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1. Introduction

Recently non-Gaussian statistical models have been reasonably extended
on many applicable sciences such as economics, biology, hydrology and
physic. In fact, there are many situations in which the statistical mod-
els and their skewed structures can be more useful compared to the
models where the real data with outliers and asymmetrical behavior ex-
ist. Some of the statistical models which have recently considered the
non-Gaussian structures are as follows.

Maleki and Nematollahi (2017a), Maleki et al. (2017) and Maleki and
Arellano-Valle (2017) considered the autoregressive model with finite
mixture of scale mixture of normal and skew-normal (FM-SMSN) in-
novations. Maleki et al. (2019a,b) and Maleki and Wraith (2018) have
considered a new flexible family of asymmetric family in the structure
of the linear mixed effect model, finite mixture model and mixture of
factor analyzer model (see also Zarrin et al., 2019; Hajrajabi and Maleki,
2019; Ghasami et al., 2019; Maleki et al. 2019c,d; Hoseinzadeh et al.,
2019; Contreras et al., 2019; Maleki et al., 2020).

In statistical modeling, regression analysis is a set of statistical pro-
cesses for describing the relationships among dependent and predictor
variables in various fields. Some recently researches in this field are as
follows. Mahmoudi et al. (2016) considered the testing between two in-
dependent regression models. Testing the equality of two independent
regressions and also comparing and classifying of several independent re-
gression models have considered by Mahmoudi et al. (2018) and Ji-Jun
et al. (2019). Gray et al. (2015) discussed Bayesian analysis of regression
model based on scale mixture of normal (SMN ) distributions.

It is assumed that the residual errors in linear regression models (LR
hereafter) follow the normal distributions. This model is usually applied
to symmetric data and its analysis. When normality assumption is ques-
tionable, this analysis might not provide robust induce for the errors. So,
several approaches have been proposed so far to overcome any probable
shortcoming and replacing by normality assumption. For instance, Gray
et al. (2015) discussed a Bayesian approach to regression model which
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errors follow the flexible class of distribution which called the SMN fam-
ily. This class of distributions was presented by Andrews and Mallows
(1974). This family of distributions is thick tailed and symmetric. In ad-
dition, it includes distributions such as, normal(N ), student-t(T), Pear-
son type VII(P. II), slash(SL) and contaminated normal (CN ). Cys-
neiros and Paula (2005), Villegas et al. (2012) and Zhu et al. (2013)
discussed estimation and diagnostic analysis for the model in which
the distributions of the error belong to the SMN class. Fernández and
Steel (1999) discussed inferential procedures in regression models with
student-t distribution for the errors. Rubio and Genton (2016) proposed
non-informative prior structure for LR model with skew-symmetric er-
ror distributions. This class contains the skew-normal distributions, the
skew logistic distributions and the skew-t distributions. We are inter-
ested in fitting regression models when the errors have the two-piece
scale mixtures of normal (TP-SMN ) distributions. The TP-SMN fam-
ily has received attention from researchers in many fields. In fact, it is
a rich family of light/heavy tailed symmetric/asymmetric distributions
and is flexible to modeling the symmetric and asymmetric regression
model. These types of distributional suppositions have several benefits,
for example it was used for the description of outliers and types of het-
eroscedastic. Furthermore, TP-SMN distributions can be utilized to the
unobserved heterogeneity that produces asymmetry of residual errors.

The rest of this paper is organized as follows. In Section 2, we review
some main properties of the SMN and TP-MSN families. The proposed
Bayesian method for estimating the linear regression based on the TP-
SMN model parameters is also provided in Section 3. In Section 4, we
illustrate an application of the proposed model and method to real data.

2. Two-Piece Distributions Based on the Scale
Mixtures of Normal Family)

In order to define the linear regression model based on the TP-SMN fam-
ily (TP-SMN-LR) model, we briefly consider and describe the TP-SMN
family of distribution. We refer the readers to Maleki and Mahmoudi
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(2017), Maleki and Nematollahi (2017b) and Morevveji et al. (2019)
for extensive details on these models. This family is useful for some
statistical models including the one proposed based on the viewpoint of
Bayesian analysis. Before this point, we introduce the SMN family. This
family proposed by Andrews and Mallows (1974) is a rich family of sym-
metric distribution given by

fSMN (y|µ, σ, ν) =
 ∞

0
φ
�
y|µ, u−1σ2


dH (u|ν) , y ∈ R, (1)

where φ
�
·|µ, σ2


denotes the density of univariate normal distribution

with location µ ∈ R, scale parameter σ2 > 0 and H ( ·|ν) is the cu-
mulative distribution function (cdf) of the mixing distribution which
can be indexed by a parameter vector ν. This family is denoted by
SMN (µ , σ,ν) and contains the normal, Student-t, Cauchy, Contami-
nated normal and Slash distributions. A random variable by SMN dis-
tribution with location µ ∈ R, scale parameter σ2 > 0 has the stochastic
representation in form

