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Abstract 

It is necessary to make use of scientific methods when merging the Decision-Making Units 

(DMUs) in any organization. Tools such as Data Envelopment Analysis (DEA) and 

network DEA (NDEA) are quite useful for unit mergers in two-stage network processes. 

In this paper, a two-stage network inverse DEA (InvDEA) process is proposed for the 

merger of university and bank branches based on linear programming models. It is 

generally crucial to prioritize the inputs and outputs and find the intermediate vectors in 

multi-stage networks. Therefore, a two-stage network inverse DEA model is used for the 

purposes of this study. Finally, some applications of the proposed model are provided in 

DMU mergers based on vector prioritization using Shannon’s entropy, namely the mergers 

of 5 universities, 24 insurance companies, and 20 commercial banks. 

Keywords: DEA, Network DEA, Inverse DEA, Consolidation, Merger. 

1. Introduction 

Many organizations and financial institutions seek to merge their Decision-

Making Units (DMUs) with the aim to save money and improve their performance. 

Data Envelopment Analysis (DEA) is a tool used to evaluate the performance of 

organizations through mathematical programming. This method was originally 

established by Farrell in 1957 and later developed by Charnes, Cooper, and Rhodes in 

1978, forming the well-known CCR model. With the introduction of variable returns 

to scale (VRS) technology by Banker, Charnes, and Cooper in 1984, the BCC model 

was formulated. DEA is a useful technique to measure the relative efficiency of a DMU 

as a whole, with no regard to its internal structure. In other words, a given DMU is 

compared to a black box consuming inputs in order to produce outputs. However, in 

many real-world situations, there exists an internal structure that affects the final 

performance of the system under evaluation. Therefore, it is necessary to study the 

internal components of the DMUs in order to recognize the causes of inefficiency. 

Structures in which the internal structure of the DMUs are taken into account are called 

network structures, and the DEA technique used to measure the efficiency of such 

systems is called network DEA (NDEA). Network DEA was first studied by Charnes 
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et al. in 1986. Thereafter, several studies were carried out with a variety of objectives. 

Kao and Hwang (2008) proposed a model for measuring the efficiency of 24 insurance 

companies in Taiwan. Kao and Hwang (2010) studied the effects of information 

technology (IT) on DMU performances in order to measure the efficiency of network 

systems. Fukuyama and Weber (2010) proposed the SBM model, which maximizes the 

mean of slack variables, aiming to evaluate the performance of 869 Japanese banks 

with undesirable outputs. Kao and Liu (2011) discussed efficiency evaluation in two-

stage structures with fuzzy data. Lewis et al. (2013) introduced the iterative method in 

order to simultaneously minimize the input parameter   and maximize the output 

parameter  . Amirteimoori (2013) studied the case of car factories in which some 

products had defects and required repair. Du et al. (2015) presented an NDEA model 

with a non-homogeneous parallel networks structure. Mehdiloozad et al. (2015) 

investigated the global reference set in DEA. Mirdehghan and Fukuyama (2015) 

suggested a two-stage NDEA method based on the enhanced Russell measure (ERM) 

that provided information regarding the overall efficiency status of the system, as well 

as the component-based efficiency measures. 

Table 1 provides a list of some studies involving two-stage network DEA stratified 

by the models used in the network structure. 

 

Table 1. Studies on Two-stage Network Data Envelopment Analysis 

  Author network the Model used in 

system 

Wang et al. 1997 Independent model 

Seiford and Zhu 1999 Independent model 

 Zhu 2000 Independent model 

Sexton and Lewis 2003 Independent model 

Chen and Zhu 2004 Process distance measure 

model 

Liang et al. 2008 Game theoretic model 

Chen, et al. 2009 Ratio-form process efficiency 

Liu and Wang 2009 Ratio-form system efficiency 

Liu et al. 2010 Independent model 

Wang and Chin 2010 Ratio-form process efficiency 

Fukuyama and Weber 2010 Slacks-based measure model 

Kao and Liu 2011 Ratio-form process efficiency 

model 
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Yang et al. 2011 System distance measure 

model 

Yang and Liu 2012 Ratio-form system efficiency 

model 

Yu 2012 Factor distance measure model 

Liu and Lu 2012 Process distance measure 

model 

Chen et al. 2013 Factor distance measure model 

Lewis et al. 2013 System distance measure 

model 

Zhou et al. 2013 Game theoretic model 

 

The market usually poses threats that can be overcome by restructuring through 

consolidation for cooperation. A common form of a merger is when two or more firms 

combine their activities with the aim of performance improvement, which results in a 

new merger. A predefined performance target usually accompanies a restructuring 

decision. There is an abundance of studies in DEA literature that discuss the 

significance of a firm’s consolidation. These studies cover a wide range of applications, 

such as healthcare (Leleu et al. 2012), banking (Halkos and Tzeremes, 2013), and 

airlines (Kong et al. 2012). Although it is a useful analytical tool for evaluating various 

alternatives, one cannot use the conventional DEA approach to determine the levels of 

production factors in a firm for a given efficiency score. Unlike the conventional 

approach, which aims to calculate the efficiency score of a given DMU, inverse DEA 

(InvDEA) considers efficiency as a given parameter and calculates the input and output 

quantities that are necessary for reaching the pre-specified efficiency level. 

