as follows:

∆∗ = (up∗1k, . . . , u
p∗
sk, v

p∗
1k, . . . , v

p∗
mk, δ

p∗, γp∗)

= (
Ekk
syq1k

, . . . ,
Ekk
syqsk

,
1

mxq1k
, . . . ,

1

mxqmk
,
Ekk
s
,

1

m
).

Therefore, by using Theorems 4 and 5, the Cp(xqj , y
q
j ), p, q = t, t +

1, are uniquely determined by ∆∗ and Ψ∗. Based on the CRS as-
sumption the term Dp(xqj , y

q
j ) can be computed using Dp(xqj , y

q
j ) =

min{θj |(θjxqj , y
q
j ) ∈ T

p
c }, where

T pc = {(x, y)|x ≥
n∑
j=1

λjx
p
j , y ≤

n∑
j=1

λjy
p
j , λj ≥ 0, j = 1, . . . , n}

and p, q = t, t+ 1.

6 Numerical Example

This paper applies the proposed CM index to analyze the productivity
changes in semiconductor packaging and testing firms in Taiwan between
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the years 2000 and 2003 (t = 1, . . . , 4) [14]. There are 15 companies with
one input, x1=Liability ratio (%), and four outputs: (i) y1 = Growth
rate (%), (ii) y2 = Net profit after tax ($100 million NT dollars), (iii)
y3 = Profitability ratio (%), and (iv) y4 = Output value by employee
($million/people). The input and outputs of the DMUs over four years
is listed in Table 2.

Applying model (4) to the data in Table 2, the u∗t, v∗t and δ∗t for the
different periods of time (t = 1, . . . , 4) are obtained. Columns 2, 3 and 4
of Table 3 show the u∗t, v∗t and δ∗t of model (4), respectively, for the time
period t (t = 1, . . . , 4). The last column of Table 3 shows the CEF for the
time periods t = 1, . . . , 4. For instance, for t = 1 we have (u∗t, v∗t, δ∗t) =
(0.001114, 0.001438, 0.000100, 0.005368, 0.011271, 0.000021). Hence, the
CEF for the first time period is as 0.01114y1 + 0.01438y2 + 0.001y3 +
0.05368y4 = 0.11271x1.

The columns 3, 4 and 5 of the Table 4 show the Malmquist index
(MI(t, t + 1)) and the columns 6, 7 and 8 of Table 4 present the cross
Malmquist index (CM(t, t+1)), for all of the DMUs from the time period
t to t + 1 for t = 1, 2 and 3. As can be seen from Table 4, for DMU10

the CM(1, 2) = 1.0322 > 1 indicates the progress from period 1 to 2 in
the productivity, while CM(1, 2) for other DMUs is less than 1 and it
indicates the deterioration in productivity from period time 1 to 2.

It can be seen that, in some periods of time the productivity change
of some DMUs using cross and technical efficient frontiers are not the
same. For instance, for DMU9 the MI(1, 2) = 1.035 > 1 and it indicates
the progress in the productivity from the time period 1 to 2, while by
using the cross Malmquist index we have CM(1, 2) = 0.8493 < 1. It
indicates the deterioration in the productivity from the time period 1 to
2. This case shows that the Malmquist index at different periods using
different frontier facets may produce misleading results.

Looking at the average values in Table 4, for example, we can see
that the average cross Malmquist index of all of the DMUs from the
first period to the second period (0.6231) is less than their average cross
Malmquist index from the second period to the third period (1.1474).
The average of columns 7 and 8 show that the average growth of all of
the DMUs from the second period to the third period is greater than
their growth from period 3 to period 4. A similar discussion can be
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Table 2: Table 2. The inputs and outputs of 15 DMUs [14]

Year 2000 Firms y1 y2 y3 y4 x1
1 ASE 145.86 98.37 122.87 3.5 38.26
2 SIPIN 158.16 72.21 117.09 3.56 32.84
3 OSE 146.85 41.04 100.73 2.19 31.12
4 ChipMos 128.82 55.39 118.71 4.11 33.8
5 KYEC 239.66 51.78 128.17 1.41 43.37
6 Sharp Chunh Li 284.76 55.9 121.02 3.47 50.9
7 Sharp in Taiwan 157.53 58.19 135.43 3.31 28.55
8 Greatek 154.48 45.25 114.15 2.68 44.83
9 Lingsen 153.12 43.38 110.27 2.07 26.09
10 PowerTech 344.42 42.5 118.85 1.46 56.07
11 UTC 136.54 49.02 125.65 4.49 23.01
12 KingPak 200.28 38.75 98.05 22.27 53.41
13 Hi-Sincerity 100.75 40.25 101.68 12.37 38.89
14 Formosa 143.13 41.77 110.24 2.37 58.83
15 Sigurd 135.29 41.5 114.49 1.98 32.05

