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1.

In a real normed linear space (X, | . ||), there are many defnitions of
orthogonality between two elements =,y € X. Sikorska [18], studied the
properties of some orthogonalities and compared them together. The
most usefull version of orthogonality in a normed space (X,| . ||),
commonly used by mathematicians, is the Birkhof-James orthogonal-
ity which says that z is orthogonal to y in X (and in this case we write
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not symmetric in general, but it happens when the norm comes from an
inner product.

The concept of linear 2—normed spaces has been initially investigated
by S. Gahler [7] and have been developed extensively by Y. J. Cho, C.
Diminnie, R. Freese, S. Gahler, A.White and many other mathemati-
cians, see, e.g. [4, 5, 6]. Let X be a linear space of dimension greater
than 1 and let |-, || be a real-valued function on X x X satisfying the
following conditions for all z,y,z € X and A € R

(1) ||z, y|| = 0 if and only if x and y are linearly dependent.
2) Nz, yll = lly, =[;
B3) Nz Myl = [Mlllz, yll = [[Az, yll;

@) llz+y, 2l < llz, 2l + lly, 2|

Then |-, || is called a 2—norm on X and the pair (X, |-,-||) is a 2—norm
space.
A sequence (z,) in 2—normed space (X, |-, -||) is said to be convergent to

x if the 2-norm ||z, — x,yl|,,cy tends to zero for all y € X. In this case,
we write lim,_,o , = = and we call z the limit of (z,). (z,) is called a
Cauchy sequence if there exist linearly independent elements y and z in
X such that (||zy,y|) and (||zn, z||) are real Cauchy sequences. If every
Cauchy sequence converges to some x € X, then (X, ||-,-]|) is called a
2—Banach space.

Various notions in normed spaces have been extended to 2—normed
spaces by many mathematicians. For more details, see, e.g. [5, 13, 14,
15, 16, 17]. khan and Siddiqui [10], defined another expression of the
Birkhoff-James orthogonality on an arbitrary 2—normed space (X, ||.,.||)
asserting that z is orthogonal to y (and denoted by x éf] y) if ||z +

Ay, z|| = ||z, z|| for every z # 0 and A € R. However, Gunawan, Mashadi,
Gemawati, Nursupiamin and Siwaningrum [8] remarked that there are
no such elements satisfying orthogonality in this sense and restricted the
relation ||z + Ay, z|| = ||z, z|| to a subspace V of codimention 1. Actually,
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x é} y if and only if there exists a subspace V of X with codim(V) =1
such that ||z + Ay, z|| = ||z, z|| for every z € V and A € R.

In 1984, A. White and Y. J. Cho gave a chractrization for continuity
of linear self mapping in 2—normed spaces [21]. In 1992, Koldabsky [12]
proved that a linear self mapping 7" on a real normed space X preserves
orthogonality if and only if 7" is an isometry multiplied by a positive
constant and then in 2006 Blanco and Turnsek [3] extend this result to
the case of linear operator between two different coplex normed linear
spaces. In this paper, we prove the Koldabsky theorem for 2—normed
spaces.

2. Main Results

Definition 2.1. Let X and Y be two linear 2—normed spaces. Then the
map T : X — Y is said to be a 2— isometry if

|21, zal| = |T'(21), T (z2)||
for all x1,x29 € X.

Throughout this paper, X denotes a 2—Banach space and X* is its dual.
Let zp and zp € X and z¢ # 0, zg # 0. We define S*°(x() as follows

5% (xg) = {z* € X™; sup ¥ (x) =1, x*(xo) = ||xo, 20 }-
z€X | ||z,z0]|=1

Definition 2.2. [22] Let f : X — R be a function, xo € X, x§ € X¥,
then we say that xq is a subgradient of f at x if
fy) = f(z) = x5(y — zo) yevy.

The subdifferential of f at xq is the set of all subgradients of f at x¢ and
is denoted by Of(xo).

Theorem 2.3. [2, Theorem 2.39] Let f : X — R be a proper convex
function. If f is finite and continuous at xq, then

lim J(xo 4+ Ay) — f(xo)
A—0t A

= sup{z”(y)[z" € 9f (xo)}.
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By [22, Theorem 2.4.14, part (iii)] we have:

0f (xo) = {" € 0f(0)[z"(x0) = f(x0)}- (1)

Let f: X — R, f(x) := ||z, 20]| and 29 € X. Then by Definition 2.2 and
(1) we have

Of (o) = {a" € X7 2%(x) < ||z, 20l , % (20) = [0, 20[/}

={z" e X% sup ¥ (x) =1, 2*(xo) = ||z, 20||}
z€X | ||lz,20||=1

== Szo (:IT())
Thus, by Theorem 2.3, we have

A _
N R R e

* 2

Dot 2 ) () (2)
e+ Ay, 2] =z, 2| .

1 = f . 3

Air(r)lf A x*ESZ(x)x (z) 3)

for every z,y € X, x # 0.