The idea of inverse DEA was initially introduced by Zhang and Cui (1999), 

although Wei et al. (2000) were the first to formally study inverse DEA in order to 

estimate output (input) levels and increase (decrease) output (input) levels while 

maintaining a constant efficiency score. Multi-objective linear programming (MOLP) 

can be used within the framework of inverse DEA to answer questions of the following 

nature: How much more outputs can a given DMU produce if some of its inputs are 

increased and its current efficiency level is assumed to remain unchanged among a 

group of DMUs? Or, how much more inputs should the DMU consume if the output 

level needs to be increased to a certain level while efficiency remains unchanged? In 

the context of DMU mergers, if the models corresponding to the DMUs are infeasible, 

merger will not be possible. Unit mergers can be carried out more appropriately when 

the priorities of input and output vectors are taken into consideration. For instance, in 

the merger of university branches, faculty members play a central role, and thus, have 

the highest priority.  
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An inverse optimization problem for a given feasible solution of an optimization 

problem involves identifying the smallest perturbation in the objective function 

coefficients of the optimization problem so that we can achieve the optimal feasible 

solution of the perturbed model. Recent works on the subject of inverse optimization 

include the studies conducted by Chow and Recker (2012) and Wang et al. (2014).  

After Wei et al. (2000), inverse DEA studies were further developed by a number 

of researchers, and the approach was employed in many theoretical and applied 

contexts. Authors such as Amin and Emrouznejad (2007a), Amin and Emrouznejad 

(2007b), and Jiong et al. (2011) discussed inverse linear programming in their studies. 

Gattoufi et al. (2014) extended the concept of inverse DEA and proposed an application 

in bank mergers. Ghiyasi (2015) introduced an inverse VRS model for a resource 

allocation problem. Lim (2016) presented an InvDEA model with frontier change in 

order to set a new production target. Ghiyasi (2017) investigated inverse DEA problems 

in cases where price information is available. Amin and Al-moharrami (2016) proposed 

a new inverse DEA method for mergers with negative data. Table 2 contains 

information on some other studies carried out in the context of inverse DEA. Amin et 

al. (2017) proposed a novel method for determining minor and major consolidations in 

the market. When the merger of two or more decision-making units has no effect on 

the efficiency frontier, as it was defined before consolidation, the merger is minor. 

Otherwise, the consolidation is defined as a major one. In the present paper, we seek to 

explore the mergers of a number of university branches, insurance companies, and 

commercial banks, as DMUs, using inverse DEA within the framework of two-stage 

network DEA. 

In two-stage network DEA, the efficiency measures of the first and second stages 

are calculated separately, and the overall efficiency is then obtained by considering the 

constraints of both stages at the same time. The relationship between the efficiency 

measure of each stage and the overall efficiency is of great significance. Obviously, 

merging DMUs in two-stage network DEA is quite a crucial matter due to the 

competitive atmosphere among DMUs, centralized use of resources and assets, and the 

presence of intermediate data, which play a key role. Recently, inverse DEA has made 

it possible to merge DMUs with the aim of reducing inputs and increasing outputs; 

though, this gives rise to problems such as the inefficiency of merged units. Such 

problems can be overcome through the use of scientific methods, and certain strategies 

can be adopted in order to make the merged units efficient. 

Next, a few differences will be pointed out between the current study and recent 

studies on inverse DEA. In the present study, we have proposed two separate inverse 

DEA efficiency models for the first and second stages. Furthermore, an overall inverse 

DEA network model is presented taking both stages into account. We have separately 

specified the restrictions placed on input and output vectors for the merger of DMUs 

in our two-stage network inverse DEA. Moreover, we have merged the priorities of 

inputs, intermediate measures, and outputs in the two-stage network inverse DEA.  
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Table 2. Studies on the inverse DEA model 

Author Description 

Yan et al. (2002) Resource allocation problem for guiding an 

inefficient DMU shifting in the direction of a 

projected ray from its current location to the 

frontier  

Jahanshahloo et al. (2004) Input/output estimation in the presence of some 

undesirable factors 

Jahanshahloo et al. (2005) Sensitivity of efficiency classification in InvDEA 

models 

vencheh and Foroughi (2006)-Hadi GInvDEA for input/output estimation  al ofPropos 

Liu et al. (2011) of mergers and  sthe effectinto  ionInvestigat

cesacquisitions on corporate performan 

Frija et al. (2013) driven deductive -a novel data al ofPropos

methodology for estimating the impact of 

increasing water prices in Tunisia 

vencheh et al. (2015)-Hadi an InvDEA model in the presence  ation ofPresent

of imprecise data 

6)Zhang and Cui (201 an extension of the InvDEA model ation ofPresent 

 

The papers listed in Table 2 involve the use of inverse DEA models for assisting 

the managers with their decisions regarding DMU mergers in order to reach pre-defined 

efficiency goals. The current paper is organized as follows: Section 2 contains certain 

preliminaries. Section 3 proposes a novel model for estimating the input and output 

levels in a network structure by combining the concepts of InvDEA and network DEA. 

