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1 Introduction
Consider the following p-Hamiltonian system

—(Ju/[P7?) = q()u [P + A(t) [ufP~Pu =
AVF(t,u)  ae. tel0,T], (1)
u(0) — u(T) = ' (0) — QM (T) = 0,

where T > 0, p > 1, ¢ € L'(0,T;R), Q(t) = [, q(s)ds, A : [0,T] —
RN*N is a continuous map from the interval [0, T] to the set of N-order
symmetric matrices, A > 0 and F : [0,7] x RY — R is measurable in
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t for all z € RY and continuously differentiable in x for almost every
t € [0,T], and there exist a € C(RT,R*), b € L}(0,T;R") such that

[E(t,2)| < a(lz)b(t), [VE(E,2)| < al|z])b(t) (2)
for all z € RY and a.e. t € [0, 7).

Hamiltonian systems are a special case of dynamical systems. These
types of equations play an important role in fluid mechanics and gas
dynamics. There are various Hamiltonian systems are shown in [12,

]. When p = 2, problem (1) is the second order Hamiltonian sys-
tems. In recent years, the existence of periodic solutions for the sec-
ond order Hamiltonian systems have been studied in many papers; see
[3,5-10,16-18] and the references contained therein. For example in [10],
the authors proved the existence of periodic solutions by the varia-
tional methods in the critical point theory for the following second-order
Hamiltonian system

—i(t) — q(t)u(t) + A(t)u(t) =
AVE(t,u(t)) + pVG(t,u(t)) a.e. t€[0,T7],
u(

(
w(0) = u(T) = u(0) —a(T) =0,

where ¢ > 0 and G : [0,7] x RY — R is measurable in ¢ for all
z € RY and continuously differentiable in 2 for almost every t € [0, 7).
For the general case p > 1, some authors presented interesting results

(see [11,13,19,20]).

For instance Xu and Tang in [19] using minimax methods in the criti-
cal point theory established the existence of periodic solutions for the
problem

{ —([u'()|P~2/ (t)) = AVF(t,u(t))  a.e. te[0,T],
u(0) — u(T) = u'(0) — u/(T) = 0.

Also, in [20] some authors have considered the following problem

(Y + Al =
AVFE(t,u) + uVG(t,u)  a.e. t€]0,T], (3)
u(0) — u(T) = u/(0) —u/(T) = 0.
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They studied the existence of at least three periodic solutions for
problem (3) using two theorems due respectively to Ricceri (see reference
[17] in [20] ) and Averna-Bonanno( see reference [13] in [20]).

In this paper, using two kinds of critical points theorems obtained in [1]
and [2], we ensure the existence of periodic solutions for problem (1).
The paper is organized as follows. In §2 we establish all preliminary
results that we need and in § 3 we present our main results.

2 Preliminaries
We assume that the matrix A satisfies the following conditions:

(i) A(t) = (ai5(t)),i=1,...,N,j=1,..., N, is a symmetric matrix
with a;; € L*°[0,T] for any t € [0, T,

(ii) there is a positive constant § such that (A(t)|z[P~2z,x) > § |z|P
for all z € RY and t € [0,7], where (-,-) denotes the inner product
in RY and in the other hand we know that (A(t)|z[P~2z,2) < §|z|P (
see [20]) for any 2 € RN and for every ¢ € [0, T] where

N
§< > lagll. (4)
i,j=1

Let us recall some notions and results that are needed later. Here
and in the sequel E denotes the Sobolev space
E ={u:[0,T] = RY, u is absolutely continuous,
u(0) = u(T), u' € L([0,T],RY)}

endowed with the norm

T p
Jullp = </0 (W' (@) + !u(t)\p)dt> , VuekE.

Also , we consider E¥ with the norm

3=

T
lull = (/0 QO ()7 + <A(t)IU(t)I”_QU(t),U(t)>]dt)
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E is separable and reflexive. It follows from [12], E is also an uniformly
convex Banach space.
Due to the inequality

Kymin{L, 8} [Jullfy < [lull’ < K> max{1,0}|ull%,

where K7 = ming[o 1) eQW) and Ky = maxye(o,7] eQ® the norm | - || is
equivalent to the norm || - ||g.