Year 2001
1 ASE 80.35 18.57 89.55 3.4 41.46
2 SIPIN 87.71 28.17 92.84 2.5 38.11
3 OSE 75.04 8.1 70.14 1.98 56.19
4 ChipMos 65.79 24.91 72.58 3.24 31.91
5 KYEC 92.71 32.08 79.57 1.44 53.48
6 Sharp Chunh Li 64.8 40.57 101.16 2.66 38.12
7 Sharp in Taiwan 78.55 37.6 94.05 2.75 25.01
8 Greatek 89.43 42.48 107.48 2.74 41.8
9 Lingsen 71.17 41.25 105.34 1.87 20.73
10 PowerTech 234.47 41.73 105.56 3.57 43.3
11 UTC 38.25 31.1 33.83 2.43 24.64
12 KingPak 33.53 39.17 96.14 7.68 48.35
13 Hi-Sincerity 70.15 40.21 102.02 11.32 37.24
14 Formosa 59.51 41.22 111.86 1.76 58.27
15 Sigurd 82.7 40.08 100.93 1.91 26.29

Year 2002
1 ASE 125 41.29 100.5 4.2 42.5
2 SIPIN 134.9 44.25 101.91 2.79 43.28
3 OSE 119.56 7 74.16 2.65 64.18
4 ChipMos 118.57 27.92 81.49 3.21 44.48
5 KYEC 137.94 36.97 94.33 1.76 49.08
6 Sharp Chunh Li 105.22 43.66 107.09 2.29 30.66
7 Sharp in Taiwan 118.37 37.99 95.79 2.74 32.12
8 Greatek 134.67 46.34 114.19 3.36 36.48
9 Lingsen 125.4 36.33 87.51 2.13 25.67
10 PowerTech 90.74 41.87 106.63 2.8 34.86
11 UTC 159.26 36.73 84.73 3.17 22.31
12 KingPak 98.79 38.87 94.68 4.38 54.26
13 Hi-Sincerity 96.83 39.64 96.43 11.59 39.12
14 Formosa 162.59 40.92 105.5 2.51 55.16
15 Sigurd 143.22 42.38 120.12 2.31 43.77

Year 2003
1 ASE 122.85 67.43 108.71 3.11 41.08
2 SIPIN 122.8 68.39 110.37 2.99 45.06
3 OSE 105.91 5.64 74.6 2.72 66.88
4 ChipMos 129.77 48.61 110.17 3.36 39.43
5 KYEC 126.91 47.73 111.39 2.38 33.89
6 Sharp Chunh Li 116.65 41.83 103.04 2.08 34.23
7 Sharp in Taiwan 140.26 51.91 117.79 2.68 34.58
8 Greatek 116.1 49.27 117.88 3.42 35.63
9 Lingsen 133.22 43.69 109.43 2.43 30.28
10 PowerTech 155.44 50.4 123.72 3.21 45.67
11 UTC 107.53 39.92 99.63 2.93 19.95
12 KingPak 59.82 40.94 107.4 2.87 44.82
13 Hi-Sincerity 101.98 39.35 93.68 11.05 40.29
14 Formosa 122.77 41.91 109.3 2.9 54.62
15 Sigurd 149.37 44.18 123.66 2.47 34.16
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Table 3: The optimal solution of model (4) and the CEF for the
different periods of time

Period ut∗ vt∗ δt∗ Cross Efficient Frontier

t=1 (0.001114, 0.001438, 0.000100, 0.005368) 0.011271 0.000021 0.01114y1 + 0.01438y2 + 0.001y3 + 0.05368y4 = 0.11271x1
t=2 (0.000169, 0.000348, 0.000100, 0.002857) 0.002038 0.000004 0.0169y1 + 0.0348y2 + 0.01y3 + 0.2857y4 = 0.2038x1
t=3 (0.000100, 0.001074, 0.003807, 0.011319) 0.018549 0.000038 0.001y1 + 0.01074y2 + 0.03807y3 + 0.11319y4 = 0.18549x1
t=4 (0.000473, 0.000932, 0.000100, 0.001462) 0.005130 0.000011 0.0473y1 + 0.0932y2 + 0.01y3 + 0.1462y4 = 0.513x1