Some applications are presented in section 4 to elaborate on the computational method 

of the proposed model, and significant conclusions are drawn in the final section. 

2. Preliminaries 

The basic concepts of DEA, Inverse DEA (InvDEA), and Network DEA (NDEA) are 

briefly explained in this section. 

2.1 Basic DEA model 

Suppose that n DMUs consume m inputs to produce s outputs. The input and output 

vectors are presented as  1 , , ,   i=1, ,mj j ijX x x  and  1 , , ,  r=1, ,sj j rjY y y , 

respectively. For all ,,,2,1 nj   we have 0ijx  and . 0rjy  Model (1) is the input-
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oriented radial envelopment form used to evaluate ,oDMU  no ,,1 , considering 

three axioms: inclusion of observation, convexity, and free disposability . 
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Introduced by Banker et al. in 1984, model (1), known as the BCC model, is the first 

basic DEA model under VRS assumption. By solving model (1) for a given 

,  1, , ,oDMU o n  we arrive at the unit's technical efficiency score. Solving model (1) 

also yields a set of efficient peers for any DMU. These efficient peers are on the efficient 

frontier and are regarded as reference points for evaluating the efficiency of a given 

(inefficient) DMU. In this model, o  is called the input-oriented efficiency score of DMUo. 
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Note that the values assigned to is and rs  do not affect the optimal value of o  , 

which is determined from the model (1). 

Definition 1. Strong Pareto efficiency:  The performance of 𝐷𝑀𝑈𝑜 is strongly Pareto 

efficient if and only if 1o   in Model (1), and all slacks 0i rs s    in Model (2).  

Definition 2. Weak Pareto efficiency: The performance of 𝐷𝑀𝑈𝑜 is weakly Pareto 

efficient if and only if 1o   in Model (1), and 0is   and/or 0rs   for some i  or r . 

 The output-oriented version of model (1) is as follow: 
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Here,  ,o o oX Y   is called the output-oriented efficiency score of 𝐷𝑀𝑈𝑜. 

  

The following model is used to evaluate 𝐷𝑀𝑈𝑜  under VRS assumption by 

simultaneously reducing the inputs and increasing the outputs. 
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A given DMU under evaluation is called weakly-efficient if and only if 1   and 

1  . In Model (4), If we consider the slacks variables related to input and output 

restrictions as 
1 1

m s

i r

i r

s s 

 

 
 

 
  , and then maximize it, the DMU under evaluation would 

become strongly efficient whenever 0is   and 0rs   for each i and r. 

 

 

 

 

2.2 Network DEA 
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The simplest network structure is the basic two-stage structure, in which all external 

inputs  1 , ,j mjx x  are consumed in the first stage to produce intermediate measures 

 1 , ,j djz z  and the final outputs  1 , ,j sjy y
 
are produced in the second stage. Only the 

input vectors and the intermediate measures are taken into account in the evaluation of the 

first stage. Intermediate measures are the outputs of the first stage. In the evaluation of the 

second stage,  1 , ,j sjy y  and  1 , ,j djz z  are taken into consideration. 

 

 

 

 

   

  

 

 

 

                                              Fig. 1. Two stage structure 

2.3. Inverse DEA 

The first study in inverse DEA was carried out by Wei et al. (2000). In an InvDEA 

model, the problem of determining the best output (input) level for a given input (output) 

level is discussed with the condition that the optimal value of the DEA model remains 

constant. The following cases are investigated in an InvDEA problem: 

1) How much should the inputs of a given oDMU  increase if the input level was to increase 

while the efficiency measure o  remains unchanged? 

In this regard, assume that the inputs of oDMU  increase from mixio ,,1,   to 

 mixx ioioio ,,1,  , where 0 iox  and 0 iox  (i.e. at least one component 

increases, and it is also allowed for several or even all components to increase). The 

objective of the problem is to estimate the output vector  ,,,1, sryy rororo   in 

a way that the efficiency measure o  remains unchanged. Wei et al. (2000) proposed the 

InvDEA model as follows. 

