Journal of Mathematical Extension

Vol. 15, No. 1, (2021), 29-40

ISSN: 1735-8299

URL: https://doi.org/10.30495/JME.2021.1269

Original Research Paper

On Linear Operators that Preserve BJ-Orthogonality in 2-Normed Spaces

M. Iranmanesh

Shahroud University of Technology

A. Ganjbakhsh Sanatee*

Quchan University of Technology

Abstract. Let X be a real 2—Banach space. We follow Gunawan, Mashadi, Gemawati, Nursupiamin and Siwaningrum in saying that x is orthogonal to y if there exists a subspace V of X with codim(V)=1 such that $\|x+\lambda y,z\|\geqslant \|x,z\|$ for every $z\in V$ and $\lambda\in\mathbb{R}$. In this paper, we prove that every linear mapping $T:X\longrightarrow X$ which preserve orthogonality is a 2-isometry multiplied by a constant.

AMS Subject Classification: 46B20; 46B04; 46C50 Keywords and Phrases: 2-Normed space, Birkhoff-James orthogonality, 2-Banach space, 2-isometry

1. Introduction

In a real normed linear space $(X, \| . \|)$, there are many definitions of orthogonality between two elements $x, y \in X$. Sikorska [18], studied the properties of some orthogonalities and compared them together. The most useful version of orthogonality in a normed space $(X, \| . \|)$, commonly used by mathematicians, is the Birkhof-James orthogonality which says that x is orthogonal to y in X (and in this case we write

Received: May 2019; Accepted: December 2019

^{*}Corresponding author

not symmetric in general, but it happens when the norm comes from an inner product.

The concept of linear 2—normed spaces has been initially investigated by S. Gahler [7] and have been developed extensively by Y. J. Cho, C. Diminnie, R. Freese, S. Gahler, A.White and many other mathematicians, see, e.g. [4, 5, 6]. Let X be a linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ satisfying the following conditions for all $x, y, z \in X$ and $\lambda \in \mathbb{R}$

- (1) ||x,y|| = 0 if and only if x and y are linearly dependent.
- (2) ||x,y|| = ||y,x||;
- (3) $||x, \lambda y|| = |\lambda| ||x, y|| = ||\lambda x, y||$;
- $(4) ||x+y,z|| \le ||x,z|| + ||y,z||.$

Then $\|\cdot,\cdot\|$ is called a 2-norm on X and the pair $(X,\|\cdot,\cdot\|)$ is a 2-norm space.

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to x if the 2-norm $\|x_n - x, y\|_{n \in \mathbb{N}}$ tends to zero for all $y \in X$. In this case, we write $\lim_{n \to \infty} x_n = x$ and we call x the limit of (x_n) . (x_n) is called a Cauchy sequence if there exist linearly independent elements y and z in X such that $(\|x_n, y\|)$ and $(\|x_n, z\|)$ are real Cauchy sequences. If every Cauchy sequence converges to some $x \in X$, then $(X, \|\cdot, \cdot\|)$ is called a 2-Banach space.

Various notions in normed spaces have been extended to 2—normed spaces by many mathematicians. For more details, see, e.g. [5, 13, 14, 15, 16, 17]. khan and Siddiqui [10], defined another expression of the Birkhoff-James orthogonality on an arbitrary 2—normed space $(X, \|., .\|)$ asserting that x is orthogonal to y (and denoted by $x \perp_{BJ} y$) if $\|x + \lambda y, z\| \geqslant \|x, z\|$ for every $z \neq 0$ and $\lambda \in \mathbb{R}$. However, Gunawan, Mashadi, Gemawati, Nursupiamin and Siwaningrum [8] remarked that there are no such elements satisfying orthogonality in this sense and restricted the relation $\|x + \lambda y, z\| \geqslant \|x, z\|$ to a subspace V of codimention 1. Actually,

 $x \stackrel{\perp}{=} y$ if and only if there exists a subspace V of X with codim(V) = 1 such that $||x + \lambda y, z|| \ge ||x, z||$ for every $z \in V$ and $\lambda \in \mathbb{R}$.

