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Abstract. The evaluation of organizational performance can have a
significant impact on the activities of the organization. One of the most
useful applications for performance assessment is the use of Data Envel-
opment Analysis (DEA). DEA is a mathematical programming method
that measures the relative efficiency of organizational units having dif-
ferent inputs and outputs. The inability to rank efficient units is one of
the major weaknesses of traditional DEA methods. Different methods
for ranking efficient units have been proposed by researchers. In this
paper, we present a method for ranking all DMUs based on sound sup-
porting hyperplanes. Strong Hyperplanes of production possibility set
(PPS) have always been the discerning focus of researchers and man-
agers of organizations as well as calculating the replacement rates of
inputs and outputs of hyperplane applications. Moreover, having an
explicit form of a production possibility set is beneficial for the man-
agers for decision-making. The proposed method practically, does not
undergo common ranking problems, such as, model permeability, small
data instability, inability to rank the non-extreme units and with no false
rankings. Since rail transport plays an important role in the economic
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development of a country, many researchers have focused their attention
on measuring efficiency and ranking in the rail transport industry. As
an applied project, we shall assess rail and passenger transport in some
Asian countries. The evaluation is based on data from the International
Rail Union (UIC) in 2016.

AMS Subject Classification: 90C08; 90C05; 90C90

Keywords and Phrases: Data envelopment analysis (DEA), ranking
rail transportation, decision-making units (DMUs), strong supporting
hyperplanes

1. Introduction

Data envelopment analysis (DEA) is a methodology for assessing the perfor-
mances of a group of decision-making units (DMUs) that utilize multiple in-
puts to produce multiple outputs. DEA, which was originally presented by
Charnes et al. [1], is a well-known mathematical programming tool for evalu-
ating the relative efficiency of a set of comparable processing decision-making
units (DMUs). DEA successfully divides the units into two categories: effi-
cient DMUs and inefficient DMUs. Unlike the inefficient DMUs, the efficient
ones cannot be ranked based on their efficiencies, because they all secure the
efficiency score equating to one.

However, it is not reasonable to claim that the efficient DMUs have the same
performance in actual practice. Now, the question arises as to how to rank
the efficient DMUs? To address this question, different methods have been
developed to achieve complete ranking of the said. So, one of the interest-
ing subjects in research is to discriminate between the efficient DMUs. Hence,
the researchers proposed some methods to distinguish the efficient units. This
concept is known as ranking efficient units in DEA. There are many ranking
methods and each of them has some advantages and drawbacks in this arena. To
review the ranking methods refer to Adler et al. [2] and Hosseinzadeh et al. [3].

In the following, we summarized some of renowned methods for ranking DMUs.

Charnes et al. [4], tallied the number of times that an efficient DMU is ac-
counted as a benchmark unit for other DMUs, and used it to rank the units. As
a reference set for a DMU is not found easily, thereby, a model in this relative is
not an applicable method. Charnes et al. [5], proposed another method to find
the benchmark DMUs. They modified the outputs of units and then they evalu-
ated as to the manner that the efficiency score of DMUs altered. However, they
did not perceive as to how it was to be achieved. A super-efficient approach is
another method pioneered by Anderson and Peterson [6] (AP model). In their
method, the corresponding column to the DMU under evaluation is omitted
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from the technological matrix. Later, Mehrabian et al. (MAJ) [7] has modified
the AP model. In some circumstances, the mentioned models may be infeasible
and in particular, the AP model may be unstable because the extreme sensitiv-
ity could occur by small variations in the data, when certain units have trivial
values in some inputs. Saati et al. [8] have modified the MAJ model and solved
its infeasibility.

Subsequently, Jahanshahloo et al. [9] changed the type of data normaliza-
tion in order to attain a much better result. So as to eliminate the snags
of the AP and MAJ models, some authors have used specific norms. For in-
stance, Jahanshahloo et al [10] has applied the norm for ranking the efficient
units. Amirteimoori et al. [11] have employed the norm to seek the gap be-
tween the evaluated efficient units and the new PPS. Jahanshahloo et al [12]
have used the gradient line and ellipsoid norms, in order to rank the efficient
units. Tone [13] and [14] has utilized the SBM model in this approach. Sexton
et al. [15] proposed the cross-efficiency method. In cross-efficiency assessments,
each DMU is self and peer evaluated. Each unit specifically determines a set of
weights in the traditional DEA model, resulting in n sets of weights. Then, each
DMU is evaluated by the n sets of weights obtaining n efficiency scores. The
cross-efficiency of each unit is the average of the n efficiency scores.

Although, cross-efficiency evaluation has been extensively applied in various
cases, but there is a factor which probably reduces the efficacy of the cross-
efficiency evaluation method. This aspect is that the cross-efficiency scores may
not be exclusive due to the presence of alternative optimal weights. As a result,
it is suggested that secondary goals are introduced in cross-efficiency evalua-
tion. For more studies in relative secondary goal models, see Doyle and Green
[16], Liang et al. [17], Wang and Chin [18], Dotoli et al. [19], Wu et al. [20], Ma
et al. [21], Jahanshahloo et al. [22] and Wu et al. [23].

Although secondary goal models were suggested to solve the problem of the
cross-efficiency evaluation, the existing secondary goal models have some short-
comings in the literature. Note that, none of the secondary goal models in the
literature guarantees that the optimal weights are unique. Hence, the problem
of the alternative optimal solutions present is not solved entirely. This is the
focal drawback of secondary goal models. Though, most of the existing sec-
ondary goal models in literature solve n(n-1) model are to obtain the rank of
units, Thereby, if n is a large integer, then the number of models that must
be solved is extremely copious, thence, the computational complexity is very
high and this is yet another encumbrance of secondary goal models. All rank-
ing methods evaluate units from a particular perspective and each of them has
its advantages and hindrances in comparison to others. Therefore, none of the
methods has superiority over the others. In this paper, we present a method for
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ranking all DMUs based on strong supporting hyperplanes. As rail, transport
plays an important role in the economic development of a country; as a case
study we will evaluate and rank the rail freight and passenger transportation
in Asian countries. The comparison is based on data from the International
Union of Railways members in 2016. Section 2, consists of two sub-sections,
where first the basic definitions and the required theorems are introduced and
proved, because the proposed model is basically designed on the super efficiency
approach. Thus, first model of super efficiency (AP) as the basic model in this
field is discussed and presented in the second section. In Section 3, the proposed
method is given. In the next section, with help of the proved theorems in the
proposed model and along with a summary of the proposed method observed
in Section 4, a numerical example is set. The conclusion is drawn in Section 6.