 

 

 

Stage 1 

 

Stage 2 
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The MOLP model (5) is linearized and solved to determine the maximum possible 

increase in output production. The variables vector in model (5) is  . ,o  All ,ijx  rjy , 

and io are given in the model, and ro  is to be obtained. In this model, o is the optimal 

value of the linear programming problem (3). 

Theorem 1. (Wei et al. 2000). Suppose that 1o , and the inputs for oDMU  are going to 

increase from mixio ,,1,   to  mixx ioioio ,,1,  , where 0 iox  and 

0 iox . 

(i) Let  

o ,  be a weak Pareto solution of MOLP (5). Then, when the outputs of    

 s,1,r  , roy  are increased to
* , we have    *, ,o o o oX Y    . 

(ii) Conversely, let  

o ,
 
be a feasible solution of MOLP (5). If    oooo YX ,,  

, then  

o ,  is a weak Pareto solution of MOLP (5). 

 

(2) How much should the inputs of a given oDMU  increase if the outputs were to increase 

while the efficiency measure o  in the linear programming problem (1) remains 

unchanged? 

In this case, suppose the outputs of oDMU increase from  s,1,r  , roy  to  

 sryy rororo ,,1,  , where 0 roy  and 0 roy  (i.e. at least one component 

increases, and it is also allowed for several or even all components to increase). In the 

following InvDEA problem (6), the input vector  mixx ioioio ,,1,   is estimated 

in a way that the efficiency measure o  remains constant. (Hadi-Vencheh et al. 2008). 
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The variables vector in model (6) is   ,o . All ijx , rjy , and ro  are given in the 

model and io  is to be obtained. In this model, o  denotes the optimal value of the linear 

programming problem (1). 

Model (6) is a MOLP model, which can be solved using the weighted sum method, 

lexicography, or interactive methods. This model was presented by Hadi-Vencheh et al. 

(2008) for estimating  ,io ro   with adherence to the axioms of data envelopment analysis.  

Theorem 2. Suppose that    ,o  is a weak Pareto solution of model (6). Then, 

   * , ,o o oX Y     (Hadi-Vencheh et al. 2008). 

Definition 3. "Minor and major consolidation": If a merger affects the pre-consolidation 

efficiency frontier, then it is called a major consolidation. Otherwise, it is known as a minor 

consolidation. (See Amin et al. 2017). 

In order to convert double-objective and triple-objective programming models, we 

can use methods such as lexicography or the weighted sum method. To employ the 

weighted sum method, by setting the weights as  1

1
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1
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 . Similarly, the objective function of a triple-objective programming model 

can be formulated as 
1
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m

i i
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1
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   . In regard to the procedures involved in lexicography see 

Steuer (1986).  
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2.4. Shannon’s entropy formula 

This section introduces Shannon’s (1948) entropy formula for determining the degree 

of relevance (weight) of input, intermediate data, and output vectors. First, we consider the 

values corresponding to the input, intermediate data, and output vectors in separate 

matrices. For instance, suppose the matrix corresponding to the input values is as follows. 

11 12 1
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n

n

m m mn m n
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r r r


 
 
 
 
  
 

 

Now, with regard to the information in Matrix M corresponding to each input, 

intermediate measure, and output, Shannon’s entropy formula consists of the following 

four steps. 

Step 1. Normalization: Set 
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ijon MMee , where 
oe  is 

the entropy constant calculated as   1
ln


 neo  . 

Step 3. Let n,1,j   ,  1  jj ef . 

Step 4. Let





n

t

t

j

j

f

f
w

1

, where jw  is the corresponding degree of importance. 

Shannon's entropy formula is used to calculate the weights of jw  corresponding to the 

indexes ijr . Weights obtained through Shannon's entropy formula can be used to assign 

weights to input and output variables in DEA. For further information, refer to soliemani-

damaneh and Zarepisheh (2009). 

 

3. Network Inverse DEA (NInvDEA) and suggested models 

It is obvious that network DEA-based efficiency evaluation for the purposes of DMU 

mergers is dependent on the desirable performance of DMUs in separate network stages. 

Therefore, by focusing on stage 1 and using the InvDEA technique, we would be able to 
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find suitable targets in terms of target efficiency. In a two-stage network structure, suppose 

that we have n DMUs, where the jth DMU,  nj ,,1  consumes m inputs 

 1 , ,j j mjX x x  to produce the intermediate measures  1 , ,  j j djZ z z and s outputs 

 1 , ,j j sjY y y  are produced in the second stage. In this research, mergers occur in stage 

one, stage two, and the overall stage. In the overall mode, there is no need for the mergers 

to occur in any specific order. Meanwhile, when we are dealing with DMU mergers, the 

proposed models can be of use.   

Suppose that DMUs k and l are going to merge in order to consolidate their activities. 

Let M
~

denote the merged DMU and T represent the index set of all DMUs except k and l. 