In 1984, A. White and Y. J. Cho gave a chractrization for continuity of linear self mapping in 2-normed spaces [21]. In 1992, Koldabsky [12] proved that a linear self mapping T on a real normed space X preserves orthogonality if and only if T is an isometry multiplied by a positive constant and then in 2006 Blanco and Turnsek [3] extend this result to the case of linear operator between two different coplex normed linear spaces. In this paper, we prove the Koldabsky theorem for 2-normed spaces.

2. Main Results

Definition 2.1. Let X and Y be two linear 2-normed spaces. Then the map $T: X \longrightarrow Y$ is said to be a 2- isometry if

$$||x_1, x_2|| = ||T(x_1), T(x_2)||$$

for all $x_1, x_2 \in X$.

Throughout this paper, X denotes a 2-Banach space and X^* is its dual. Let x_0 and $z_0 \in X$ and $x_0 \neq 0$, $z_0 \neq 0$. We define $S^{z_0}(x_0)$ as follows

$$S^{z_0}(x_0) = \{x^* \in X^*; \sup_{x \in X, \|x, z_0\| = 1} x^*(x) = 1, x^*(x_0) = \|x_0, z_0\|\}.$$

Definition 2.2. [22] Let $f: X \to \mathbb{R}$ be a function, $x_0 \in X$, $x_0^* \in X^*$, then we say that x_0 is a subgradient of f at x if

$$f(y) - f(x) \ge x_0^*(y - x_0)$$
 $y \in Y$.

The subdifferential of f at x_0 is the set of all subgradients of f at x_0 and is denoted by $\partial f(x_0)$.

Theorem 2.3. [2, Theorem 2.39] Let $f: X \to \mathbb{R}$ be a proper convex function. If f is finite and continuous at x_0 , then

$$\lim_{\lambda \to 0^+} \frac{f(x_0 + \lambda y) - f(x_0)}{\lambda} = \sup\{x^*(y) | x^* \in \partial f(x_0)\}.$$

By [22, Theorem 2.4.14, part (iii)] we have:

$$\partial f(x_0) = \{ x^* \in \partial f(0) | x^*(x_0) = f(x_0) \}. \tag{1}$$

Let $f: X \to \mathbb{R}$, $f(x) := ||x, z_0||$ and $z_0 \in X$. Then by Definition 2.2 and (1) we have

$$\partial f(x_0) = \{x^* \in X^*; x^*(x) \leq ||x, z_0||, \ x^*(x_0) = ||x_0, z_0||\}$$

$$= \{x^* \in X^*; \sup_{x \in X, ||x, z_0|| = 1} x^*(x) = 1, \ x^*(x_0) = ||x_0, z_0||\}$$

$$= S^{z_0}(x_0).$$

Thus, by Theorem 2.3, we have

$$\lim_{\lambda \to 0^+} \frac{\|x + \lambda y, z\| - \|x, z\|}{\lambda} = \sup_{x^* \in S^z(x)} x^*(x)$$
 (2)

$$\lim_{\lambda \to 0^{-}} \frac{\|x + \lambda y, z\| - \|x, z\|}{\lambda} = \inf_{x^* \in S^z(x)} x^*(x). \tag{3}$$

for every $x, y \in X$, $x \neq 0$.

Let $D^z(x,y)$ be the set of all real numbers λ at which the function $\phi^z(\lambda) = ||x + \lambda y, z||$ is differentiable.

Lemma 2.4. The function $\phi^z(\lambda)$ is differentiable if and only if the value of $x^*(y)$ is independent of choice of $x^* \in S^z(x + \lambda y)$.

Proof. ϕ^z is differentiable if and only if

$$\lim_{h \to 0^+} \frac{\|x + \lambda y + hy, z\| - \|x + \lambda y, z\|}{h} = \lim_{h \to 0^-} \frac{\|x + \lambda y + hy, z\| - \|x + \lambda y, z\|}{h}$$

if and only if

$$\sup_{x^* \in S^z(x+\lambda y)} x^*(y) = \inf_{x^* \in S^z(x+\lambda y)} x^*(y).$$

Now, suppose that there exists x_1^* and $x_2^* \in X^*$ such that $x_1^*(y) \neq x_2^*(y)$. Let $x_1^*(y) < x_2^*(y)$, we have

$$\inf_{x^* \in S^z(x+\lambda y)} x^*(y) \leqslant x_1^*(y) < x_2^*(y) \leqslant \sup_{x^* \in S^z(x+\lambda y)} x^*(y),$$

therefore

$$\sup_{x^* \in S^z(x+\lambda y)} x^*(y) \neq \inf_{x^* \in S^z(x+\lambda y)} x^*(y),$$

this is a contradiction. Hence

$$x_1^*(y) = x_2^*(y)$$
 for all $x_1^*, x_2^* \in S^z(x + \lambda y)$. \square

Lemma 2.5. [19] Every convex function $f : \mathbb{R} \to \mathbb{R}$ is differentiable almost everywhere on \mathbb{R} respect to Lebesgue measure.