Y = µ+ σU−1/2Z, (2)

where Z is a unit normal random variable that is independent of U,
the mixing random variable has cdf H (·|ν). Arellano-Valle et al. (2005)
introduced a more extensive discussion on the two- piece distributions. A
random variable Y follows the two-piece (TP) distribution denoted by
Y∼TP (µ , σ, γ), if its probability density function can be written as:

g (y|µ, σ, γ) =
2

σ [a (γ) + b (γ)]
(3)

×

f


y − µ
σb (γ)


I(y < µ) + f


y − µ
σa (γ)


I (y  µ)


, y ∈ R,

where f (·) is a symmetric function around zero and γ is the skew-
ness parameter in (0,1) { a (γ) , b(γ)} are positive differentiable func-
tions, a (γ) = γ, b(γ) = 1 − γ. The family in equation (2) involves
the light/heavy-tails symmetric/asymmetric distributions as a special
case. The random variable Y∼TP (µ, σ,γ) has the stochastic represen-
tation in form of Y = µ + σW |X|for which W is a discrete random
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variable, a dependent factor in relation to X, and is a symmetric ran-
dom variable with density f (·). The pmf of W is following

P (W = w |γ ) =
a (γ)

a (γ) + b (γ)
I{a(γ)} (w) +

b (γ)
a (γ) + b (γ)

I{−b(γ)} (w) (4)

This pmf also can be represents in form

P (W = w|γ) = γ
1+s
2 (1− γ)

1−s
2 , w = γ,− (1− γ) , (5)

where the s is sign(w) and defined as

s = sign (w) =


+1 , w  0
−1 , w < 0

In the equation of (3), if the function f (·) belongs to the SMN family, Y
is said to follow a TP-SMN distribution and denoted by Y∼TP (µ , σ,ν,γ).
Its density takes in form

g(y|µ, σ, γ) = 2[(1− γ)fSMN (y|µ, σ2(1− γ)2, ν)I(−∞,µ](y) (6)

+γfSMN (y|µ, σ2γ2, ν)I(µ,+∞)(y),

Let Y ∼ TP-SMN (µ, σ,ν, γ), then Y has the following stochastic rep-
resentation

Y = µ+ σWU−1/2 |Z| , (7)

where Z ∼ SMN (0 , 1,ν) and W , U , Z are independent latent ran-
dom variables, for which Wp(.|γ) is the probability mass function (pmf )
defined by (6). Also, the following hierarchical representation is held,

Y |U = u , W = w ∼ φ
�
y|µ, σ2w2/u


IA (y)(1+s)/2IAc (y)(1−s)/2,

W |U ∼ P (w|γ) ,

U ∼ H (u|ν) ,

where s = sign(w) takes values in {−1,+1}, and A= (µ , +∞), HN(·)
denotes the half-normal distribution on the interval A and P (w|γ) is
defined by (5).
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3. The TP-SMN Linear Regression

In this section, we introduce the TP-SMN linear regression (TP-SMN-
LR) and obtain the ML estimates of this model.

3.1 TP-SMN linear regression model

The TP-SMN-LR model is defined by

Yi = xi β+ εi, i = 1, . . . , n, (8)

where β = (β0, β1, . . . , βp)
 is a vector of regression parameters, Yi

is a response variable and xi = (xi1, . . . , xip)
 is a vector of fixed

explanatory variables for subject i.

Following Sahu et al. (2003), in this study we extend the normal regres-
sion model using the following assumption:

Yi ind∼
TP-SMN


xi β, σ,ν, γ


, i = 1, ..., n,

with i.i.d. observation Y = ((Y1,x1) , . . . , (Yn,xn)) of the TP-SMN-
LR model and vector of parameters θ = (β, σ,ν, γ)

3.2 Bayesian inference for the TP-SMN-LR model

In the Bayesian approach, we use the MCMC type algorithm (Gamer-
man and Lopes, 2006) to infer the parameters for the TP-SMN-LR
model. (To do this algorithm, the stochastic representation has a major
role). The MCMC technique can be developed using a data augmenta-
tion scheme in which we assume the latent variable in the model given
by the vector of U = (U1, . . . , Un) and W = (W1, . . . , Wn). So, we
have that:

Yi |Ui , Wi ind∼
HN


µ+ xi β, σ

2w2
i /ui


IA(Yi)

(1+si)/2IAc(Yi )(1−si)/2,

Wi |Ui ind∼ P (Wi = wi| γ) ,

Ui ind∼
H (ui |ν)
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such that A = (−∞, µ) and si = sign (wi) . So the augmented-likelihood
function is given by

Lcomp(θ |Y obs)=
n

i=1

f
�
Yi − xi β |µ, σ


h (ui|ν) p (wi| γ) (9)

=


σ−n

n

i=1

h (Ui|ν)


exp


−1
2σ2

n

i=1

UiW
−2
i

�
Yi − xi β − µ

2


× γ n
2 + 1

2

n
1 Si(1− γ)

n
2−

1
2

n
1 Si .

3.3 Priors and posteriors of the parameters

On a logical account of utilizing conditional analysis and Bayesian method-
ology, when prior information is not available, what we used in such situ-
ations is the weakly informative prior, which means a prior that involves
no information about θ = (β, σ,ν, γ). We apply the weakly informa-
tive for unknown quantities. Recently, to drive weakly informative prior
for the parameters in the TP-SMN-LR model given by

1) Prior for γ: we can use the prior the skewness parameter γ. the
prior is appropriated given by γ ∼ Beta(α, β),

2) Prior for µ: The chosen prior for can be presented as

µ ∼ N
�
η, ξ2


,

3) Prior for σ2: The prior distribution for σ2 is written by

σ2 ∼ IG

ϑ

2
,
ϑ

2


,

that IG denotes the Inverse-Gaussian distribution. Selecting the
prior distribution for ν, a parameter relying on mixing distribution
H differ from TP-SMN-LR model as indicated in the following
way:

4) The prior distributions for the parameter of ν:
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i) In the TP-T-LR, the proper prior distribution is

ν = ν ∼ exp
κ

2


I (2,+∞) ,

ii) In the TP-CN-LR for each component of the non-information and
independent U(0, 1) are are followed,

iii) In the TP-SL-LR the proper prior distribution is

ν = ν∼ Γ (a, b) ,

where a,b are positive values. (b a)

The prior distribution used to for the vector of regression parameters β
is given by: β ∼ Np+1(µβ,Σβ). That the prior structure is:

π (θ) = π(β)π (µ)π
�
σ2


π (γ)π (ν) .

To use the MCMC methods for instance Gibbs sample, then we draw
a sample from these (full conditional) distribution for Gibbs sampling
procedure, the latent variable Wi , i = 1, . . . , n are defined by

Wi|θ ;Yi − xi β =


− (1− γ) , yi − xi β  µ,
γ , yi − xi β > µ.

We suppose that θ(−p) is the vector of parameters except of P. Based
on weakly informative prior distributions the conditional posterior dis-
tributions will be calculated in what follow:

µ|θ(−µ),U ,W ;Y ∼ TN
�
ηµ, ξ

2
µ


I

yi−xi β
−
, yi−xi β

+
 (µ) ,

where

ηµ =
ξ2

n
i=1 uiw

−2
i

�
yi − xi β


+σ2η

ξ2
n

i=1 uiw
−2
i +σ2

,

ξ2µ =
σ2ξ2

ξ2
n

i=1 uiw
−2
i + σ2

,
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for which TN(·) is a truncated normal distribution.

σ2
θ(−σ),U ,W ;Y ∼ IG



n+ ϑ
2
,

1
2




n

i=1


yi − xi β − η

wi√
ui

2

+ ϑ







 .

γ|θ(−γ),U ,W ;Y ∼ Beta


α+
n

2
+

1
2

n

i=1

si, β +
n

2
− 1

2

n

i=1

si


.