 Set  1 21, ,I m I I    and 
1 2i I I I   , 1,i m . Similarly, for the set of output 

indexes, suppose that   1 21, ,S s S S   , and 
1 2r S S S   , 1, ,r s , and for 

indexes relating intermediate measures, set  1 21, ,D t D D    and 
1 2d D D D   , 

1, ,d t . 

 

Suppose that 
M

ix  and 
M

dz correspond to the inputs and intermediate measures of the 

merged unit, respectively. Then, the input-oriented NInvDEA model for the consolidation 

of DMUs in the first stage of a two-stage network structure is proposed as follows. 

 

1 2 1 2

1

1 2

1

1 2

1

1 2

1 2

1

. . ,

,          7

1

0 ,

,      

0,          .

i i d d

i I I d D D

j ij o i

j T

j dj d

j T

j

j T

M

i i

M

d d

j

Min p f

s t x i I I

z d D D

x i I I

z d D D

j T

 

  

 









   









  

  



   

  

 

 







                                                             

 

In model (7), the input weights are obtained through Shannon’s entropy formula. The 

target efficiency measure is pre-determined. ip  is a factor specifying the amount of 

reduction in our inputs. In the first and second constraints, the goal is to reduce the inputs. 

Furthermore, i cannot take any value and is limited to values varying between zero and a 

given input component. The solution to model (7) represents the maximum possible and 
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required amounts of decrease in the inputs of the merged entity. In this model, o is the 

optimal value of the linear programming problem (1). In Model (7), by considering 
1

j , 

which corresponds to 𝐷𝑀𝑈𝑗  in the first stage, we seek to obtain 1i  and 2i  by adding the 

restrictions 1 10 M

i ix   and 2 20 M

i ix   under the VRS assumption. The objective in this 

model is to reduce 
1 2

i i

i I I

p
 

  and increase 
1 2

d d

d D D

f 
 

 . 

The objective function of Model (7) is formulated as  1 1min  , , , , ,m d    , in 

which the weights of ip  and df  obtained through Shannon's entropy formula for Matrices 

X and Z, respectively, are used. Although, only in the condition that ip  and df  take 

positive values. Therefore, we have: 
1 2 1 2

min  i i d d

i I I d D D

p f 
   

 
 

 
  . 

Theorem (2) is specific to Model (6) and cannot be extended to Model (7), as Model 

(7) is a single-objective linear programming model and does not require the use of MOLP 

solving procedures like Model (6).  

 

3.1 Network InvDEA model for stage 2 

As in the case of the first stage, model (8), presented in the following, can be 

considered as the NInvDEA model corresponding to the second stage. Only the 

intermediate products    1 , , , 1, ,j djz z d t  and the final outputs 

   1 , , , 1, ,j rjy y r s  are involved in the evaluation. The weights corresponding to 

the outputs are computed using Shannon’s entropy and are denoted by  s,1,r  , rq  in 

the model. 
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 

1 2 1 2

2

1 2

2

1 2

2

1 2

  

. .       ,        d

            ,    r S S          8

            1

             ,             r S

            ,     

d d r r

d D D r S S

j dj d

j T

j rj o r

j T

j

j T

M

r r

M

d d

Min f q

s t z D D

y

y S

z

 

 

  







   









  

  



  



 







1 2

2

          d D

             0,       j T.j

D



 

 

   

The objective function of Model (8) is defined as  1 1min  , , , , ,t s     , in 

which the weights of df  and rq  obtained through Shannon's entropy formula for Matrices 

Z and Y, respectively, are used (in the condition that they take positive values). Therefore, 

the objective function is converted into 
1 2 1 2

min  d d r r

d D D r S S

f q 
   

 
 

 
  . The linear 

programming problem (8) aims to reduce 
1 2

d d

d D D

f 
 

  and increase 
1 2

r r

r S S

q 
 

 . In this 

model, the minimum value of d  and the maximum value of r  are calculated for 𝐷𝑀𝑈𝑗  

under the VRS assumption by considering o  from Model (3) and 
2

j  corresponding to 

the second stage. Note that in Model (8), the minimum value of r  and the maximum value 

of d  correspond to 
M

ry  and 
M

dz , respectively. 

 The objective in two-stage network DEA is to calculate the overall efficiency, which 

requires the efficiency measures of the first and second stages. There are two fundamental 

questions to be addressed in inverse DEA: a) how should the merger take place for each 

stage separately? and b) how should the merger take place for the two stages as a whole? 