2. Preliminaries and Basic Ranking Methods

In this section, we describe some of the basic DEA methods and the main
ranking method with their advantages and drawbacks.

Let a set consist of 77 homogeneous decision-making units to be evaluated. As-
sume that each of these units uses m inputs z;; (¢ = 1,...,m)) to produceproduce
s outputs y,;(r = 1,...,s). Moreover, X; € R™ and Y; € R’ are considered
as non-negative vectors. We define the set of production possibility as 77 =
{(?2,Y) | 7? can produce ?7}. One of the most demonstrative DEA models for
evaluating the relative efficiency of a set of DMUs is the BCC model, proposed
by Banker et al. [24]. The production possibility set (PPS) of BCC model can
be defined as follows:

T = ({E,y) Z)\jxjix,z/\jyj>y,2)\j:1 AJEOJGJ
JjEJ JjeJ JjeJ

In which z; and y; are vectors of input and output of DMU; , respectively
where J={j|j=1,...,n}. To rank DMUp p € {1,...,n} first it is omitted
from the observation there for

T, and T/, is defined as

A (RN TS VIREID DINP YT SIS VRS VYN S )
always T, C T, .
The input-oriented BCC model, corresponds to DMU, , p € J is given by
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min f—e (1s~ + 1s™)

subjectto :

Z?:l )\jxij +s8;7 = Gxip 1=1,...,m

Z?Zl AjYrj = S¢ T = Yrp r=1,..,s )
Z?:l Aj=1

A; 20 jed

5, =20 i=1,...m

5,7 >0 r=1,..,s

Where ¢ is non-Archimedean small and positive number in model (1) s;7, s, 7,7 =
1,....,m, r =1, ..., s are called slack variables belong to Rt . Note that s;~ rep-
resents the input waste and s, * represents the output shortfalls. # and \; j € J

, are also real numbers, including A\; € R*. The model (1) is called the envel-
opment form. The dual of model (1) is as follows:

S
max Zr:l UrYrp + Uo

subjectto :
> Wi — Do Ui+ U <0 j=1,..,n
m
Zi:l ViXip = 1 (2)
U =€ r=1,..s
Vi =€ i=1,...,m
u, free

If (u*,v#,u,%) is an optimal solution of model (2) then uxy —v*x +upx =0
is equation of supporting hyperplane of the PPS.

It is clear that, the evaluated DM U, is efficient if and only if #* = 1 and all slack
variables in every optimal solution are zero in model (1). Equivalently DMU,
is efficient if and only if an optimal solution for model (2) such that (u*,v*) >
0 and >0_, upyrp — Up = 1 exists. Then H = {(z,y) | u*y — v*'z — u, = 0}
hyperplane is said to be a strong efficient hyperplane when an optimal solution
(u*,v*,u}) of model (2) which u* > 0 and v* > 0 and u*y — u¥ = 1 is present.
For DMU,, its reference set E,, is defined by

E, = {j | A > 0 in some optimal solution of model (1)} c{1,...,n}

References of DMU,, are efficient as DMU , whereas, if, DMU), is inefficient
then, a combination of them dominate DMU,.

Definition 2.1. DMU,, is inefficient; if and only if p ¢ Ep.

Definition 2.2. DMU, is extreme efficient if E, = {p}.

Definition 2.3. DMU, is non-extreme efficient if p € E, and |Ep| > 2.
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In the course of improving various abilities of data envelopment analysis (DEA)
models, many investigations have been carried out for ranking decision-making
units (DMUs). A variety of papers exist which apply to different ranking meth-
ods in relative to a real data set. We describe some of the main ranking methods
and their advantages and drawbacks. Definition 2.1 DMUj, is inefficient; if and
only if p ¢ Ep

Definition 2.4. DMU,, is extreme efficient if E, = {p}.
Definition 2.5. DMU,, is non-extreme efficient if p € E, and |E,| > 2.

In the course of improving various abilities of data envelopment analysis (DEA)
models, many investigations have been carried out for ranking decision-making
units (DMUs). A variety of papers exist which apply to different ranking meth-
ods in relative to a real data set. We describe some of the main ranking methods
and their advantages and drawbacks.

Theorem 2.6. suppose that the unit(z,,y,) is efficient, the unit(z,,y,) is non-
extreme efficient, if and only if, there is an optimal solution in model (1) such

as (A%, 0%)in whichA;, = 0.
Proof. in appendix [1]. O

Theorem 2.7. The unit(z,,yp) is extreme efficient if and only if model (4)
has an optimal solution as (0", \*)with 6* > 1 or model (4) is infeasible.

Proof. in appendix [2]. O
Theorem 2.8. The unit (zp,y,)is extreme efficient if and only if(xp, yp) ¢ T, .
Proof. in appendix [3]. O

2.1 AP model

Super efficiency models introduced in DEA techniques are based upon the idea
of skip one and assess this unit through the remaining units. In this subsection,
we are going to review the AP ranking model in DEA. Andersen and Petersen
[6] developed a new procedure for ranking efficient units. The methodology
enables an extreme efficient DMUp to achieve an efficiency score greater than
or equal to one by removing the p-th constraint in the primal formulation. They
omitted the efficient DMU from the PPS, and solved CCR model [1] for other
units to rank them. The mathematical formulation of model (3) is as follows:
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S
max z =y ., Uro

subjectto :

Zin;l ViZio = 1, (3)
S vy — Y oe_ Uy =0 for j=1,..,n, j#o,

ur =0 for r=1,..s,

v; 20 for i=1,...,m.

The dual formulation of the super-efficient model, as seen in model (4), com-
putes the distance between the Pareto frontier, evaluated without DMUp, and
the unit itself i.e. for{j =1,...,n,j # p}.

min 6
subject to :
-1 ANjxiy <Oz for i=1,...,m,

NiYrj 2 Yrp  for r=1,..s,

A; 20 for j=1,..n.
However, The AP method has the following problems:

Primarily, Andersen and Petersen refer to the DEA objective function value as
a rank score for all units, despite the fact that each unit is evaluated according
to different weights. This value in fact explains the proportion of the maximum
efficiency score that each unit P attained with its chosen weights in relation
to a virtual unit closest to it on the frontier. Furthermore, if we assume that
the weights reflect prices, then each unit has different prices for the same set
of inputs and outputs within the same organization.