Let D*(x,y) be the set of all real numbers A at which the function
?*(\) = ||z + Ay, z|| is differentiable.

Lemma 2.4. The function ¢*(\) is differentiable if and only if the value
of x*(y) is independent of choice of x* € S*(x + A\y).

Proof. ¢* is differentiable if and only if

Nzt Ayt hy, 2| = e+ Ayzl L e+ Ay + by 2l = e+ Ay 2|
lim = lim

h—0t h h—0— h

if and only if

sup  2*(y) = inf  a%(y)

I*GSZ(CE+)\y) Z*GSZ(£U+)\y)

Now, suppose that there exists z and z5 € X* such that zj(y) #
x5(y). Let 27(y) < z3(y), we have

inf  2%(y) <zi(y) <73(y) < sup  z7(y),
T*€SZ(z+Ay) z*€S%(z+Ay)
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therefore

sup  x7(y) #  inf - a7(y)

%*GSZ(Z'-‘F)\ZJ) $*€SZ(£E+>\y)

this is a contradiction. Hence
x1(y) = x5(y) for all a7,25 € S*(x + \y). O

Lemma 2.5. [19] Every convex function f : R — R is differentiable
almost everywhere on R respect to Lebesgue measure.

Let A\ and Ay € R. Then for every ¢ € [0, 1], we have

¢* (A + (1 =) A2) = [z 4 (A + (1 — ) A2)y, 2|
= |tz + tAry, zl| + [[(L = t)z + (1 — D) Ay, 2||
< e+ Ay, 2l + (1 = 1) [lz + Ay, 2|
<17 (A1) + (1 = £)¢*(A2).
So by Lemma 2.5, ¢® is differentiable almost everywhere on R with
respect to Lebesgue measure.
Lemma 2.6. Let A € D*(x,y) and a,b € R. Then
(1) The value of z*(ax + by) is independent of the choice of x* €
S%(x 4+ A\y).
(2) z+ Ay ]i] az + by if and only if S*(ax + by) = 0 for every x* €
S*(x + Ay).

Proof.

(1) . Let 2* € S*(x+ \y). By Lemma 2.4, *(y) is independent of the
choice x*. Furthermore,

at(x) = (x4 Ay) — Az”(y) = |lz = Ay, 2| = Az™(y)  (4)

for every z* € S*(x 4+ A\y). By the independence of x*(y) and
equation 4, the result holds.
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(2) . Ifz+Ay ]%] ax+by then there exists subspace V with codim(V') =
1 such that

|z + Ay + tlax + by), z|| = ||z + Ny, z|| forallte R and z € V.

Therefore,

R (e I R I
t_)0+ t = Y

i 220+ taw 4 by) 2l 2+ w2l

t—0— t
Hence
inf x*(ax +by) <0< sup  z*(az +by). (5)
z*€S5%(z+Ay) T*€S% (z4+)y)

The fact that the value of 2*(ax 4 by) is independent of the choice
of *, makes the inequlity 5 into equlity. Therefore

¥ (ax +by) =0  forall 2" € S*(x + \y).
Conversely, if *(az + by) =0 for any z* € S*(x + Ay) then

¥ (x+Ay+y(ax+by)) = " (z+Ay) = ||lz+Ay, z||  for every v €R.

Since  x*(z) =1, we have
z€X , ||lz.yll=1
A b A
P N S0 VRS Y B VI
wex w7 2+ Ay +y(az +by), 2" [lz + Ay +(az + by), 2|

which means

:v—l—)\yét]ax+by. O

Remark 2.7. Let x + ay ét] y. There exists a subspace V' of X with
codim(V') =1 such that

(x4 ay) + Ay, 2| = ||lx + ay, z||  for every z€ V, A € R.
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We choose an element z € V and fix it. we have;

(x+ay)+ Ay, || = ||x+ay, z|| for every X € R if and only if ||z + ay, z||
is the smallest value of ||z + Ay, z||. Since ||z + Ay, z|| is continuous at \,
it most take its minimum. Suppose x+my Jf] x and x+ My J_ T. since

the function ¢ is convez, it follows that |z + my, z|| = ||z + My,z|| =
|+ ay, z|| if a is between m and M and that x + ay é_J y. So, the set of

numbers a for which ||(z + ay) + Ay, z|| = ||x + ay, z|| is closed interval
[m, M] and ||z +ay, z|| = |lz+my, z|| = |z 4+ My, z|| for any a € [m, M].

Lemma 2.8. For each a € D*(x,y) , we have either ||(x+ay)+ Ay, z|| >
llx + ay, z|| for any A € R or there exists a unique number k, € R such
that ||(x + ay) + ANz — kqy), 2| = ||z + ay, z|| for every A € R.