Models (7) and (8) deal with question a, while model (9) addresses question b, as will 

follow. Model (9) is proposed for determining the input, intermediate measure, and output 

levels required to achieve the pre-defined target efficiency measure. 
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 

1 2 1 2 1 2

1

1 2

1

1

2

1 2

2

2

1 2

1 2

1 1

. . ,

, 9

,

,

, 1, ,

         1,   1

0

i i r r d d d d

i I I r S S d D d D

j ij i

j T

j dj d

j T

j rj r

j T

j dj d

j T

j dj j dj

j T j T

n n

j j

j j

Min p q f f

s t x i I I

z d D

y r S S

z d D

z z d t

   

 

 

 

 

 

 



     









 

 

  

  

 

  

 

 

 



   









 

 

1 2

1 1 2 2

1 2

1 2

,

,      , ,

,

, 0 , .

M

i i

d d d d

M

r r

j j

x i I I

z d D z d D

y r S S

j T

 



 

  

   

  

   

In this model,  mipi ,,1,  ,  srqr ,,1,   ,  , 1, ,df d t , and  

 , 1, ,df d t  are priorities assigned to the inputs, outputs and intermediate measures of 

the merged DMUs, respectively, obtained through Shannon’s entropy formula. The first 

stage of our network structure is completely independent of the second stage. Therefore, 

the first stage is evaluated independently. The second stage is also evaluated independently 

based on parameters related to outputs and intermediate measures. In this model, the 

objective function is defined as  1 1 1min  , , , , , , , ,m s d         . Therefore, 

using Shannon’s entropy formula, the weights of  ip , rq df  and df  are calculated for 

Matrices 1,  Y, ZdX  and 2dZ , respectively (weights must be positive). Thereby, the 

objective function is converted into 
1 1 1 1

min  
m s D D

i i r r d d d d

i r d d

p q f f   
   

 
   

 
    . 

Each optimal solution of model (9) would be a feasible solution for models (7) and (8). 

 It is interesting to point out that if a DMU was efficient in either of the first or second 

stages, we can use the proposed models to evaluate the overall efficiency and clearly 

determine the relationships between overall efficiency and efficiency in any stages of the 

network structure. The restrictions in Model (8) are determined based on the first stage; 

however, the model and its restrictions relate to the second stage themselves. The combined 

restrictions of stages one and two correspond to the overall network in Model (9). 

Therefore, if a DMU had an efficiency score of 1 in both stages one and two, it will 
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obviously be efficient in the overall evaluation. The main problem in network DEA lies in 

the relationships between the efficiency of stages one and two and the overall efficiency. 

Thereby, in the present research, 
1

j corresponds to 𝐷𝑀𝑈𝑗  in the first stage in Model (7). 

Similarly, in Model (8), 
2

j corresponds to 𝐷𝑀𝑈𝑗  in the second stage. In Model (9), which 

aims to evaluate the overall network, the variables 
1

j and 
2

j correspond to 𝐷𝑀𝑈𝑗  in the 

first and second stage, respectively. It must be noted that all models adhere to the main 

axioms of data envelopment analysis, namely "inclusion of observation", "convexity", and 

"free disposability". 

In Model (9),  and  denote the optimal solutions to Model (4). In this model, 

𝐷𝑀𝑈𝑜  is projected onto the efficient frontier with the aim to simultaneously reduce the 

inputs and increase the outputs. Thereby, combining the restrictions 
1

n

j ij i

j

x 


  and 

1

n

j rj r

j

y 


  Model (9) would provide the minimum and maximum values for 
1

m

i i

i

p


  

and 
1

n

j rj r

j

y 


  respectively. The link between models (7), (8), and (9) lies in this 

blending of restrictions in the overall evaluation. As a recommendation for future research, 

it is particularly important to specify the exact link between the aforementioned models. 

The following algorithm is presented in regard to the use of models (7), (8) and (9) 

for determining minor and major consolidations in network InvDEA. 

In Algorithm (1), the value of o  is first calculated for the first stage by solving Model 

(1). Then, the weights of ip  and rq  and df are calculated using Shannon's entropy formula, 

as explained in section two. Next, with consideration to Model (9), the merger would be 

called a minor consolidation if the model was feasible. If Model (9) was infeasible, we 

convert the constraints and deem the consolidation a major one. 

For the overall network, the value of  and    is initially calculated by solving Model 

(4). Then, with the help of Shannon's entropy formula, we calculate the weights of ip , rq , 

df , and df  corresponding to Matrices 1,  Y, ZdX , and 2dZ , respectively. To determine 

the consolidation type, we take Model (9) into consideration. If the model was feasible, the 

consolidation would be called a minor one, and otherwise, it would be a major 

consolidation, in which case, the following modified constraints are considered in the 

model: 
M

i i iv x   , 
M

r r ru y   , 1 1 1

M

d d dl z   , and 2 2 2

M

d d dh z   .  
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Parameters 𝑋𝑗, 𝑌𝑗, and 𝑍𝑗  

Calculate the value of  

by solving Model (1) 

Solve Model (7) 

: Add the inputs 

of the merged units 
together. 