Let λ_1 and $\lambda_2 \in \mathbb{R}$. Then for every $t \in [0,1]$, we have

$$\phi^{z}(t\lambda_{1} + (1-t)\lambda_{2}) = \|x + (t\lambda_{1} + (1-t)\lambda_{2})y, z\|$$

$$= \|tx + t\lambda_{1}y, z\| + \|(1-t)x + (1-t)\lambda_{1}y, z\|$$

$$\leq t\|x + \lambda_{1}y, z\| + (1-t)\|x + \lambda_{1}y, z\|$$

$$\leq t\phi^{z}(\lambda_{1}) + (1-t)\phi^{z}(\lambda_{2}).$$

So by Lemma 2.5, ϕ^z is differentiable almost everywhere on \mathbb{R} with respect to Lebesgue measure.

Lemma 2.6. Let $\lambda \in D^z(x,y)$ and $a,b \in \mathbb{R}$. Then

- (1) The value of $x^*(ax + by)$ is independent of the choice of $x^* \in S^z(x + \lambda y)$.
- (2) $x + \lambda y \perp_{BJ} ax + by$ if and only if $S^z(ax + by) = 0$ for every $x^* \in S^z(x + \lambda y)$.

Proof.

(1) . Let $x^* \in S^z(x + \lambda y)$. By Lemma 2.4, $x^*(y)$ is independent of the choice x^* . Furthermore,

$$x^*(x) = x^*(x + \lambda y) - \lambda x^*(y) = ||x - \lambda y, z|| - \lambda x^*(y)$$
 (4)

for every $x^* \in S^z(x + \lambda y)$. By the independence of $x^*(y)$ and equation 4, the result holds.

(2) . If $x+\lambda y \perp_{BJ} ax+by$ then there exists subspace V with codim(V)=1 such that

$$||x + \lambda y + t(ax + by), z|| \ge ||x + \lambda y, z||$$
 for all $t \in \mathbb{R}$ and $z \in V$.

Therefore,

$$\lim_{t\to 0^+}\frac{\|x+\lambda y+t(ax+by),z\|-\|x+\lambda y,z\|}{t}\geqslant 0;$$

$$\lim_{t \to 0^{-}} \frac{\|x + \lambda y + t(ax + by), z\| - \|x + \lambda y, z\|}{t} \le 0.$$

Hence

$$\inf_{x^* \in S^z(x+\lambda y)} x^*(ax+by) \leqslant 0 \leqslant \sup_{x^* \in S^z(x+\lambda y)} x^*(ax+by).$$
 (5)

The fact that the value of $x^*(ax+by)$ is independent of the choice of x^* , makes the inequality 5 into equality. Therefore

$$x^*(ax + by) = 0$$
 for all $x^* \in S^z(x + \lambda y)$.

Conversely, if $x^*(ax + by) = 0$ for any $x^* \in S^z(x + \lambda y)$ then

$$x^*(x+\lambda y+\gamma(ax+by))=x^*(x+\lambda y)=\|x+\lambda y,z\|\quad \ for\ every\ \ \gamma\in\mathbb{R}.$$

Since $x^*(x) = 1$, we have $x \in X$, ||x,y|| = 1

$$1 = \sup_{w \in \mathbf{X}} x^* \left(\frac{w}{\|w, z\|} \right) \geqslant x^* \left(\frac{x + \lambda y + \gamma(ax + by)}{\|x + \lambda y + \gamma(ax + by), z\|} \right) = \frac{\|x + \lambda y, z\|}{\|x + \lambda y + \gamma(ax + by), z\|}$$

which means

$$x + \lambda y \perp_{BJ} ax + by$$
. \square

Remark 2.7. Let $x + ay \perp_{BJ} y$. There exists a subspace V of X with codim(V) = 1 such that

$$\|(x+ay)+\lambda y,z\|\geqslant \|x+ay,z\|$$
 for every $z\in V,\ \lambda\in\mathbb{R}$.