Proof. Let a € D*(z,y) and z* € S*(x + ay). Using Lemma 2.4 and
2.6 the value of the z*(z) and 2*(y) are not depend to the choice of
x* € 8*(x + ay). If z*(y) = 0, then by Lemma ??, ||(z + ay) + Ay, z|| >
I+ ay,2I. T () # 0, then |[(z + ay) + Az~ by), =] > |z +ay, 2|
if and only if z*(x — by) = 0. Thus, k, = z (:c)
z*(y)

Lemma 2.8, define the function f on R\ [m, M] by f(a) = k4. It appeares
that the 2—norm can be expressed in terms of the function f.

Lemma 2.9. Consider m and M as we mentioned in Remark 2.7. Let
A€ D*(x,y). If X € (m, M) then

A
lz + Ay, 2] = |z + My, 2] exp( /M (t+ £(t) ) (6)
o+ Ay, 2l) = |1z + my, 21| exp( A (t+ £(t) " dt) (7)
Proof. Let A € D*(z,y), A > M. Fix 2* € S*(x+ \y). By Lemma 2.8,
2 (2) = F(N2*(y). (8)

From Equations (2),(3) and Lemma 2.4, we have

B d(||lxz + My, z
() = Wt )
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So

* * * d x—f—)\y’z
¥ (x) = 2" (x + Ay) — Az*(y) = ||z + Ay, 2| _)\(”d)\”)‘ (9)

|l + Ay, z[[)

d
Hence, f(N)z*(y) = ||z + Ay, z|| — A ( N which implies that

d(llz + Ay, 2[)) _ d(llz + Ay, 2[])
f()‘)T - HI’ + )‘yazH - )‘T

d(l[x + Ay, z]))

Theref
erefore, N

(f(N) 4+ A) =]z + Ay, z|| and so

d([lz + Ay, z[])
d\ _ .
lz+ Ay, 2l F)+A
Since A\ € D*(z,y)N[M, co] and Lebesgue measure of the set R\ D*(x, y)
is zero, we get

d(|lx +wy, z))
A d— A 1
— % dw= / I — (10)
Moz +wy, v flw) +w
The function ¢*(A) = ||z + Ay, z|| is absolutely continuous and so the
integral in the left-hand side of Equation (10) is equal to

[z + Ay, 2]

l
"o+ 2y, 2]

).
This complete the proof of the Equation (6). A similar argument shows
that Equation (7) is also hold. [

Theorem 2.10. Let X be a linear 2—normed space and T : X — X
be a linear 2— isometry then T is one-to-one.

Proof. For every a # 0, since there exists a point b € X with ||T'(a), T'(b)|| =
la,b|| # 0, T'(a) # 0 and hence T is one-to-one. [J

Let X and Y be linear 2—normed spamathbbces. By definition of 2—
isometry and BJ—orthogonality we get that, If T : X longrightarrowY
is a linear 2— isometry then T preserve B.JJ—orthogonality.
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Now we prove the Koldobsky Theorem in 2—normed space.

Theorem 2.11. Let X be a real 2— Banach space and T : X — X be a
linear operator that preserve BJ—orthogonality. Then there exists k € R
such that T'= kU and U is a 2—isometry.

Proof. Let T be a linear operator preiseving BJ—orthogonality and
T # 0. Fix z,z € X such that Tz # 0. Let y be an arbitrary element of
X such that © # Ay for every A € R. Denote by I; and I, the intervals
[m, M| corresponding to the pairs of vectors (z,y) and (T'z,Ty). Since
T preserves BJ—orthogonality we have I; C Is. Now we prove that
L =IL.Let I =L\ #0and let A € T and A\ € D*(x,y)ND*(Tx, Ty).

Since A € Iy so Tx + ATy BLJ Ty. By Lemma 2.8 there exists k) € R

such that
+ Ay L —k
€T y By T Y,

SO
A _k: .
Tz + ijJ—ij 2Ty

By Lemma 2.6 for any z* € S*Y(Tx 4+ A\Ty) we have
2 (Ty) =0 , o (Tx—Fk\Ty) =0.
Hence
IT(x+ Ay), T(A\y)|| = 2™ (Tx + \XTy) = 2™ (Tx — kx + kx + \Ty)
= 2" (Tx — kxTy) + kxz*(Ty) + A" (Ty) =0
and so there exists o € R such that
T(z+ Ay) = aT(Ay)

or equivalently
T(x+ Ay — aly) = 0.

Concequently by Theorem 2.10 we get

r=AN1-a)y
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which is a contradiction. Therefore I1 = Is. Hence m, M and the function
ko are the same for both pairs (z,y) and (Tz,Ty). Therefore ||T'(z +
Ay), Tz|| and ||z + Ay, z|| are constant for every A\ € [m, M]. Since we
have

A
iz + Ay, 2l| = o + My, 2llep( /M(t T F() )

and
A
Tz + \Ty, Tz|| = || Tz + MTy,TzHexp(/ (t+ f(t)"at).
M

cosequently, there exists k1, ko € R such that
|z + Ay, z|| = k1

Tz + ATy, Tz|| = ko

and hence &
2+ Ay, 2| = Tz + ATy, Tz||. O
2
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