: Add the 
intermediate 
measures of the 
merged units 
together 
 

Using Shannon's entropy 
formula and considering 

Matrices X and Z, calculate the 

weights of  and  

Minor 

consolidation 

Solve Model (3) and calculate the 

value of  

Using Shannon's entropy 
formula and considering 

Matrices Y and Z, calculate the 

values of  and  

Solve Model (8) 

: Add the intermediate 
measures of the merged 
units together 

: Add the outputs of the 

merged units together 

 

Minor 

consolidation 

Major 

consolidation 

Convert the constraints  

and  into  and 

, respectively, and add 

them to the model. Then, solve 

Model (8) again (this resolves the 

problem of infeasibility) 

Solve Model (4) and calculate the 

values of  and  

Using Shannon's entropy formula 
and considering Matrices X, Y, and Z, 

calculate the values of , , 

and  

Solve Model (9) 

: Add the inputs of 

the merged units 
together 

: Add the 
intermediate 
measures of the 
merged units together 

: Add the outputs 

of the merged units 
together 

 

Minor 

consolidation 

Major 

consolidation 

Convert the constraints , , 

, and  into ,

, ,  and 

, respectively, and add them to 

the model. Then, solve Model (9) again (this 

resolves the problem of inefficiency). 

 

Major 

consolidation 

Convert the constraints  and 

   into and , 

respectively, and add them to the model. Then, 

solve Model (7) again (this resolves the problem 

of infeasibility) 

Stage 1 Stage 2 Overall 

Stage 

Infeasible 

Infeasible 

Infeasible 

Feasible 

Feasible 

Feasible 
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Algorithm 1. Algorithm illustrating the use of models (7), (8) and (9) for determining minor and 

major consolidations in network InvDEA. 

 

4. An empirical illustration 

In this section, some applications of the proposed network inverse DEA (NInvDEA) 

model are provided in order to demonstrate its utility. In 4.1, the proposed models are 

applied to a data set extracted from five university branches in Iran (Table 3). In 4.2, 24 

Taiwanese non-life insurance companies are evaluated using the proposed models, and the 

model is employed to evaluate 20 commercial banks in 4.3. 

4.1. Case 1. Real- life application: Five university branches in Iran 

Consider five university branches, each consuming two inputs and one intermediate 

measure to produce two final output, as presented in Table 3, in a two-stage network 

structure. The number of students and the number of staff are the inputs of the first stage, 

appearing in the second and third columns of Table 3, respectively. In Iran, students are 

initially admitted into postgraduate programs as education-oriented students, and then have 

to go through a research-oriented phase after graduating from the education-oriented stage. 

In the context of our study, education-oriented graduates are considered as the intermediate 

measures of the two-stage network (fourth column). Tuition fees and research-oriented 

graduates are the final outputs (fifth and sixth columns, respectively). The efficiency 

measure is considered equal to 1 for all branches. The purpose of using InvDEA in the case 

of university branches was to be able to set the efficiency measure equal to 1 for the merged 

units before analysis. 

Table3. Factors used in the numerical example 

Factor Notation Definition 

Stage 1 inputs 1

ijX Number of students 

Stage 1 inputs 2

ijX Number of staff 

Stage 1 outputs 

(intermediate products) 

1

djZ Education-oriented graduates 

Stage 2 outputs 1

rjY Tuition fees 

Stage 2 outputs 2

rjY Research-oriented graduates 
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Table 4. Inputs, Intermediate measures, and outputs for the university branches under study 

 

 

Now, assume that the activities of DMUs 1 and 5 in the first stage are combined. Let 

M
~

 and   denote the merged unit and the target efficiency score, respectively. We intend 

to determine the input and intermediate measure levels required for the merged university 

M
~

 in order to achieve the pre-defined target efficiency score. Consider the target 

efficiency score equal to 1 for the merged university, i.e., 1 . Model (7) is infeasible. 

However, by modifying the constraints 0 M

i ix   as 0 M

i i iv x    and solving the 

model again, the following results will be obtained.  

   

   

1 2

1 2

, , 1813,44,1162

, , 0,0,2131 .v v u

     




 

That is to say, the number of students in the merged university M
~

 must equal 1813, 

which can be achieved through a reduction by  4827 6640 1813  . Similarly, there 

should be 44 staff members in M
~

, which implies the need for a decrease in the number of 

staff by  109 153 44  .  The number of education-oriented graduates in M
~

should equal 

1162, indicating a reduction by  2131 3293 1162  .  

If model (7) was infeasible, we substitute the restrictions M

i ix  and 
M

d dz    by the 

restrictions 0 M

i i iv x    and M

d d dl z    , and solve the model again. The optimal 

solution of Model (7) determines our optimal value. To interpret this restriction, we have: 

,   v 0M

i i i iv x    . Therefore, we will have: M

i i i iv T x    . Then, we set 
i i iT v T 

, and we will have: M

i i iT x   . As can be observed, 
iT  is free to take any sign, which 

solves our problem of infeasibility. The constraint M

d d dl z    has a similar interpretation. 