There are relationships between the conditional posterior distribution
for the latent variable Ui, i = 1, . . . , n and the specific members of the
SMN family. To do this process, we define that

ci =

yi−µ
σWi

2
; i = 1, . . . , n, and these conditional posterior distribu-

tion are given by: TP-T-LR model:

Ui|θ,W ; Y ∼ Gamma (ν/2 + 1/2, ν/2 + ci/2) ,

and

π
�
ν|θ(−ν),W ,U ;Y


∝ 1�

2ν/2Γ (ν/2)
n

×Gamma


nν

2
+ 1,

1
2


n

i=1

(ui − logui ) + κ


I(2,∞) (ν) ,

TP-SL-LR model:

Ui|θ,W ; Y ∼ TGamma (ν + 1/2, ci/2) I(0,1)(ui),

where TGamma (·) IA(·) denotes the truncated Gamma distribution on
the interval A, and

ν|θ(−ν),W ,U ;Y ∼ Gamma


n+ a, b−

n

i=1

logui


,

TP-CN-LR model:

π (Ui| θ,W ;Y ) =
di

di + ei
I{τ} (ui) +

ei
di + ei

I{1} (ui) ,

where di = ν
√
τexp (−τci/2) and ei = (1− ν) exp (−ci/2)
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the interval A, and

ν|θ(−ν),W ,U ;Y ∼ Gamma


n+ a, b−

n

i=1

logui


,

TP-CN-LR model:

π (Ui| θ,W ;Y ) =
di

di + ei
I{τ} (ui) +

ei
di + ei

I{1} (ui) ,

where di = ν
√
τexp (−τci/2) and ei = (1− ν) exp (−ci/2)
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ν|θ(−ν),U ,W ;Y ∼ Beta

n−

n
i=1 ui

1− τ + 1,
n

i=1 ui − nτ
1− τ + 1


,

π
�
τ |θ(−τ),U ,W ;Y


∝ν

n−
n

i=1 ui
1−τ (1− ν)

n
i=1 ui−nτ
1−τ .

The conditional posterior distribution for vector of regression coefficient
β :

β ∼ Np+1

�
µβ,Σβ


,

where

µβ = K−1


Σ−1
β µβ +

1
σ2


n

i=1

uiyixi


,

Σβ =


Σ−1 +

n

i=1

ui
σ2w2

i

xix

i

−1

,

for which K = Σ−1 +
n

i=1
ui

σ2w2i
XiX


i .

4. Application

In this section, we consider a road accident dataset for 26 US states. This
data called “Road Accident Deaths in US States” is available in the
“MASS” R package (see scatter plot in Figure 2). By considering the
number of deaths (deaths) as the response variables, the number of
drivers in miles (drivers), the population density per square mile (pop-
den), the length of rural roads in miles (rural), the average of maximum
daily temperature in January (temp) and the fuel consumption in ten
million gallons per year (fuel) as the fixed explanatory variables, we
fit the TP-SMN-LR model to the dataset. In the Bayesian approach,
some model selection criteria based on the posterior mean of the de-
viance like the expected Akaike information criterion (EAIC ) (Brooks,
2002) and the expected Bayesian information criterion (EBIC ) (Carlin
and Louis, 2001) can be considered. we consider the weakly informative
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prior distributions given by β ∼ N6

�
0, 103I6


, γ ∼ Beta (1, 1), µ ∼

N
�
0, 103


, σ2 ∼ IG (0.001, 0.001), and ν ∼ exp(0.1)I(2,∞) for the TP-

T-LR, ν ∼ Gamma(1, 0.01) for the TP-SL-LR, and ν ∼ U(0, 1) inde-
pendent of τ ∼ U(0, 1) for the TP-CN-LR models.

Figure 1. Road Accident Deaths in US States.

Table 1 presents the Bayesian estimates of the TP-SMN-LR parameters;
Results shows that the robust TP-T-LR model is much better fitting
to this data compared to other TP-SMN-LR counterparts. Also, the
histograms of the residuals based on the TP-SMN-LR models are given
in Figure 2. Histograms include the estimated density of residuals based
on the Bayesian estimates of the model parameters.
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Table 1 presents the Bayesian estimates of the TP-SMN-LR param-
eters; Results shows that the robust TP-T-LR model is much better
fitting to this data compared to other TP-SMN-LR counterparts. Also,
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given in Figure 2. Histograms include the estimated density of residuals
based on the Bayesian estimates of the model parameters.

ASYMMETRIC TW0-PIECE MULTIPLE LINEAR ... 59

prior distributions given by β ∼ N6

�
0, 103I6


, γ ∼ Beta (1, 1), µ ∼

N
�
0, 103


, σ2 ∼ IG (0.001, 0.001), and ν ∼ exp(0.1)I(2,∞) for the TP-

T-LR, ν ∼ Gamma(1, 0.01) for the TP-SL-LR, and ν ∼ U(0, 1) inde-
pendent of τ ∼ U(0, 1) for the TP-CN-LR models.

Figure 1. Road Accident Deaths in US States.