Secondly, the super-efficient methodology can give “specialized” DMUs an ex-
cessively high ranking. To avoid this problem, Sueyoshi [25] suggested a method
to avoid this problem.

The third problem lies with an infeasibility issue, which if occurs, means
that the super-efficient technique cannot provide a complete ranking of all
DMUs. Mehrabian et al. [7] suggested a modification to the dual formulation
in order to ensure feasibility; we will refer to it later. Note that, the AP model
is feasible when we use this model in output oriented form.

Fourthly, in some cases, small changes in the data may change the #*immensely,
though, of course, this problem does not occur in output oriented form.

In the fifth instance, the AP model does not have any suggestion for ranking
non-extreme efficient units. In fact, the super efficiency method cannot rank
the non-extreme efficient DMUs.
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Researchers have provided various methods for ranking efficient units. In this
paper, a method is suggested for ranking all the DMUs based on strong and
weak supporting hyperplanes. Strong hyperplanes of production possibility set
(PPS) have always been within the focus of researchers and managers of or-
ganizations, including the calculations of the replacement rates of inputs and
outputs of hyperplane applications. Moreover, having an explicit form of the
production possibility set is beneficial for the managers for decision-making pur-
poses. The distance of the under-evaluated DMU and the new efficient frontier
indicates the extent to which inputs or outputs can get worse, so that the DMU
remains efficient. This is referred to as the stability radius in most studies; the
larger the stability radius, the greater the area, where the under-evaluated
DMU remains stable. Therefore, a better ranking is expected for it. Hence,
the maximum distance of the under-evaluated DMU from the new PPS (after
eliminating the DMU), could be a better criterion for ranking the DMUs. The
units ranked on the assumption that, the ranking of the extreme efficient units
is higher than those of non-extreme efficient units, whilst, the ranking of non-
extreme units is superior to that of the weak efficient units and the ranking
of the weak efficient units is greater than the ones of inefficient units. The
proposed method virtually does not endure the common problems in ranking,
including infeasibility of the model, instability for small data, inability to rank
the non-extreme units and with no false ranking.

3. The Proposed Method

To rank DMUp p € {1, ...,n} first it is omitted from the observation there may
be two cases as follow: (zp,y,) ¢ Ty: After elimination of DMUp in figure 1,
the frontier of PPS changes which is showed with a hyphened line.

b

I el e)]

INPUT

Figure 1. (zp,yp) ¢ T,
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We want to find a strong supporting hyperplane on a PPS such as
H = {(x,y) |u*y —v*z +u’ = 0}, which has the greatest distance from the
unit under evaluation. The hyperplane H divides the space R™** into two half
spaces:

H™ = {(2,) [u'y — v"a +uj < 0}

0
HY ={(z,y) |[u"y — vz +uy > 0}
According to the definition of H~ :
T, CH™

So the supporting hyperplane H is chosen so that(zp,y,) ¢ H ™, then, u*yp —
v'ep+ul>032>0: wyp —v'zp +u, —2=0, Note that if DMUp € H
then z= 0, The greater distance from the DM Upto the H, the higher the value
of Z.

(2p,yp) € T,': After eliminating DMUp in figure 2, the frontier of PPS does
not alter.

max z
subject to :

uy;, —vrj +u, <0 j=1,..,n, j#p
uYp +uo —2 =1

vx, =1

z < Mo, forall r (5)
z < Mo forall i

ur =0 forall r

v, =0 forall i

Ug, Z2 free

M is positive number

4

OuUT PUT

IN PUT

Figure 2. (z,,y,) € T},
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AsT) C H™, then (zp,y,) € H~ and it can be written as u*yp —v*xp+ul <0
in this case 3 2 < 0; w'yp —v'zp+u) —2=0

In both cases, we recommend the following linear model to find a strong sup-
porting hyperplane which has the greatest distance to the unit under evaluation.

In model (5)vap =1, then, 1 4+ z =uyp + u,. Therefore, maximizing the value
Z means maximizinguyp + u,. Since Z is maximized, thus the large positive
number M is added to the problem to achieve positive values U and V if the
constraints in the problems are as z < M.w,, Vv H z < M.w, Vi . This
makes the achieved hyperplane a strong hyperplane.

Theorem 3.1. model (5) is always feasible.
Proof. in appendix [4])

Theorem 3.2. Assume that (u*,v*,u*, z*) is the optimal solution for
model (5), then H = {(z,y) |u*y — v*z + u} = 0} supports hyperplane
on Tvl.

Proof. in appendix [5]. O

Theorem 3.3. Assume that (u*,v*,u*, 2*) is the feasible solution for
model (5), then z* > 0 if and only if the unit (z,,y,) is extreme efficient
unit.

Proof. in appendix [6]. O

Theorem 3.4. Assume that (u*,v*,u},2*)is the optimal solution for
model (5); if z*=0 and(u*,v*) > 0, then the unit (xp,yp) is non-
extreme efficient.

Proof. in appendix [7]. O
Remark 3.5. If the unit (xp,yp) is efficient, thenz* > 0.

Consider a case in which (u*, v*, u*, 2*) is the optimal solution for model
(6) andz*< 0. In this case, the unit (zp,yp) is either inefficient or
weak efficient. In casez*< 0, to distinguish if the unit (xp,yp) is either
inefficient or weak efficient, model (6) is solved as follows:
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max 7zj

subject to :

UYj_ij+uO<0 j:17"'7n7j7ép

VXp — Uy +21 =1

uy, =1

721 < M., r=1,..,s (6)
z1 < M.y, i=1,....m

ur =0 Vr

Up, 21 free

M is positive number

Theorem 3.6. Assume that the unit (zp, yp) is weak efficient; if (u*, v*, u*, 2*)is

the optimal solution for model 5 and (4, 9, 1y, 21 )is the optimal solution
for model (6), then z*=0or 2;=0.

Proof. in appendix [8]. O

Theorem 3.7. Assume that (u*,v*,u,*, z*) is the optimal solution for
model (5) and (@, 0, Gy, 21)is the optimal solution for model (6).

Proof. in appendix [9]. O
1) Ifz; <0 , 2z* <0, then the unit (zp,yp) is inefficient.

2) If (2 =0,21 <0) or(z* < 0,2 =0), then the unit (zp,yp) is weak
efficient.