Since (E, ||-||) is compactly embedded in C ([0, T],RY) (see [12]), there
is a positive constant

1 -1 =1
¢ <co=V2max{Te,T7% }(K;min{1,5})7 (5)
such that
[ulloo < e[ ul], (6)
where ¢ = and [|ulloc = max,ec(o 7] |u(t)]- The proof is similar to

-1
the corresponding parts in [20].
Let &, ¥ : E — R be defined by
1 1

Ou) =~ |lu =~ TeQ(t)[IU’(t)Ip+ (A ()P~ 2u(t), u(®))]dt (7)
p P Jo

and T’
W) = / Q) (1, (1) )dt (8)
0

for every u € E. It is well known that ¥ is a continuously Gateaux
differentiable functional whose Gateaux dervative is compact (see [13])
and for each u,v € K

T
V() = [ @OFPEuv). o)

and, ¢ is continuously Gateaux differentiable and sequentially weakly
lower semicontinuous functional. Moreover , the Gateaux dervative of
® admits a continuous inverse on E* (see [20]). In particular, we have

T
o'(u)(v) = /0 QO (8)[~2u (1), 0/ (8)) + (A u(t) P~ 2u(t), v(t))]dt

for each u,v € F.
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Definition 2.1. Let ® and ¥ be defined as above. Put I, = & — \W.
We say that v € E is a critical point of Iy when I} (u) = 0{g=y, that is,
I (u)(v) =0 for all v € E.

Definition 2.2. A function u € E is a weak solution to problem (1), if

T
/0 QO (ol (1) [P~ (£), () + (AWM |u(t) P 2u(t), v(t))

—MVE(t,u(t)),v(t))]dt =0
for every v € E.

Remark 2.3. We clearly observe that the weak solutions of the prob-
lem (1) are exactly the solutions of the equation I} (u)(v) = ®'(u)(v) —
AU (u)(v) = 0.

Definition 2.4. A Gatuax differentiable function I satisfies the Palais-
Smale condition (in short (PS) -condition) if any sequence {u,} such
that
(a) {I(uyn)} is bounded,
(b) lim |[I'(un)||x+ =0, VneN,

n——+oo

has a convergent subsequence.

A non-standard state of the Palais-Smale condition is introduced
in [1] as follows.

Definition 2.5. Fix r €] — 0o, +00]. A Gatuax differentiable function I
satisfies the Palais-Smale condition cut off upper at = (in short (PS)I"]
-condition) if any sequence {u,} such that

(a) {I(uy)} is bounded,

. ) -~
() tim_ | (un) - =0,
(c) ®(up) <r VneN,

has a convergent subsequence.

Two propositions will be needed to prove the main theorems of this
paper are discussed.
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Proposition 2.6. [ [/], Proposition 2.1] Let X be a reflexive real Banach
space, ® : X — R be a sequentially weakly lower semicontinuous, co-
ercive and continuously Gateaux differentiable function whose Gateaux
derivative admits a continuous inverse on X*, ¥ : X — R be a con-
tinuously Gateaux differentiable function whose Gdateaur derivative is
compact. Then, for all v € R, the function ® — U satisfies the (PS)Il-
condition.

Remark 2.7. Fix A > 0. According to proposition 2.6, the functional
Iy = ® — \VU satisfies the (PS)I"-condition for any 7 > 0.

In the next proposition, using Ambrosetti-Rabinowitz conditions ob-
tained in [15], ensured that functional I) is unbounded from below.

Proposition 2.8. Assume that there are M > 0 and 6 > p such that
0<0F(t,z) < (VF(t,x),x)

for all z € RN with |v| > M and a.e. t € [0,T]. Then Iy, = ® — \¥
satisfies the (PS)-condition and it is unbounded from below.

Proof. First we prove that I, satisfies (PS)-condition for every A >
0. For this purpose we will prove that for an arbitrary sequence {u,} C E
satisfying

|Ix(un)| < D for some D >0 and for all n € N, 9)
Jim 1 (un)l| =0, YneN (10)

contains a convergent subsequence. For n large enough, from (9) we have

1 T
D > I\(uy) = f||uan — )\/ F(t,up)dt >
b 0

1Hu Hp—/\/T<VF(t Up), Up)dt =
p n 0 0 y 'nJy Y'n
1 1 1
- _ = p —7
(5 = )l + 23 ) ) (1)
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From lim |[§(un)||E+ = 0, there is a sequence {e,}, with ¢, —
n—+00

0T, such that
T4 (1) ()] < (12)
for all n € N and for all v € E with || v ||[< 1. Taking into account

v(z) = TI'ZLLSCH)’ from (12) one has

|2 () ()| < & || 1t | (13)
for all n € N. Hence from (11) and (13) we have
€ 1 1
-n > (2. = P
Dt 5w 12 (= 5) lual (14)

Thus, (14) ensures that {u,} is bounded in E and hence, passing to a
subsequence if necessary we can assume that there is ug € E such that
up, — ug ( [{]-Theorem 3.18). Now since ¥’ is compact then ¥'(u,) —
U'(ug). But from (10) we have I} (u,) = ®'(uy,) — AV'(u,) — 0. This
implies that u,, — ® =1 (A\¥/(ug)) (because ® admits a continuous inverse
on E* ) and finally according to the uniqueness of the weak limit, u, —
ug in E and so Iy satisfies (PS)!"-condition.