Table 1 presents the Bayesian estimates of the TP-SMN-LR parameters;
Results shows that the robust TP-T-LR model is much better fitting
to this data compared to other TP-SMN-LR counterparts. Also, the
histograms of the residuals based on the TP-SMN-LR models are given
in Figure 2. Histograms include the estimated density of residuals based
on the Bayesian estimates of the model parameters.



60 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

-

Figure 2. Bayesian estimated densities of the TP-SMN-LR models
fitted on their corresponding estimated.errors of each linear regression

using the “Road Accident Deaths in US States” dataset.

Table 1: Bayesian estimates of the TP-SMN-LR parameters for the
”Road Accident Deaths in US States” data.
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Table 1: Bayesian estimates of the TP-SMN-LR parameters for the
”Road Accident Deaths in US States” data.

Parameters TP-N TP-T TP-SL TP-CN

β0 0.05713741 0.04114499 0.04990076 0.04570802
β1 4.54202865 4.70166957 4.57606486 4.56499832
β2 -0.01614764 -0.01577284 -0.01446356 -0.01396913
β3 2.11850377 0.24049311 1.97724059 1.99364405
β4 3.26351725 3.17958383 3.00922262 2.95008406
β5 -1.16613434 0.25157303 -0.90497227 -0.59052356
σ 470.228500 213.083200 311.270600 325.919900
γ 0.56732560 0.33540590 0.47287520 0.34901170
ν — 2.10004600 2.10004600 0.05927957
τ — — — 0.02508201

EAIC 375.301900 365.720000 373.430100 370.661000

EBIC 385.366700 377.042900 384.753000 383.242000

5 Conclusion

In this paper, we have proposed a new asymmetric and heavy-tailed
class of two-piece distributions to linear regression model. Also, by con-
sidering the hierarchical representation of the proposed linear regression
model, the MCMC -algorithm is used to find the Bayesian estimates of
the model parameters. It is important to highlight the capacity of the
TP-SMN-LR models to attenuate outlying observations. Our method-
ology applied to a real dataset indicates that a TP-T linear regression
model with small value of degrees of freedom (high presence of heavy-
tails), seems to fit the data better than the TP-N linear regression model
as well as the other TP-SMN-LR models counterparts due to its robust-
ness.

6 Acknowledgment

The authors would like to thank the editor, associated editor and anony-
mous reviewer for their constructive suggestions, corrections and encour-
agement, which helped us to improve earlier versions of the manuscript.

60 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

-

Figure 2. Bayesian estimated densities of the TP-SMN-LR models
fitted on their corresponding estimated.errors of each linear regression

using the “Road Accident Deaths in US States” dataset.

Table 1: Bayesian estimates of the TP-SMN-LR parameters for the
”Road Accident Deaths in US States” data.



ASYMMETRIC TW0-PIECE MULTIPLE LINEAR ... 61

5. Conclusion

In this paper, we have proposed a new asymmetric and heavy-tailed class
of two-piece distributions to linear regression model. Also, by considering
the hierarchical representation of the proposed linear regression model,
the MCMC -algorithm is used to find the Bayesian estimates of the model
parameters. It is important to highlight the capacity of the TP-SMN-LR
models to attenuate outlying observations. Our methodology applied to
a real dataset indicates that a TP-T linear regression model with small
value of degrees of freedom (high presence of heavy-tails), seems to fit
the data better than the TP-N linear regression model as well as the
other TP-SMN-LR models counterparts due to its robustness.
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[2] R. B. Arellano-Valle, H. Gómez, and F. A. Quintana, Statistical infer-
ence for a general class of asymmetric distributions. Journal of Statistical
Planning and Inference, 128 (2005), 427-443.

[3] S. P. Brooks, Discussion on the paper by Spiegelhalter, Best, Carlin, and
van der Linde., 64 (4) (2002), 616–618.

[4] B. P. Carlin and T. A. Louis, Bayes and Empirical Bayes Methods for
Data Analysis, 2nd ed., (2001), Chapman & Hall/CRC, Boca Raton.

[5] J. E. Contreras-Reyes, M. Maleki, and D. D. Cortes, Skew-Reflected-
Gompertz Information Quantifiers with Application to Sea Surface Tem-
perature Records. Mathematics, 7 (5) (2019), 403-404.

[6] F. J. A. Cysneiros and G. A. Paula, Restricted methods in symmetrical
linear regression models. Computational Statistics & Data Analysis, 49
(2005), 689-708.

[7] C. Fernández and M. J. F. Steel, Multivariate Student-t regression models:
Pitfalls and inference. Biometrika, 86 (1) (1999), 153-167.