4. Summary of the Proposed Method for Rank-
ing All Units

Step 1: model (5) is solved for all the units. The set w, is defined as
follows:

Wo = {] ’Z]* > 0}7 E, :7{] ’2]* =0, (U*,U*) > O}a
s1=1Jlz* =0, (u*v*) Z 0&Ji;vf =0orIrjut =0

so={jlz" <0}
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Where, w, is the set of all the extreme efficient units having the ranking
weand E, is the set of all the non-extreme efficient units. Ifcard (E,) < 1,
so will be the ranking of the only member of the set E, in case that it
has just one member. Therefore, the ranking of all the extreme and
non-extreme units is achieved and ifcard (E,) > 2, the second step is
performed as follows:

Step 2: Place k, = {1,...,n} — w,, so the new PPS for the members of
the set k,is formed as follows:

max z
subjectto :
uy; —vritu, <0 jEk & #q
VY, — 2+ u, =1
vxg =1
z < M, Vr (7)
z < Mw; Vi
ur =0
v; 20
Uy, 21 free
M is positive number

By consideringw; = {j € Ey|z;* >0}, E1 = {j € Eyo|z,* =0, (uv*,v*) >0}
In this case, z;*will be criteria for ranking of the units which they are
members of. It is obvious that the sectional members ofw; are non-
extreme efficient units which are ranked like this. Now if card (E,) <1
, then the ranking of all the efficient units including extreme and non-
extreme is gained and if card (E,) > 2, the set k; is defined as follows:

kl = {1, veuy n} — w1

And the new PPS for the members of k;is formed as follows

- .
Ty = (y> ZAjmj<x,Z>\jyj>y,Z)\j:1 Aj 20 J €k

j€ky Jj€k1 Jj€k1

Continuing this process, model (5) is solved for members of E;until we
gain the ranking of all the non-extreme efficient units
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The [*" step of the method: The sets w; , Ej, k; are defined as follows:

wy={j€E_1]z*>0} 1=1,..,t
Ei={j€E_1]z*=0, (u",v") >0} 1=1,..,t
ki=k_1—w 1=1,...t

In this case, z;* > Owill be the ranking of the units, which are in the
setw;. 1; is formed on the members of k; as follows

I .
fi= {< y > ‘Eje’cl Ny <) 5em Ailli 2 P Yjen Ai =1 A2 0 j€ kz}
Model (8) is solved for the members of E;; therefore, ifd € Ej, we have

max 7
subject to :
uyj—vxj+u0<0 jE Kk
vy, — 2+ u, =1
vx; =1
z< M, Vr (8)
z < Moy, Vi
Uy = 0
v; =0
U, 21 free
M is positive number

Noting the definition of E; , it can easily be understood that E; C E;_1 C
... C E1 C Ep Assume that in the repetition we havecard (E,) < 1, then
the ranking of the entire extreme and non-extreme units are gained.

rank (wg) > rank (wy) > ... > rank (w;) The set S1, Sy are weak efficient
or inefficient units. Assume that means z; = 0, (u*,v*) #0 and in this
case DMUp is on the weak frontier and, therefore, it is weak efficient;
and if p € s meanszp® < 0, then model (a) —~which is mentioned in
Appendix- is solved for the unit(zp, yp), and ifz),* < 0, the unit (zp,yp)
is inefficient and ifz,* = 0, the unit (zp,yp) is weak efficient. The
ranking criterion for the weak efficient units is in this manner that if
zp* = 0 then 25* < 0 is the ranking criterion and if 2* = 0 then
zp* < 0 will be a criterion for ranking. In addition, we consider this

issue thatrank (S1) > rank (S2).
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Given that the modeling is designed in T, which has at least one extreme
efficient unit in the poorest case; and since we know that, at least one
strong supporting hyperplane passes through each extreme efficient unit,
then, it can be concluded that T, has one strong supporting hyperplane
in the minimum. But it is probable that the production possibility set
does not have a strong defining hyperplane. Any extreme efficient DMU,
“n” linear programing problems must be solved to rank the “n” decision
making units, if it is not present in the proposed model. But since, the
modeling is formed in T}, “n-1”7 extreme efficient DMUs or inefficient
DMUs may exist in the worst case and the model must solved “2n-1”
times.

4.1 Numerical example

To illustrate the algorithm process in this subsection, we describe a small
numerical example and then apply the algorithm to real data. Consider
13 DMUs with one input and one output. Table 1 shows 13 decision-
making units with one input and one output.

Table 1: Data of 13 DMUs

DMU A B C D E F G H I J K M |N
In |1 1 2 3 4 ) 6 8 9 12 |13 |7 9
put
Out| 1 2 4 6 8 9 10 |12 |13 (13 |14 |3 6
put

The PPS for the numerical example is shown in figure 4.
The optimal solution of model (5) for the DMUs is show in Table 2.

Table 2: The optimal solution of model (5)

A B C D E F G H I J K M |N
7 |0 033 |0 0 008 |0 0 0 011 -01 |-03 |-0.7 |-0.1
Vel 1 05 1033 |02 |02 ]0167|0143| 011 |01 |0.07 |0.143 | 0.111
U 10 0.33 | 025 | 0.167{0.167]0.2 |0.167|0.143| 0.167| 0.1 | 0.07 | 0.071 | 0.056
Uo* |1 0.66 |0 0 025 |-0.8 |-0.66 | -0.57 | -1.1 |-04 |-03 |0 0
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| GetnDUMsand k =n |

4

‘ Obtain a value of z“,u",v" from model 5 |

‘ Given avalue of z ", u",v" make sets of W ,E S |

}

NO
—_— Make set of k

YES

Rank all of DMUs by z* value

l

Figure 3. PPS of numerical example
The set w, , E,,51,52 are defined as follows:

wo = {jlz;* >0} ={B,E,I}
Eo =;{jlz* =0, (u*,v*) >0} ={C,D,F,G,H}

s1 =17z =0, (u*v*) 2 0&3i;of =0orIrjut =0 » = {A}

s2=1{J |z <0} = {J, K, M, N}

The ranking of the units B, E, I are specified to be zg* = 0.33 zg* =
0.08 z;* = 0.11 respectively. Therefore, the units B, E, I are extreme
efficient DMUs. Since the implementation of the proposed approach is
the same for all units conceptually, we illustrate the proposed process for
DMUpg in the Fig. 5. It is important to note that for the other DMUs, the
ranking process can also be described. After the elimination of DMUpg,
we have illustrated the new frontier in Fig. 5. The PPS supporting hy-
perplane from which DMUp has the maximum distance, is displayed
with a hyphened line.
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Figure 5. PPS of numerical example after omitted DMUB

The units C, D, F, G and H are non-extreme efficient DMUs. The set
k, is formed as follows:

ko ={A,B,C,D,E,F,G, H,I,J,K,M,N}—W, = {A,C,D,G, H,J,K, M, N}

Ascard (Ep) = 5, so PPS is formed for the units in the set k, as follows.