Table 4: The cross Malmquist index and Malmquist index of DMUs

DMU Firms MI(1,2) MI(2,3) MI(3,4) CM(1,2) CM(2,3) CM(3,4)
1 ASE 0.417 1.3004 1.1856 0.34 1.528 1.081 1.1856
2 SIPIN 0.469 1.17 1.057 0.4626 1.1026 1.0916
3 OSE 0.22 0.895 0.828 0.2683 1.0542 0.9089
4 ChipMos 0.573 0.892 1.451 0.5725 0.8651 1.487
5 KYEC 0.373 1.426 1.799 0.3936 1.3571 1.6318
6 Sharp Chunh Li 0.642 1.467 0.871 0.555 1.3838 0.891
7 Sharp in Taiwan 0.759 0.897 1.083 0.6813 0.8492 1.1452
8 Greatek 0.904 1.48 1.005 0.8049 1.3258 1.0151
9 Lingsen 1.035 0.756 0.983 0.8493 0.8051 0.999
10 PowerTech 0.732 0.729 0.999 1.0323 0.9817 0.9863
11 UTC 0.32 2.757 1.067 0.3835 2.3247 1.0838
12 KingPak 0.295 1.247 0.955 0.4265 0.8689 1.1333
13 Hi-Sincerity 0.982 0.992 0.923 0.9041 0.9688 0.9612
14 Formosa 0.715 1.625 1.009 0.6635 1.2704 0.9565
15 Sigurd 0.996 0.6 1.364 0.9322 0.7534 1.3294

Average 0.624 1.231 1.098 0.6231 1.1474 1.1204

made for the other columns of Table 4.

Table 5 shows the cross efficiencies using model (2) and CEF. The
columns 3, 5, 7 and 9 of the Table 5 show the cross efficiency by using
CEF for the time periods 1, 2, 3, and 4, respectively. The columns 4,
6, 8and 10 of Table 5 represent the cross efficiency of DMUs by using
model (2).

It can be seen that, the cross scores using model (2) and the CEF
are very close together. For instance, the last row of Table 5 shows the
average of the cross efficiency of the DMUs using model (2) and the CEF
for t = 1 and 3 are the same.

Table 6 illustrates the results of the weight efficiency change (WEC),
cross efficiency change (CEC) and cross technical change (CTC) from
period t to the period t + 1(t = 1, 2, 3), and the averages are shown in
the last row of this Table. For example, the cross efficiency change for
DMU1 from period 1 to period 2 is 0.5893, i.e., there is a decrease in
cross efficiency for DMU1 from period 1 to period 2. However, there is
an increase in cross efficiency for DMU1 from period 2 to period 3.

The numerator and the denominator of WEC component represent
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the weight efficiency scores of DMUj respectively in time periods t and
t+1. As stated in section 3, the weight efficiency score determines
the rate of change of the efficiency of DMUj when the proposed com-
mon cross weights are assigned to the inputs and outputs instead of
the most favorable weights for this DMU. Therefore, according to Ta-
ble 6 WEC(1,2)=1.0516>1 for DMU1 indicates that, in period 2 com-
pared to the period 1, the proposed common input/output cross weights
were closer to the most favorable input/output weights of DMU1, while
WEC(3,4)=0.0818<1 for DMU1 indicates that the difference between
the common cross weights and the most favorable input/output weights
of DMU1 increases from period 3 to period 4. Also, WEC(3,4)=1 for
DMU11 means the difference between the two sets of weights is the same
in two periods 3 and 4.

Looking at the average values in Table 6, for example, we can see
that the average CEC(1,2) index of all of the DMUs from the first period
to the second period (0.8709) is lower than their averages CM(2,3) index
from time periods 2 and 3 to time periods 3 and 4, respectively. A similar
discussion can be made for the average of the other columns of Table 6.

7 Conclusions

The traditional DEA allows each DMU, to select the most advantageous
weights in measuring efficiency and this leads to comparison of DMUs
on uncommon base. In this paper, we proposed a method based on
cross efficiency to generate a common set of weights and determine a
common base so called common set of cross weights. Using the optimal
solution of the presented model, we defined a hyperplane as the cross
efficient frontier. Then some theorems for this concept and the contin-
uation of discussion are presented. The cross efficient frontier was used
to introduce a new Malmquist index, the cross Malmquist index and de-
termine the productivity changes. Additionally, weight efficiency, as a
new efficiency, and the decomposition of cross efficiency have been intro-
duced. The proposed CM index decomposed into CEC and CTC, and a
further decomposition for CEC and CTC have been proposed. An em-
pirical example is used to analyze the proposed method and determine
the introduced indices.



24 G. TOHIDI, S. RAZAVYAN AND S. TOHIDNIA

T
a
b
le

6
:

W
eig

h
t

effi
cien

cy
ch

an
ge,

cross
effi

cien
cy

ch
an

ge
an

d
cross

tech
n

ical
ch

an
ge

of
D

M
U

s

D
M

U
F
irm

s
W

E
C
(1

,2
)

W
E
C
(2

,3
)

W
E
C
(3

,4
)

C
E
C
(1

,2
)

C
E
C
(2

,3
)

C
E
C
(3

,4
)

C
T
C
(1

,2
)

C
T
C
(2

,3
)

C
T
C
(3

,4
)