[8] D. Gamerman and H. F. Lopes, Markov Chain Monte Carlo: Stochas-
tic Simulation for Bayesian Inference, 2nd Edition, (2006), Chapman &
Hall/CR C.

[9] A. M. Garay, H. Bolfarine, V. H. Lachos, and C. R. B. Cabral, Bayesian
analysis of censored linear regression models with scale mixtures of normal
distributions. Journal of Applied Statistics, 42 (12) (2015), 2694-2714.

[10] S. Ghasami, Z. Khodadadi, and M. Maleki, Autoregressive processes with
generalized hyperbolic innovations. Communications in Statistics Compu-
tation and Simulation. (2019).
https://doi.org/10.1080/0361 0918.2018.1535066.



ASYMMETRIC TW0-PIECE MULTIPLE LINEAR ... 63

[21] M. Maleki and D. Wraith, Mixtures of multivariate restricted skew-normal
factor analyzer models in a Bayesian framework. Computational Statistics,
34 (3) (2019), 1039–1053.

[22] M. Maleki, D. Wraith, and R. B. Arellano-Valle, Robust finite mixture
modeling of multivariate unrestricted skew-normal generalized hyperbolic
distributions. Statistics and Computing, 29 (3) (2019a), 415–428.

[23] M. Maleki, D. Wraith, and R. B. Arellano-Valle, A flexible class of
parametric distributions for Bayesian linear mixed models. Test, 28 (2)
(2019b), 543–564.

[24] M. Maleki and A. R. Nematollahi, Autoregressive Models with Mixture of
Scale Mixtures of Gaussian innovations. Iranian Journal of Science and
Technology, Transaction A: Science, 41 (2017a), 1099-1107.

[25] M. Maleki and A. R. Nematollahi, Bayesian approach to epsilon-skew-
normal family. Communications in Statistics-Theory and Methods, 46
(2017b), 7546-7561.

[26] M. Maleki and M. R. Mahmoudi, Two-Piece Location-Scale Distributions
based on Scale Mixtures of Normal family. Communications in Statistics-
Theory and Methods, 46 (24) (2017), 12356-12369.

[27] M. Moravveji, Z. Khodadadi, and M. Maleki, A Bayesian Analysis of
Two-Piece Distributions Based on the Scale Mixtures of Normal Fam-
ily. Iranian Journal of Science and Technology, Transactions A: Science,
43 (3) (2018), 991–1001.

[28] R. Rcore-Team, A language and environment for statistical computing.
R. Foundation for Statistical Computing, Vienna, Austria, URL (2018).
https://www.R-project.org/.

[29] F. J. Rubio and M. G. Genton, Bayesian linear regression with
skew-symmetric error distributions with applications to survival analy-
sis. Statistics in Medicine, 35 (14) (2016), 2441-2454.

[30] S. K. Sahu, D. K. Dey, and M. D. Branco, A new class of multivariate
skew distributions with applications to Bayesian regression models. Cana-
dian Journal of Statistics, 31 (2) (2003), 129–150.

[31] C. Villegas, G. A. Paula, F. J. A. Cysneiros, and M. Galea, Inuence diag-
nostics in generalized symmetric linear models. Computational Statistics
& Data Analysis, 59 (2012), 161-170.

ASYMMETRIC TW0-PIECE MULTIPLE LINEAR ... 63

[21] M. Maleki and D. Wraith, Mixtures of multivariate restricted skew-normal
factor analyzer models in a Bayesian framework. Computational Statistics,
34 (3) (2019), 1039–1053.

[22] M. Maleki, D. Wraith, and R. B. Arellano-Valle, Robust finite mixture
modeling of multivariate unrestricted skew-normal generalized hyperbolic
distributions. Statistics and Computing, 29 (3) (2019a), 415–428.

[23] M. Maleki, D. Wraith, and R. B. Arellano-Valle, A flexible class of
parametric distributions for Bayesian linear mixed models. Test, 28 (2)
(2019b), 543–564.

[24] M. Maleki and A. R. Nematollahi, Autoregressive Models with Mixture of
Scale Mixtures of Gaussian innovations. Iranian Journal of Science and
Technology, Transaction A: Science, 41 (2017a), 1099-1107.

[25] M. Maleki and A. R. Nematollahi, Bayesian approach to epsilon-skew-
normal family. Communications in Statistics-Theory and Methods, 46
(2017b), 7546-7561.

[26] M. Maleki and M. R. Mahmoudi, Two-Piece Location-Scale Distributions
based on Scale Mixtures of Normal family. Communications in Statistics-
Theory and Methods, 46 (24) (2017), 12356-12369.