We choose an element $z \in V$ and fix it. we have;

 $\|(x+ay)+\lambda y,z\|\geqslant \|x+ay,z\| \text{ for every }\lambda\in\mathbb{R} \text{ if and only if } \|x+ay,z\| \text{ is the smallest value of } \|x+\lambda y,z\|. \text{ Since } \|x+\lambda y,z\| \text{ is continuous at }\lambda, \text{ it most take its minimum. Suppose } x+my \underset{BJ}{\perp} x \text{ and } x+My \underset{BJ}{\perp} x. \text{ since } \text{ the function }\phi \text{ is convex, it follows that } \|x+my,z\|=\|x+My,z\|=\|x+ay,z\| \text{ if a is between } m \text{ and } M \text{ and that } x+ay \underset{BJ}{\perp} y. \text{ So, the set of } numbers \text{ a for which } \|(x+ay)+\lambda y,z\|\geqslant \|x+ay,z\| \text{ is closed interval } [m,M] \text{ and } \|x+ay,z\|=\|x+my,z\|=\|x+My,z\| \text{ for any } a\in[m,M].$

Lemma 2.8. For each $a \in D^z(x, y)$, we have either $||(x+ay)+\lambda y, z|| \ge ||x+ay, z||$ for any $\lambda \in \mathbb{R}$ or there exists a unique number $k_a \in \mathbb{R}$ such that $||(x+ay)+\lambda(x-k_ay), z|| \ge ||x+ay, z||$ for every $\lambda \in \mathbb{R}$.

Proof. Let $a \in D^z(x,y)$ and $x^* \in S^z(x+ay)$. Using Lemma 2.4 and 2.6 the value of the $x^*(x)$ and $x^*(y)$ are not depend to the choice of $x^* \in S^z(x+ay)$. If $x^*(y) = 0$, then by Lemma ??, $\|(x+ay) + \lambda y, z\| \ge \|x+ay,z\|$. If $x^*(y) \ne 0$, then $\|(x+ay) + \lambda(x-by), z\| \ge \|x+ay,z\|$ if and only if $x^*(x-by) = 0$. Thus, $k_a = \frac{x^*(x)}{x^*(y)}$. \square

Lemma 2.8, define the function f on $\mathbb{R}\setminus[m,M]$ by $f(a)=k_a$. It appears that the 2-norm can be expressed in terms of the function f.

Lemma 2.9. Consider m and M as we mentioned in Remark 2.7. Let $\lambda \in D^z(x,y)$. If $\lambda \in (m,M)$ then

$$||x + \lambda y, z|| = ||x + My, z|| \exp(\int_{M}^{\lambda} (t + f(t))^{-1} dt)$$
 (6)

$$||x + \lambda y, z|| = ||x + my, z|| \exp(\int_{\lambda}^{m} (t + f(t))^{-1} dt)$$
 (7)

Proof. Let $\lambda \in D^z(x,y)$, $\lambda > M$. Fix $x^* \in S^z(x+\lambda y)$. By Lemma 2.8,

$$x^*(x) = f(\lambda)x^*(y). \tag{8}$$

From Equations (2),(3) and Lemma 2.4, we have

$$x^*(x) = \frac{d(\|x + \lambda y, z\|)}{d\lambda}.$$

So

$$x^{*}(x) = x^{*}(x + \lambda y) - \lambda x^{*}(y) = ||x + \lambda y, z|| - \lambda \frac{d(||x + \lambda y, z||)}{d\lambda}.$$
 (9)

Hence, $f(\lambda)x^*(y) = ||x + \lambda y, z|| - \lambda \frac{d(||x + \lambda y, z||)}{d\lambda}$ which implies that

$$f(\lambda)\frac{d(\|x+\lambda y,z\|)}{d\lambda} = \|x+\lambda y,z\| - \lambda \frac{d(\|x+\lambda y,z\|)}{d\lambda}.$$