Then, model (5) is solved again for the members of Ej in the PPS. The
new PPS for members of k, and the optimal solution of model (5) for
the members of Epin the new PPS is explained as follows:
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Table 3: The optimal solution of model (5)

C D F G H
z* 0.1 0.066 0.05 0 0.047
% 0.5 0.33 0.2 0.167 0.143
U 0.2 0.2 0.15 0.167 0.19
Uo* 0.3 -0.13 -0.3 -0.66 -1

7

w={j€FE|z*>0}={C,D,F,H}
Ei={j€Ey|z*=0,(U"V*)>0} ={G}
The optimal value of Z*for the members of wiset is as follows: Z7 =
0.1 Z; =0.066 Z5 =0.05 Zj = 0.047 So ranking of the members
of wy set is as follows:

Rc > Rp > Rr > Ry

In addition, ascard ({E1}) = 1, then the ranking of the unit G is also
gainedZf, = 0. As a result, the ranking of the extreme and non-extreme
units is gained as follows:

R(B) > R(I) > R(E) > R(C) > R(D) > R(F) > R(H) > R(G)

Ranking the weak efficient and inefficient units: The optimal
value of the objective function for members of S; U S5 in the set is as

follows:
Z3 =0
Z5=-01<0
Z=-03<0
Zy =—-07<0

7% = —0.66 < 0

SinceZ% = 0, then it is located on a weak hyperplane and it is weak
efficient and incapable of reducing inputs. Therefore, it has a higher
ranking among the members of the setS; U Se. Now, to determine the
ranking of the units J, K, M, and N; model 6 is solved for the members
ofS1 U S5. The optimal solution of model 6 for the members of S U .Sy
is as follows:

Zyi=-1 727 =0 Zi =0 Zj =-267 Z§y =-117<0



78 A.R.SALEHI F. HOSSEINZADEH LOTFI AND M. ROSTAMY-MALKHLIFEH

This shows that the units J and K are weak efficient and the units M and
N are inefficient. Since priority is given to reducing the inputs, ranking
of the units in the setS] U Sy is as follows:

R(A) > R(J) > R(K) > R(N) > R(M)
Therefore, ranking all the units will be as follows:

RB>R[>RE>Rc>RD>RF>RH>Rg>RA>RJ>RK>RN>RM

5. Analysis of Indicators of Productivity Eval-
uation

In this section, we shall evaluate and rank rail freight and passenger
transportation in Asian countries. The statistical community of recent
studies includes all railways in the world. Information and statistics of 60
UIC (International Railway Statistics, Union International des Chemins
defer) member countries are gathered and used. The data and informa-
tion have been extracted from the statistical yearbook of the Interna-
tional Union of railways till 2016. The database includes information
on population and area of the country, the length of rail lines, number
of freight and passenger wagons, the number of locomotives and the
amount of freight and passenger transported in the countries. As an ex-
ample, information related to the Asian countries in 2016, are shown in
Table 4. [http://www.uic.org].

Information on the entire countries in Asia is rendered in the Table 4. In
this article, we evaluate the performance and ranking of the populous
Asian countries. It must also be noted that, information in relative to
some countries was not available in the abovementioned Table and they
are signified with (na). For accurate evaluation, these countries have not
been investigated. The inputs and outputs in this study are presented
in Table 5.

The countries evaluated in this paper, along with their inputs and out-
puts, are presented in Table 6:
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Table 4: Information about the countries in Asia.

Country Area | Population lle}]llcgtlhof}l‘Twu-lanc The r:‘?mber ]:\\1:;;‘:::::1 Passenger 1 Ton-km st:?f;’t:;ii:'ll
(1000 km2)| (million) | jipeq (km) | lines (km) | locomotives | (million) km (million) (million) (thousands)

China 9,563 1,370.84 67,092 | 34,777 | 19,988 1,544.36 723,006| 2,294.10 1,980,0612004
India 3,287 1,311.05 66,030 | na 10,730 8,224 1,147,1901,095.26 681,696| 1326
Indonesia 1,911 257.56 | 5,279 486 357 198 18,510 | 20.44 5,452 27
Pakistan 796 188.93 | 9,255 2,866 452 52.95 20,288 | 3.60 3,301 32.98
Bangladesh | 148 161.00 | 2,835 na 286 65.60 7,305 2.71 710 27.97
Japan 378 126.82 | 19,204 | 7,593 194 9,090.74 260,192| 31.00 20,255 | 128.89
Vietnam 331 91.71 2,480 0 296 na 4,233 na na 28.36
Iran 1,745 79.11 8,576 1,900 915 24.45 14,938 | 35.65 25,014 | 9.02
Thailand 513 67.96 5,327 346 265 44 7,504 10.86 2,455 26.32
South Korea| 100 50.63 3,944 2,342 492 134.44 | 23,071 | 37.38 9,564 27.85
Iraq 435 35.87 2,138 na na na 99 1.00 249 8.8
Saudi Arabig 2,150 31.54 1,412 0 na 0.99 297 4.03 1,852 1.59
Uzbekistan | 447 31.19 4,192 na na 17.12 3,437 82.39 22,686 | 20.94
Malaysia 331 30.33 2,250 350 92 40.20 3,293 11.83 3,071 5.45
China-Taiwah 36 23.31 1,410 1,069 281 276.75 | 19,757 | 10.91 634 13.18
Syria 185 22.35 2,139 0 na 3.59 1,857 8.51 2,206 12.57
Kazakhstan | 2,725 17.51 14,758 | 3,759 1,892 21 16,595 | 280.00 | 223,583| 78.81
Azerbaijan | 87 9.65 2,068 803 326 1.89 494 17.09 6,210 16.15
Tajikistan 143 8.48 621 na na 0.55 24 8.41 554 3.06
Israel 22 8.35 1,340 na na 52.81 2,608 7.50 1,155 3.3
Jordan 89 6.74 509 na na 0.04 503 2.13 344 6.5
Kyrgyzstan | 200 5.93 417 na na 0.55 75 6.91 922 2.94
Turkmenistan 488 5.37 3,115 na na 6.47 1,811 26.84 11,992 | 14.39
Georgia 70 3.72 1,491 na 50 2.73 549 16.68 4,987 9.068
Armenia 30 3.02 703 8 61 0.84 50 1.64 345 3.43
Mongolia 1,564 2.96 1,810 na na 3.31 1,194 19.15 11,463.0014.68