[27] M. Moravveji, Z. Khodadadi, and M. Maleki, A Bayesian Analysis of
Two-Piece Distributions Based on the Scale Mixtures of Normal Fam-
ily. Iranian Journal of Science and Technology, Transactions A: Science,
43 (3) (2018), 991–1001.

[28] R. Rcore-Team, A language and environment for statistical computing.
R. Foundation for Statistical Computing, Vienna, Austria, URL (2018).
https://www.R-project.org/.

[29] F. J. Rubio and M. G. Genton, Bayesian linear regression with
skew-symmetric error distributions with applications to survival analy-
sis. Statistics in Medicine, 35 (14) (2016), 2441-2454.

[30] S. K. Sahu, D. K. Dey, and M. D. Branco, A new class of multivariate
skew distributions with applications to Bayesian regression models. Cana-
dian Journal of Statistics, 31 (2) (2003), 129–150.

[31] C. Villegas, G. A. Paula, F. J. A. Cysneiros, and M. Galea, Inuence diag-
nostics in generalized symmetric linear models. Computational Statistics
& Data Analysis, 59 (2012), 161-170.

62 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

[11] A. Hajrajabi and M. Maleki, Nonlinear semiparametric autoregressive
model with finite mixtures of scale mixtures of skew normal innova-
tions. Journal of Applied Statistics, 46 (11) (2019), 2010-2029.

[12] A. Hoseinzadeh, M. Maleki, Z. Khodadadi, and J. E. Contreras-Reyes,
The Skew-Reflected-Gompertz distribution for analyzing symmetric and
asymmetric data. Journal of Computational and Applied Mathematics,
349 (2019), 132-141.

[13] P. Ji-Jun, M. R. Mahmoudi, D. Baleanu, and M. Maleki, On Comparing
and Classifying Several Independent Linear and Non-Linear Regression
Models with Symmetric Errors. Symmetry, 11 (6) (2019), 820-821.

[14] M. R. Mahmoudi, M. Mahmoudi, and E. Nahavandi, Testing the dif-
ference between two independent regression models. Communications in
Statistics-Theory and Methods, 45 (21) (2016), 6284-6289.

[15] M. R. Mahmoudi, M. Maleki, and A. Pak, Testing the equality of two
independent regression models. Communications in Statistics-Theory and
Methods, 47 (12) (2018), 2919-2926.

[16] M. Maleki, M. R. Mahmoudi, D. Wraith, and K. H. Pho, Time series mod-
elling to forecast the confirmed and recovered cases of COVID-19. Travel
Medicine and Infectious Disease, (2020). https://doi.org/10.1016/j.tmaid.
101742

[17] M. Maleki and R. B. Arellano-Valle, Maximum a-posteriori estimation of
autoregressive processes based on finite mixtures of scale-mixtures of skew-
normal distributions. Journal of Statistical Computation and Simulation,
87 (2017), 1061-1083.

[18] M. Maleki, R. B. Arellano-Valle, D. K. Dey, M. R. Mahmoudi, and S.
M. Jalali, A Bayesian approach to robust skewed Autoregressive process.
Calcutta Statistical Association Bulletin, SAGE Journals, 69 (2017), 165-
182.

[19] M. Maleki, Z. Barkhordar, and Z. Khodadadi, A robust class of ho-
moscedastic nonlinear regression models. Journal of Statistical Compu-
tation and Simulation, 89 (14) (2019d), 2765-2781.

[20] M. Maleki, J. E. Contreras-Reyes, and M. R. Mahmoudi, Robust Mixture
Modeling Based on Two-Piece Scale Mixtures of Normal Family. Axioms,
8 (2) (2019c), 38-39.



64 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

[32] P. Zarrin, M. Maleki, Z. Khodadadi, and R. B. Arellano-Valle, Time se-
ries process based on the unrestricted skew normal process. Journal of
Statistical Computation and Simulation, 89 (1) (2018), 38-51.

[33] X. X. Zhu, B. Zhu, and C. Z. Cao, Diagnostics for a linear model with first
order autoregressive symmetrical errors. Communications in Statistics-
Theory and Methods, 42 (2013), 2335-2350.

Behjat Moravveji
Ph.D Student of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: bmoraveji1393@gmail.com

Zahra Khodadadi
Assistant Professor of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: zkhodadadi@miau.ac.ir

Mohsen Maleki
Assistant Professor of Statistics
Faculty of Mathematics and Statistics
Department of Statistics
University of Isfahan
Isfahan, Iran
E-mail: m.maleki.stat@gmail.com

64 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

[32] P. Zarrin, M. Maleki, Z. Khodadadi, and R. B. Arellano-Valle, Time se-
ries process based on the unrestricted skew normal process. Journal of
Statistical Computation and Simulation, 89 (1) (2018), 38-51.