Take h(t) := minjej—ps F'(t,€). From (2.8), by standard computations, we
have

F(t,z) > h(t)m - (Sér[l(%]}é]a(s))b(t) (15)

for all x € RY and a.e. t € [0,T]. Fixed ug € E — {0}. For each s > 1,
we have

1 T
I\(sup) = — || suop ||” —)\/ F(t, sup)dx.
p 0

Taking into account (15), one has

s? \uole

sP T
Bfsw) < 2 o P =3 [ (™10~ (max () )

z€[0,M]

and since 6 > p, this condition guarantees that I is unbounded from
below. [
Our main tools are the following critical points theorems.
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Theorem 2.9 ( [2], Theorem 2.3). X is a real Banach space, and ®,V :

X — R are two continuously Gateauz differentiable functionals such

that inf x ® = ®(0) = ¥(0) = 0.

Assume that there are r € R and @ € X, with 0 < ®(a) < r, such that
SUPyed—1(j—oor)) Y(U)  W(q)

. < 3@ (16)

d(a) r

W (%) SUPyeq-1(—ooyr)) ¥ ()
satisfies the (PS)I"-condition.

d(a) r

\Ij(ﬂ’) 7 SUPyed—1(]—o0,r[) \Il(u)
uy € ®71(0,7[) ( hence uy # 0 ) such that I\(uy) < Ir(u) for all
u € 71(0,7[) and I} (uy) = 0.

Theorem 2.10 ( [!], Theorem 3.2). X is a real Banach space, and let
DU : X — R be two continuously Gateauz differentiable functionals

such that ® is bounded from below and
®(0) = ¥(0) = 0. Fizr > 0 such that sup,ce—1(j—oo,p) ¥Y(u) < +00

and, for each \ €

the functional ® — AW

Then, for each \ € there is

r

SUPyed—1(]—oo,r) ¥ (1)
O — AV satisfies the (PS)-condition and it is unbounded from below.

and assume that for each X\ € ]0, the functional

r

SUPyed—1 (|—oo,r)) V(1)
two distinct critical points.

Then, for each \ € |0,

the functional I admits

3 Main results

In this section, the following notation is used:

T
F? .= / e®® sup F(t,x)dt, te0,T], V6 > 0. (17)
0 |z|<6
Also, in the sequel, § and ¢ are the constants defined in (4) and
(5), respectively.
Now, we formulate our main result.
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Theorem 3.1. Let F : [0,7] x RY — R satisfy assumption (2) and
fOT QO E(t,0) =0 for a.e. t €[0,T]. Assume that the following condi-
tion hold:

(A) there exists positive constant 6 and a point 0 # xo € RN with

ENES fOT eQ(t)dt)% < 0, such that

T
& ‘(t)F t,x dt
y L0
FO / ( )

— < = . 18
0P epg |zolp fOT eQ) dt (18)
Then for every
Ne A 8 |aolP [if QW at 6P 19
€ A= - o EI | (19)
p/ QPO Pt z0)dt
0

the problem (1) admits at least one non-trivial weak solution uy € E
such that ||uy||eo < 6.

Proof. Our aim is to apply Theorem 2.9, to problem (1). Fix A € A. Take
X = F and ® and ¥ as in the previous section. Notice first that by the
definition of the functional ® and the condition fOT QW E(t,0) = 0 for
a.e. t € [0, T] we will have

i§f<I> = ®(0) = ¥(0) =0.
Also, we observe that the another regularity assumptions of Theorem 2.9

on ® and V¥ are satisfied and according to Remark 2.7, the functional
I = ® — \VU satisfies the (PS)"l-condition for all r > 0.

1.0
Put r = —=(=)? and a(t) = x for all t € [0,T]. We clearly observe
pc
7 ' i 5 (T Qg e
that @ € E and according to assumption |zo|c(d [, e9Wdt)» < 6, one

has 0 < ®(a) < r.
For each uw € E bearing in mind (6), we see that

d Y] —o0,7)) = {ucE; du)<r}

P
= {u e FE; LUH < r}
p

{u € E; |u(t)| <6 for each t € [0,T]}.

N
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Now we have

T
sup U(u) = sup / COF(t, ut)dt <
u€®~1(]—o0,r|) d(u)<r JO

T
/ e®® sup F(t,z)dt =
0 |z|<6

Therefore, we have

SUPueg1(oor) ¥(u) _  F’  pcF’ <1 (20)
T ~ 1(0 p or A
p\ec
On the other hand
T T
- / eCOF(t, xo)dt / eCOF(t, zo)dt
~ _ 1 .
*) o] el f} eQdt
p
Now from (20) and (21) we have,
SUPyed—1(]—oo,r) ¥ (1) _ Y@
r d(a)
and (16) is proved.
. D (u) r
Finally, for each A € A C , Theorem 2.9

\Il<7j’)’ SUPyed—1(]—o0,r) \Ij(u)
guarantees the existence of at least one non-trivial critical point for the
functional I, = ® — AW, and the conclusion is obtained. [

A corollary of Theorem 3.1, is as follows.