Therefore, $\frac{d(\|x+\lambda y,z\|)}{d\lambda}(f(\lambda)+\lambda) = \|x+\lambda y,z\|$ and so

$$\frac{d(\|x + \lambda y, z\|)}{\frac{d\lambda}{\|x + \lambda y, z\|}} = \frac{1}{f(\lambda) + \lambda}.$$

Since $\lambda \in D^z(x,y) \cap [M,\infty]$ and Lebesgue measure of the set $\mathbb{R} \setminus D^z(x,y)$ is zero, we get

$$\int_{M}^{\lambda} \frac{d(\|x + \omega y, z\|)}{\|x + \omega y, z\|} d\omega = \int_{M}^{\lambda} \frac{1}{f(\omega) + \omega}.$$
 (10)

The function $\phi^z(\lambda) = ||x + \lambda y, z||$ is absolutely continuous and so the integral in the left-hand side of Equation (10) is equal to

$$ln(\frac{\|x+\lambda y,z\|}{\|x+My,z\|}).$$

This complete the proof of the Equation (6). A similar argument shows that Equation (7) is also hold. \Box

Theorem 2.10. Let X be a linear 2-normed space and $T: X \longrightarrow X$ be a linear 2- isometry then T is one-to-one.

Proof. For every $a \neq 0$, since there exists a point $b \in X$ with $||T(a), T(b)|| = ||a, b|| \neq 0$, $T(a) \neq 0$ and hence T is one-to-one. \square

Let X and Y be linear 2—normed spamathbbces. By definition of 2—isometry and BJ—orthogonality we get that, If T: X longrightarrow Y is a linear 2—isometry then T preserve BJ—orthogonality.

Now we prove the Koldobsky Theorem in 2-normed space.

Theorem 2.11. Let X be a real 2-Banach space and $T: X \longrightarrow X$ be a linear operator that preserve BJ-orthogonality. Then there exists $k \in \mathbb{R}$ such that T = kU and U is a 2-isometry.

Proof. Let T be a linear operator preiseving BJ-orthogonality and $T \neq 0$. Fix $x, z \in X$ such that $Tx \neq 0$. Let y be an arbitrary element of X such that $x \neq \lambda y$ for every $\lambda \in \mathbb{R}$. Denote by I_1 and I_2 the intervals [m, M] corresponding to the pairs of vectors (x, y) and (Tx, Ty). Since T preserves BJ-orthogonality we have $I_1 \subseteq I_2$. Now we prove that $I_1 = I_2$. Let $I = I_2 \setminus I_1 \neq \emptyset$ and let $\lambda \in I$ and $\lambda \in D^z(x, y) \cap D^z(Tx, Ty)$.

Since $\lambda \in I_2$ so $Tx + \lambda Ty \perp_{BJ} Ty$. By Lemma 2.8 there exists $k_{\lambda} \in \mathbb{R}$ such that

$$x + \lambda y \perp_{BJ} x - k_{\lambda} y,$$

SO

$$Tx + \lambda Ty \perp_{BJ} Tx - k_{\lambda} Ty.$$

By Lemma 2.6 for any $x^* \in S^{\lambda Ty}(Tx + \lambda Ty)$ we have

$$x^*(Ty) = 0$$
 , $x^*(Tx - k_{\lambda}Ty) = 0$.

Hence

$$||T(x+\lambda y), T(\lambda y)|| = x^*(Tx + \lambda Ty) = x^*(Tx - k_\lambda + k_\lambda + \lambda Ty)$$
$$= x^*(Tx - k_\lambda Ty) + k_\lambda x^*(Ty) + \lambda x^*(Ty) = 0$$

and so there exists $\alpha \in \mathbb{R}$ such that

$$T(x + \lambda y) = \alpha T(\lambda y)$$

or equivalently

$$T(x + \lambda y - \alpha \lambda y) = 0.$$

Concequently by Theorem 2.10 we get

$$x = \lambda(1 - \alpha)y$$

which is a contradiction. Therefore $I_1 = I_2$. Hence m, M and the function k_{α} are the same for both pairs (x, y) and (Tx, Ty). Therefore $||T(x + \lambda y), Tz||$ and $||x + \lambda y, z||$ are constant for every $\lambda \in [m, M]$. Since we have

$$||x + \lambda y, z|| = ||x + My, z|| exp(\int_{M}^{\lambda} (t + f(t))^{-1} dt)$$