Table 5: The inputs and outputs

ID Variables Type of Variables
1 The Total length of lines (km) input
2 The number of locomotives input
3 Passenger - km (million) output
4 Ton - km (million) output
Table 6: The inputs and outputs for 7 countries
Country The Total | The num- | Passenger - | Ton - km
length of | ber of | km (million) | (million)
lines (km) locomo-
tives
China 67,092 19,988 723,006 1,980,061
Indonesia 5,279 357 18,510 5,452
Pakistan 9,255 152 20,233 3,301
Japan 10,204 104 260,192 20,255
Iran 8,576 915 14,938 25,014
Thailand 5,327 265 7,504 2,455
South Korea 3,944 492 23,071 9,564
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The optimal sum of the model 5 with the rank of each country is shown
in Table 7.

Table 7: The optimal sum of the model 6 with rankings

Country z* rank
China 0.00114 2
Indonesia -0.0003 5
Pakistan -0.372 6
Japan 0.002 1
Iran -0.38 7
Thailand 0.00058 4
South Korea 0.00091 3

The assessment results show that East Asian countries have a particular
interest in rail transport and the optimal use of this industry. Other
countries, especially developing countries in Asia, can develop the rail
industry by simulating East Asian countries and transferring advanced
technologies in the coming years. The development of the rail industry
can play an important role in improving environmental conditions and
reducing pollution. Given the safety of rail travel, the use of this industry
can play an imperative role in reducing mortality in all countries. An
indicator is a variable, which is used to measure the status and efficiency
of the system and should be comparable. In this study, several indicators
are defined, whereby; the status and efficiency of rail freight transport
could be compared between various countries. Most of the variables of
the database cannot be considered as an indicator, but significant and
comparable indices could be created with their no dimensionality and
application of algebraic relationships between several variables. The
definition of seven indicators made by the database variables and the
manner of their calculation are shown in Table 8. In this Table, the
indicators are divided into four general parts including the development
of railways, navigation development, exploitation of rail lines, and the
utilization of rail fleet.
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Table 8: Sample of information about countries in Asia

ment indicators

length of lines in
the area

Types of Indica- | Indicators Symbols and Formulas
tors
‘Railroads develop- | Density —of the | I, = Lhelofallenghios rail road(km)

Area(1000Km?)

The length of rail
road per capita

I, — The total lenght of rail road(km)
2= Pupulation(million)

Locomotive number

the number of loco-
motive to the length
of rail lines

I, = The number of locomotive
3 = Thetotal lenght of lines(Km)

Efficiency of lines

Annual ton-Km per
a rail road-Km

I, — Ton—Km(mallion)
4 = Thetotal lenght of lines(Km)

Annual Passenger-
Km per a rail road-
Km

I — Passenger— Km(million)
5 = Thetotal lenght of lines(Km)

Efficiency of loco-
motive

Annual Passenger-
Km per The num-
ber of locomotives

I — Passenger—Km(mallion)
6 — The number of locomotives

Annual ton-Km per
The number of loco-
motives

I — ton— Km(million)
7 = The number of locomotives

The important indicators commonly used to measure rail performance
of different countries are shown in Table 8 and the following diagrams
(Figure 6) present the performance of Asian countries per indicator,
which are useful for comparing the ranking of the proposed model with
them.



82 A.R.SALEHIL F. HOSSEINZADEH LOTFI AND M. ROSTAMY-MALKHLIFEH

Density of the length of lines in the area The length of rall road pexcapifa

160
60 140
50 2 120
- g 12
<2 40 2 100
g 30 e w
e
F 20 £ 20
G 2
10 I I 20 [ |
o M - [ ] 0 :
China IndonesiaPakistan Japan  Iran Thaland South Chim.Indomesa Pebiim Jopm Ty Theilind Soufty
Korea
The number of locomotive to the length of rail Annual ton-Km per a rail road-Km
lines
35
0.35
03 30
5025 ¥
2 o2 2 20
z <
2 0.15 c15
g !
2 o1 F10
i I )
0 - o - = 0 _ =
G Fodoesa Tk, Jipmy;  fon Thellaod Sowh China Indonesia Pakistan Japan  Iran  Thailand South
Korea
Annual Passenger-Km per a rail road-Km Annual Passenger-Km per The number of
locomotives
16
14
1600
12 1400
g 10 1200
ER § 1000
26 3 500
E 600
P El
400
2
S EEE NN N
0 0 — - - —_ —_— -
China Indonesia Pakistan Japan  Iran Thailand South China IndonesaPakistan Japan  Iran Thailand South
Korea Korea

Annual ton-Km per The number of locomotives
120

100

milion ton.Km/car
[+
o

20 I
o [ | - | I

China Indonesia Pakistan Japan  Iran Thailand South
Korea

Figure 6. The status countries of Asia by comparing indicators of
development and fleet



EVALUATION AND RANKING OF RAIL FREIGHT ... 83

In general, China and Japan have the highest values based on the in-
dexes. In Japan, in particular, rail infrastructure has a high density and
spread. In addition, in China, the fleet used has a significant difference
with other countries. So two countries rank first and second in the an-
nual passenger and freight turnover, followed by Korea, which ranked
third, with an average fleet.