[33] X. X. Zhu, B. Zhu, and C. Z. Cao, Diagnostics for a linear model with first
order autoregressive symmetrical errors. Communications in Statistics-
Theory and Methods, 42 (2013), 2335-2350.

Behjat Moravveji
Ph.D Student of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: bmoraveji1393@gmail.com

Zahra Khodadadi
Assistant Professor of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: zkhodadadi@miau.ac.ir

Mohsen Maleki
Assistant Professor of Statistics
Faculty of Mathematics and Statistics
Department of Statistics
University of Isfahan
Isfahan, Iran
E-mail: m.maleki.stat@gmail.com

64 B. MORAVVEJI, Z. KHODADADI AND M. MALEKI

[32] P. Zarrin, M. Maleki, Z. Khodadadi, and R. B. Arellano-Valle, Time se-
ries process based on the unrestricted skew normal process. Journal of
Statistical Computation and Simulation, 89 (1) (2018), 38-51.

[33] X. X. Zhu, B. Zhu, and C. Z. Cao, Diagnostics for a linear model with first
order autoregressive symmetrical errors. Communications in Statistics-
Theory and Methods, 42 (2013), 2335-2350.

Behjat Moravveji
Ph.D Student of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: bmoraveji1393@gmail.com

Zahra Khodadadi
Assistant Professor of Statistics
Department of Statistics
Marvdasht Branch, Islamic Azad University
Marvdasht, Iran
E-mail: zkhodadadi@miau.ac.ir

Mohsen Maleki
Assistant Professor of Statistics
Faculty of Mathematics and Statistics
Department of Statistics
University of Isfahan
Isfahan, Iran
E-mail: m.maleki.stat@gmail.com

ASYMMETRIC TW0-PIECE MULTIPLE LINEAR ... 63

[21] M. Maleki and D. Wraith, Mixtures of multivariate restricted skew-normal
factor analyzer models in a Bayesian framework. Computational Statistics,
34 (3) (2019), 1039–1053.

[22] M. Maleki, D. Wraith, and R. B. Arellano-Valle, Robust finite mixture
modeling of multivariate unrestricted skew-normal generalized hyperbolic
distributions. Statistics and Computing, 29 (3) (2019a), 415–428.

[23] M. Maleki, D. Wraith, and R. B. Arellano-Valle, A flexible class of
parametric distributions for Bayesian linear mixed models. Test, 28 (2)
(2019b), 543–564.

[24] M. Maleki and A. R. Nematollahi, Autoregressive Models with Mixture of
Scale Mixtures of Gaussian innovations. Iranian Journal of Science and
Technology, Transaction A: Science, 41 (2017a), 1099-1107.

[25] M. Maleki and A. R. Nematollahi, Bayesian approach to epsilon-skew-
normal family. Communications in Statistics-Theory and Methods, 46
(2017b), 7546-7561.

[26] M. Maleki and M. R. Mahmoudi, Two-Piece Location-Scale Distributions
based on Scale Mixtures of Normal family. Communications in Statistics-
Theory and Methods, 46 (24) (2017), 12356-12369.

[27] M. Moravveji, Z. Khodadadi, and M. Maleki, A Bayesian Analysis of
Two-Piece Distributions Based on the Scale Mixtures of Normal Fam-
ily. Iranian Journal of Science and Technology, Transactions A: Science,
43 (3) (2018), 991–1001.

[28] R. Rcore-Team, A language and environment for statistical computing.
R. Foundation for Statistical Computing, Vienna, Austria, URL (2018).
https://www.R-project.org/.

[29] F. J. Rubio and M. G. Genton, Bayesian linear regression with
skew-symmetric error distributions with applications to survival analy-
sis. Statistics in Medicine, 35 (14) (2016), 2441-2454.

[30] S. K. Sahu, D. K. Dey, and M. D. Branco, A new class of multivariate
skew distributions with applications to Bayesian regression models. Cana-
dian Journal of Statistics, 31 (2) (2003), 129–150.

[31] C. Villegas, G. A. Paula, F. J. A. Cysneiros, and M. Galea, Inuence diag-
nostics in generalized symmetric linear models. Computational Statistics
& Data Analysis, 59 (2012), 161-170.