and

$$||Tx + \lambda Ty, Tz|| = ||Tx + MTy, Tz|| exp(\int_{M}^{\lambda} (t + f(t))^{-1} dt).$$

cosequently, there exists $k_1, k_2 \in \mathbb{R}$ such that

$$||x + \lambda y, z|| = k_1$$
$$||Tx + \lambda Ty, Tz|| = k_2$$

and hence

$$||x + \lambda y, z|| = \frac{k_1}{k_2} ||Tx + \lambda Ty, Tz||. \quad \Box$$

References

- [1] J. Alonso, Uniqueness properties of isosceles orthogonality in normed linear spaces, Ann. Sci. Math. Qu ebec, 18 (1)(1994), 25–38.
- [2] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, (2012).
- [3] A. Blanco and A. Turnsek, ON maps that preserve orthogonality in normed spaces, *Proc. Roy. Soc. Edinburgh Sect. A.*, 136 (2006), 709-716.
- [4] Y. J. Cho, C. R. Diminnie, S. Gahler, R. W. Freese, and E. Z. Andalafte, Isosceles orthogonal triple in linear 2- normed spaces, *Math. Nachr.*, 157 (1992), 225-234.
- [5] R. Diminnie and A. White, A characterization of strictly convex 2—normed spaces, J. KoreanMath. Soc., (1974), 53-54.
- [6] R. W. Freese and Y. J. Cho, Geometry of linear 2-normed Space, Nova Science Publishers, Hauppage, NY, USA. 2001.

- [7] S. Gahler, Linear 2-normierte, Raume. Math. Nachr., 28 (1964), 1-43.
- [8] H. Gunawan Mshadi, S. G. Nursuoiamin, and I. Sihwaningrum, orthogonality in 2—normed space revisited, *Univ. Beograd. Publ. Elektrotehn. Fak.*, 17 (2006), 76-83.
- [9] R. C. James, Orthogonality and linear functional in normed linear spaces, *Trans. Amer. Math. soc*, 61 (1944), 263-292.
- [10] A. Khan and A. Siddiqui, b-orthogonality in 2-normed space, Bull. Calcutta Math. Soc., 74 (1982), 216-222.
- [11] D. Koehler and P.Rosenthal, On isometries of normed linear spaces, *Studia mathematica*, 36 (1970), 213-216.
- [12] A. Koldobsky, Operators preserving orthogonality are isometry, *Proc. Roy. Soc. Edinburgh. Sect. A.*, 123 (1993), 835-837.
- [13] Z. Lewandowska, Linear operators on generalized 2—normed Spaces, Bull. Math. Soc. Sce. Math. Roumanie, 42 (1992), 353-368.
- [14] Z. Lewandowska, On 2-normed Sets, Glasnik Mat., 35 (2003), 99-110.
- [15] Z. Lewandowska, Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space, *Glas. Mat.*, 3 (58) (2003), 329-340.
- [16] Z. Lewandowska, M. S. Moslehian, and A. S. Moghaddam, Hahn-Banach theorem in generalized 2—normed Space, Communication in Mathematical Analysis, 1 (2006), 109–113.
- [17] H. Mazaheri and R. Kazemi, Some results on 2— inner product spaces, Novi Sad J. Math., 37 (2007), 35-40.
- [18] J. Sikorska, Orthogonalities and functional equations, Aequationes Math., 89 (2015), 215-277.
- [19] F. Riesz and B. SZ-Nagy, Leconc d'analyse functionelle, Akademiai Kiado, Budapest, (1972).
- [20] A. White, 2—Banach spaces, Math Nachr., 42 (1969), 43-60.
- [21] A. White and Y. J. Cho, Linear mapping on linear 2-normed spaces, J. KoreanMath. Soc., (1984), 1-6.

[22] C. Zalinescu, Convex Analoysis in General Vector Spaces, World Scientific, (2002).

Mahdi Iranmanesh

Associate Professor of Mathematics Department of Mathematics Shahrood University of Technology Shahrood, Iran E-mail: m.iranmanesh2012@gmail.com

Ali Ganjbakhsh Sanatee

Assistant Professor of Mathematics Department of Mathematics Quchan University of Technology Quchan, Iran

 $\hbox{E-mail: alisanatee} 62@gmail.com, a.ganjbakhsh@qiet.ac.ir$