Corollary 3.2. F : RY — R is a non-negative function such that
F(0) =0 and VF is continuous in RN . Moreover, suppose that

F
lim sup ()
elst0  [EIP

= +o00. (22)
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Then, for each 6 > 0 and \ € }0, " { the
pe? (Sup|§\§9 F(f)) fo eQ(t) dt
problem

(P — g+ Al
AVF(u) a.e. tel0,T], (23)
u(0) — u(T) = ' (0) — eQD/(T) = 0,

admits at least one non-trivial classical solution uy € E such that
lua]loo < 6.

Proof. Fix0>0,/\€}0 [
Q) dt

o (o FO) I
By (22), there exists o € RN with |zg|c(0 f dt) v < 6, such that
F(.’Eo) 5
lzo[P ~ pA
Taking into account that \ € ]O, i [, one has
pcP (supmgg F(E)) fOT eQM)dt
(supgj<o F(§)) Jy e¥Vdt _ 1 F (o)
or ApcP P d|mglP

and so condition (18) of Theorem 3.1 is verified. Now the desired result
can be obtained from Theorem 3.1. 0
Now, we will present an example for Corollary 3.2.

Example 3.3. Let T'= 1,p = 3 and A(t) = I, where [ is an identity
matrix of order N x N, q(t) =1 and therefore Q(t) = ¢ for all
t € [0,1]. Due to the (5), we can consider ¢ = V/4.
Also let F(z) = sinh(|z|?) for all z € RY and hence supj¢|<p F'(§) =
: 2 6
sinh(6*) for all # > 0. Then for every A € ]O, 12(c — 1) sinh(62) all the
hypotheses of Corollary 3.2 are satisfied and therefore the problem

{ —(|o/|u") — | |u + |u|u = 2 u cos(|ul?) a.e. t€[0,1],
u(0) —u(l) =4/(0) —ed/(1) =0,

admits at least one non-trivial classical solution uy € FE such that
lualloo < 6.

11
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Now, we point out the following existence results, as consequences
of Theorem 2.10.

Theorem 3.4. Let F : [0,T] x RN — R satisfy assumption (2) and

fOT QPO E(t,0) =0 for a.e. t € [0,T]. Moreover Suppose that there are
M >0 and 0 > p such that

0<0F(t,z) < (VF(t,x),x) (24)

for all x € RN with |x| > M and a.e.t € [0,T]. Then for each \ €
1 1
}O, 71[ where FP” s defined by (17), problem (1) admits at least

cpP
two distinct weak solutions.

Proof. Our aim is to apply Theorem 2.10, to problem (1). Put r = 1 and
1

fixed A € ]0, — { Let E, ® and V¥ be as given in the proof of Theorem
cpP

3.1. We observe that the regularity assumptions of Theorem 2.10 on &

and W are satisfied and also according to proposition 2.8, the functional

I, satisfies the (PS)-condition and it is unbounded from below. If u €

1
®~1(] — 00, 1) then ®(u) < 1 and so ||ul| < pr. Hence according to (6)
we get

SUPyed 1 (|—oo0,r[) P (W)

= sup U(u) =
" ued~!(J—o0,1[)
T T
sup / 9D F(t,u)dt §/ 9D sup F(t,z)dt =
u€d—1(]—o0,1[) JO 0 |x\§cp%
31
FeP —. 2
= (25)

From (25) we have

1
velo L c
Fep?
So all the hypotheses of Theorem 2.10 are verified. Therefore, for each

}0’ supu@l(]iooyr[) U (u) [

1
AE ]O, — [, the functional I, admits at least two distinct critical
Fep?
points and therefore the proof is completed. [
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Finally, we present the following example to illustrate Theorem 3.4.
Example 3.5. Let T = 27, p = 3 and 6§ = 4. Again we can consider
c = /4 (see example 3.3) .

Now if we consider F(t,z) = e~ @® (sint + |z|%), one has
0<0e W (sint + |z|°) < 6e Dz

for all z € RY with |z| > V/2 and a.e. t € [0,27] and so (24) is
verified. Therefore according to Theorem 3.4 for each A € ]0, 1 [,

FepP
1 2w
where Fer” = FV12 = / e?Y sup F(t,x)dt =
0 |2|< V12
2w
(sint + 144)dt = 288w

0
the problem
—(|u ) = q(t) | o + A@#)[uju = Ae COu[*u  a.e. t€]0,2n],
u(0) — u(27w) = u/(0) — eQC™y/(27) = 0,

admits at least two classical solutions.
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