6. Conclusion

Inability in ranking the efficient units is one of the major weaknesses of
traditional methods of Data Envelopment Analysis (DEA). Researchers
have provided various methods for ranking efficient units. In this pa-
per, we suggested a method for ranking all the DMUs, which are based
on strong and weak supporting hyperplanes. In addition, the decision-
making units, which are ranked on the assumption that, the ranking
of the extreme efficient units is higher than those of the non-extreme
efficient units, the ranking of non-extreme units is higher than the one
of weak efficient units and that the ranking of the weak efficient units
is higher than the ones of the inefficient units. The proposed method
virtually does not endure the common problems of ranking, including
the infeasibility of the model, instability for small data, inability to
rank the non-extreme units and false ranking. Applying the proposed
method to the common set of weight (CSW), as well as developing the
proposed method for conditions where strong defining hyperplanes can
be suggested for future research. As a case study, we implemented the
presented model on railway transportation data for some Asian coun-
tries. By presenting performance indicators, we conclude that, the ef-
ficiency of rail transportation in the East Asian States supersedes the
other countries. As we are aware, in the mentioned countries, which at-
tain higher rankings such as, Japan, China and South Korea railroad is a
major means of transport, signifying the fact that, their rail networks are
among the busiest in the world, which have expanded with the new high
speed and conventional and commuter lines during last decades. Fur-
thermore, there are long-term plans to expand the networks in the fu-
ture. At times, the privatized networks are highly efficient, requiring
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few subsidies and run extremely punctually. Hence, the efficiency of rail

transportation in East Asia is more substantial.
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Appendix
Proof:
[1] Proof Theorem 1:

Suppose that it is non-extreme efficient, thus A\ = €p, 0 = 1 is the optimal
solution for model (1) and since(z,,y,) is non-extreme efficient it has
another optimal solution such as (A\*,0*)where A* % X . If X% = 0 is the
proved assertion, or otherwise 0 < A7 <1 and so

5 M1\ = Zj;éP )‘;wj =(1- )\;)Xp = Zj;éP ﬁ%’ =Xp
JEP G T P * _(1_)\* - Al
Ej;éP i Yp = p)yp Zj;éP —xY =Y

R Ax .
We place); = Z#p ﬁ >0, j# psowe have

R . . AT 1=\
ZAjﬂﬂj:Xp ZAjyj:Ypa Z)‘J’:Z1_JA*:1—)\5:1
D P

J#P J#P J#p J#P

Now by choosing § = 1 and A\ = (5\1,5\2,...,jxp,l,O,)\pH,..,;\n) and
s~ =0,sT =0 it is concluded that

<9~, A, s, s*)is the optimal solution for model(1) and Xp =0.
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Proof by contraposition: Let us assume that model (1) has an opti-
mal solution like (A*, 6) in which A} = 0. Based on the assumption that,
as(zp, yp) is efficient, then 8* = 1; this shows that the unit(zy, y,) of the
reference set isRy = { DMU; |X; >0}, As A" = 0, thenDMU, ¢ Ry.
We place\ = ep,§ = 1, this shows that (5, 5\) is another optimal so-
lution for model (1).Thus, the unit (zp,yp)has another reference set
as Ry = {DMUp}. Therefore, according to the definition 3, the unit
(xp, yp)is non-extreme efficient.

[2] Proof Theorem 2:

Proof: In assuming that the unit (z,,y,) is extreme efficient. Proof by
contradiction: Assume that model (4) is feasible and its optimal solution
is (6™, \*) andf™* < 1. One of the following cases would be seen

i) 0 < 1 So we placeX = (A1, \*2, ..., X*p_1,0,\*po1, ..., \*;)andd =
6™, then (6, \)

the solution is feasible for model 1 and as # < 1, it is understood that
the unit (zp, yp)is inefficient which is in contradiction to the proposition.

ii) 0" = 1, so we put A = (\*1, A2, ..., A*p_1,0, \*py1,..., \*,) and
6 = 0™, in this case (é, X)is the optimal solution for model 1 andj\p =0.
Based on the theorem 1, the unit (z,,y,) is non-extreme efficient, which
is in contradiction to the proposition.

Proof by contraposition: Now, assume that(6*, \*)is the optimal so-
lution for model (4) and 6 > lor model (4) is infeasible. We show that
the unit (xp,y,) is extreme efficient. Proof by contradiction: Assume
that the unit (z,yp)is not extreme efficient, then there would be two
cases; either the unit is inefficient or it is weak efficient or it is non-
extreme efficient. Based on model (1), it has an optimal solution like
(6%, X\*) where \p* = 0 andf* < 1.

We put A = (A1, 2, ..., \*p_1,0, \*py1,..., A*,), then (9*,5\) is the
feasible solution for model (5). Thus, it is in contradiction to the propo-
sition denoting model (4) is infeasible or it is in contradiction to the
optimality of §* for model (5). Therefore, the contradictory assumption
is nullified and the assertion is proved.



88 A.R.SALEHIL F. HOSSEINZADEH LOTFI AND M. ROSTAMY-MALKHLIFEH

[3] Proof Theorem 3:

Proof. assume that the unit (z,,yy)is extreme efficient. Proof by con-
tradiction: (z,,y,) € T, assume that(*, \*) is the optimal solution of

—~

model 1 and (9’*, )\)is the optimal solution of model 5. Since(zp, yp) €

T, it is understood thatT, C T, and we have T}, = T, Therefore 8* =
#’* = 1 which is in contradiction to the theorem 2.

Proof by contraposition: Assume that(zp,y,) ¢ T, 'we show that
(xp, yp)is extreme-efficient.

Proof by contradiction: if the unit is not extreme efficient, then it is
either inefficient or weak efficient or non-extreme efficient, then model 1
has an optimal solution (6*, \*)where \* =0 and " < 1.

Let A = (A*1, A9, .., A p_1,0, A pi1, ..., A*,) andf = 6%, then (9’,5\)is
the feasible solution for model (5) and (xp,y,) € T}, which is in contra-
diction to the proposition of the theorem.

[4] Proof Theorem 4:

Letiz—l,ﬂozo,ﬂzoandm:ﬁfor Xip> 0 and v; = 0
for otherwise. where k = card ({i |z, > 0}), then (,7,,u,,Z) is the
feasible solution for model (5).