1
A
S
E

1
.0
5
1
6

1
.1
8
0
4

0
.8
1
8

0
.5
8
9
3

1
.3
4
9
1

1
.0
4
7
7

0
.7
0
7
6

0
.9
6
4

1
.1
3
1
6

2
S
IP

IN
1
.0
0
1

1
.0
9
0
6

0
.8
1
2
1

0
.6
2
8
9

1
.1
3
3
1

0
.9
9
1
9

0
.7
3
5
6

0
.9
7
3
1

1
.1
0
0
5

3
O
S
E

0
.8
4
5
7

1
.2
2
1
5

0
.7
2
3
7

0
.3
5
2
7

1
.1
3
3
6

0
.6
9
8
8

0
.7
6
0
8

0
.9
3

1
.3
0
0
7

4
C
h
ip

M
o
s

0
.9
7
1
3

1
.0
7
0
2

1
.0
2
1
5

0
.8
2
6
6

0
.8
4
3
7

1
.2
8
8

0
.6
9
2
6

1
.0
2
5
4

1
.1
5
4
5

5
K
Y
E
C

1
.1
0
5
6

1
.0
4
6

1
.0
3
7
3

0
.4
8
1
8

1
.3
3
1
8

1
.4
4
2
6

0
.8
1
6
9

1
.0
1
9

1
.1
3
1
1

6
S
h
a
rp

C
h
u
n
h

L
i

1
.1
8
3
4

0
.9
7
7
9

1
.0
3
1
7

0
.7
3
7
1

1
.5
6
8
3

0
.7
0
9
3

0
.7
5
2
9

0
.8
8
2
4

1
.2
5
6
3

7
S
h
a
rp

in
T
a
iw

a
n

1
.0
0
2
1

1
.0
0
2
7

1
.0
1
9
8

0
.9
4
7
4

0
.8
7
9
6

0
.9
7
7
3

0
.7
1
9
1

0
.9
6
5
5

1
.1
7
1
8

8
G
re

a
te

k
1
.0
6
2
6

0
.9
9
9
3

0
.9
6
9
2

1
.0
9
2
6

1
.3
9
2
6

0
.8
1
2
6

0
.7
3
6
7

0
.9
5
2

1
.2
4
9
3

9
L
in

g
se

n
1
.1
2
7
2

0
.9
5
6
6

0
.9
7
5
1

1
.1
5
2
3

0
.8
5
8
7

0
.8
8
6
7

0
.7
3
7

0
.9
3
7
7

1
.1
2
6
6

1
0

P
o
w
e
rT

e
c
h

1
.1
5
3
6

1
.1
1
3

0
.9
8
5
2

1
.1
5
3
6

0
.8
9
6
4

0
.7
7
2
4

0
.8
9
4
8

1
.0
9
5
1

1
.2
7
6
9

1
1

U
T
C

0
.7
7
5
8

1
.2
8
9

1
0
.5
4
9
7

1
.8
1
9
2

1
0
.6
9
7
6

1
.2
7
7
9

1
.0
8
3
8

1
2

K
in

g
P
a
k

1
.2
1
4
9

1
.1
4
5
3

0
.7
8
1
7

0
.7
6
0
7

0
.8
8
9

0
.7
7
1
8

0
.5
6
0
7

0
.9
7
7
3

1
.4
6
8
4

1
3

H
i-S

in
c
e
rity

1
.4
4
9
7

0
.8
4
2
2

0
.7
0
4
4

1
.6
0
0
3

0
.8
4
2
2

0
.7
0
4
4

0
.5
6
5

1
.1
5
0
2

1
.3
6
4
7

1
4

F
o
rm

o
sa

1
.0
0
2
2

1
.0
5
1
3

1
.0
1
0
4

0
.9
3
1
7

1
.4
0
1
5

0
.8
3
6
7

0
.7
1
2
2

0
.9
0
6
5

1
.1
4
3
2

1
5

S
ig
u
rd

1
.0
6
6
2

0
.9
5
5
6

0
.9
7
1
1

1
.2
6

0
.8
2
5

1
.0
9
0
2

0
.7
3
9
8

0
.9
1
3
2

1
.2
1
9
4

A
v
e
ra

g
e

1
.0
6
7
5

1
.0
6
2
8
7

0
.9
2
4
1

0
.8
7
0
9

1
.1
4
4
2

0
.9
3
5
4

0
.7
2
1
9

0
.9
9
7
9

1
.2
1
1
9



CROSS EFFICIENCY MALMQUIST INDEX TO ... 25

We saw in some situations the productivity change using the cross
and technical efficient frontiers are not the same. The productivity
change discussed using the cross efficiency for the case of the CRS. The
idea is applicable to the variable returns-to-scale case. In that case,
the various kinds of decomposition of the CM index can be obtained.
A global CEF, global CM index and its decompositions can be defined
using the cross efficiency for inputs and outputs on all of the periods of
time.
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