[5] Proof Theorem 5:
Assume that (z,7) € T}, we show that u*y —v*Z+u* < 0(z,9) € T, =
INZ0 5D p N ST ap Al 20 2jupAi =1
Then we have w'y <u* ., Njy; 0T = v > it NjTij =

WY — 0t ugy < 3o, Ay (WY — vt +ug) <0
Now, we show thatH (T, # 0 ,3q q#p; u'y,—v*ze+u) =0 Proof
by contradiction, Assume that for each index such as j Vj  u*y; —
viej+ul <0 j#p. uis defined asu = (u] + A, ud + A, . ul + A)
and the value of Ais found in a way that @ is feasible. To reach this goal:

y; —v'zj+uy, <0 j=1,.,n,j#p
= ay; +AY Sy — vz +ul<0 j=1,.,n,j#p
:>A2i=1yrj<—(U*yj_”*33j+u?§) jzla"7n7j§£p
éAg—ﬁ(u*yj—v*xj—i-u:) j=1,..,n,j#p
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A :min{s_1 (u*yj —v'z; +ui)) | j=1,..,n ,j#p }
ZT:]_ Yrj

Asu*y; —v'zj+u;, <0 j#p

so A’ > 0 However, it can be z* < M.uf < M.a, Vr , z* < M Vi
Puttingz = uy, + u; — 1, as M is a very large positive number, soz <
M., Vr,z < M.ww! Vi. This shows that (u,v*,u*, 2) is a feasible solu-
tion for model (5). However, zZ = typ,+ul—1 = u*y,+A" Y 0| yrp+ul—
1=2"+A">" yp AndasA’> 7 | yrp > 0, s0 it can be understood
that Z > z* which in contradiction to the optimality of z*for model (5).
Therefore, the contradiction proposition is nullified and the assertion is
proved.

[6] Proof Theorem 6:

Assume that z* > 0 as (u*,v*,u*, 2*) is the feasible solution for model
(5).

wyp+u, —2"=1&v'ep=1 = u'yp—v'z,+u, =2">00n
one hand it shows that, (z,,y,) ¢ H~ and on the other hand, 7, C H—,
thus(zp, yp) ¢ T,. Based on the theorem 3 it is implied that the unit
(p,yp) is extreme efficient. It is implied that the unit (xp,y,) is an
extreme efficient unit in  a sufficient condition. Now, we assume that
the unit (z,,yp) is extreme efficient we show that z* > 0. The duality
of model 5 is as follows:

Z* =min 0—¢

s.t

djzp AT < Ozj— Ms; i=1,..m
Zj?ép AjYrj < QYrp + MS r=1,...,s

S A= 6 (9)
¢+Zz 15 +Z7‘ 18;'—:1

Aj =20 j=1,...nj#p

s; =20 i=1,...,m

st >0 r=1,..,s

Assume that (0%, ¢*, \*, s7*, s7*) is the optimal solution for model ( )
First, we show thatf* > 0. Assume thatf* < 0, then we have Zﬁép ]
Ms;r <Oz <0 = A =0 ,5"=0 by the equatlonzﬁép S
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@*, it is understood that¢® = 0; by the in equation Z#P AjYri <
dyrp + M s} *it is also understood thats™*= 0. This is in contradiction
to the equationg*+ >, s " + > 7, sf* = 1. Therefore, the contra-
diction proposition is nullified and the assertion is proved now, we show
thatz* > 0. Assume that z* = 0*—¢* < 0 becausef* > 0, theng* > 0.
However, we have:

PP NjUrg = D jap Ajyrg — MsT* > ¢yp

As¢* > 0, it can be expressed that:

Nz, Ay
§ I <% &§ I
X P ¥ =2 Yyp
= ¢ Py

put¢—i = \;, we have:

- AL oF - -
DT SE SESIEE 3 JURNIFS S T IE
J#p J#P '
In addition, this shows that (zp,yp) € T, and this is contradiction to

the unit (zp,yp) being extreme efficient. Therefore, the contradiction
proposition is nullified and it is understood that z* = 6* — ¢* > 0

[7] Proof Theorem 7:

Let =0 , w'yp+u, —2" =1 &v'zp=1 = uyp — vz, +u) =
0 This shows that the unit (zp,yp) is on the supporting hyperplane
H = {(z,y)|u*y —v*z + v} = 0} and based on the proposition, which
is(u*,v*) > 0, then the unit (zp,yp) is efficient. However, the unit
(zp,yp) is non-extreme efficient because if we consider this unit as ex-
treme efficient, based on the theorem 3 z* > 0 which is in contradiction
to the propositionz*= 0 .

[8] Proof Theorem 8&:

Based on the proposition of the problem, the unit (zp,yp)is weak effi-
cient. Therefore, it is not possible to improve all its elements. Thus, we
have the two following cases:
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1) It is not possible to improve all the elements on the vectorzp. In
this case, (6*,\*,s*,s7*)is the optimal solution for model (1) and

/% !/

(u™*,v™*, ul) is the optimal solution for model (2), therefore

0* =1,(s*,sT) #(0,0)

0 =u*yp+u,=10ap=1

u'y; —v'ry +u, <0 Vj
Choosing 2z’ = 0 and regarding 2z’ < Mu, Vr , 2’ < Muv, Vi, it is
understood that (u/,v',ul,2’)is the feasible solution for model (5). On
one hand, as z*, is the optimal value for model (5), thenz* > 2/ = 0.
On the other handz* = 0; otherwise, if z* > 0, based on the theorem
8 it is understood that the unit (xp,yp) is extreme efficient which is in
contradiction to the proposition of the theorem

2) It is not possible to improve all the elements on the vectoryp. (Proof
like the part (1))

[9] Proof Theorem 9:
If2; <0 , z* <0, then the unit (xp,yp) is inefficient.

Proof. By contradiction, Assume the unit (zp,yp) is not inefficient;
subsequently, one of the following cases occurs:

1) The unit (zp,yp) is efficient, subsequently it is concluded that z* >
Osince (based on the result 1) and this is in contradiction to the problem
proposition.

2) The unit (zp,yp) is weak efficient, subsequently based on the theorem
10 z*=0 or 2;= 0 which is in contradiction to the problem proposition.
Thus, the contradiction proposition is nullified and the result is achieved.

If (2 =0,21 <0) or(z* < 0,2, =0), then the unit (zp,yp) is weak effi-
cient.

Proof.

1) If the case (z* = 0,21 < 0) occurs w*yp +us —2*=1,vzp=1 =
u*yp — v*zp + u; = 0 This shows that the unit (zp,yp) is on the
supporting hyper plane H = {(z,y) |u*y — v*x + v} = 0} and as, based
on the proposition, z; < 0; then the unit (xp, yp)is not efficient and this
unit is weak efficient.
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2) If the case (2* < 0,2; =0) occurs, Vx,—Up+ 21 =1, tiyp=1 =
typ — 0p + U, = 0. This shows that the unit (zp,yp) is on the support-
ing hyperplane H = {(z,y) |u*y — v*z + u} = 0} and as, based on the
proposition, z* < 0; then the unit (zp, yp)is not efficient. As the frontier
T, includes efficient or weak efficient points, then, it is understood that
the unit (zp,yp) is weak efficient.
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