  DMU  1

ijX 
2

ijX 
1

djZ 
1

rjY 
2

rjY 

1 3667 98 2088 91675000000 1566 

2  18671 378 9839 560130000000 6788 

3 10738 224 5669 300664000000 4251 

4 1813 44 1162 41699000000 847 

5 2973 55 1205 357900000 953 
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The merger between DMUs 1 and 5 is a major consolidation. 

Now, consider the consolidation of the activities of DMUs 1 and 5 in the second stage. 

By solving model (8), the following optimal solution is obtained:   

 
   
   

11

1 2

1 2

, , 5.6 10 ,6788,9839

, , 0,0,6546 .u u l

      




 

As can be seen, the required tuition fee for M
~

 is 11106.5  , which means that the 

tuition fee should be increased. The number of education-oriented graduates must be 9839, 

achieved through an increase by  6546 9839 3293  . The required number of research-

oriented graduates is 6788, implying the need for an increase by  4269 6788 2519  . 

Similar to the case of the first stage, the merger in the second stage is a major consolidation. 

By solving model (9) for M
~

, we arrive at the optimal solution as follows:  

  

   

   
   

1 2

11

1 2

1 2 1 2

, 18671,378

, , 5.06 10 ,6788,9839

, , , , 12031,225,0,0,6546 .v v u u l

 

  

 

  

 



 




                         

One can observe that the required number of students for 
M

DMU ~  is 18671, obtained 

by adding 12031 students. The number of staff must equal 378, achieved through an 

increase by 225. The number of education-oriented graduates should be 9839, indicating 

the need for an increase by 6546. The tuition fee is 111006.5  , meaning that the tuition fee 

should be decreased. Similar to the first and second stages, the overall merger is a major 

consolidation as well.  

4.2. Case 2. Real-life application: Taiwanese non-life insurance companies 

The data set of 24 Taiwanese non-life insurance companies are provided in Table 6. 

Operating expenses and insurance expenses are the two inputs of the first stage. 

Underwriting profit and investment profit are the two intermediate measures; that is to say, 

they are the outputs of the first stage used as inputs in the second stage. Direct written 

premiums and reinsurance premiums are the two outputs of the second stage. Table 5 

presents the factors related to the insurance companies under study, as follows. 

 

 

 

Table 5. Factors used in non-life insurance companies in Taiwan 

Factor Notation Definition 
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Stage 1 inputs 1

ijX Operating expenses: salaries of 

employees and various types of 

costs incurred in daily operation 

Stage 1 inputs 2

ijX Insurance expenses: expenses 

paid to agencies, brokers, and 

solicitors; and other expenses 

associated with marketing the 

insurance service 

Stage 1 outputs 

(intermediate products) 

1

djZ Underwriting profit: profits 

earned from the insurance 

business 

Stage 1 outputs 

(intermediate products) 

2

djZ Investment profit: profits earned 

from the investment portfolio 

Stage 2 outputs 1

rjY Direct written premium: 

premiums received from insured 

clients 

Stage 2 outputs 2

rjY Reinsurance premium: premiums 

received from ceding companies 

 

The data set provided in Table 6 is extracted from Kao and Hwang (2008). 

Table 6.  Data set for 24 Taiwanese non-life insurance companies 

  DMU  ompanyC 1

ijX 
2

ijX 
1

djZ 
2

djZ 
1

rjY 
2

rjY 

1 Taiwan 

Fire 

1178744 673512 7451757 856735 984143 681687 

2 Chung 

Kuo 

1381822 1352755 10020274 1812894 1228502 834704 

3 Tai Ping 1177494 592790 4776548 560244 293613 658428 

4 China 

Mariners 

601320 594259 3174851 371863 248709 177331 

5 Fubon 6699063 3531614 37392862 1753794 7851229 3925272 

6 Zurich 2627707 668363 9747908 952326 1713598 415058 

7 Taian 1942833 1443100 10685457 643412 2239593 439039 

8 Ming Tai 3789001 1873530 17267266 1134600 3899530 622868 

9 Central 1567746 950432 11473162 546337 1043778 264098 
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10 The First 1303249 1298470 8210389 504528 1697941 554806 

11 Kuo Hua 1962448 672414 7222378 643178 1486014  18259 

12 Union 2592790 650952 9434406 1118489 1574191 909295 

13 Shingkong 2609941 1368802 13921464 811343 3609236 223047 

14 South 

China 

1396002 988888 7396396 465509 1401200 332283 

15 Cathay 

Century 

2184944 651063 10422297 749893 3355197 555482 

16 Allianz 

President 

1211716 415071 5606013 402881 854054 197947 

17  Newa 1453797 1085019 7695461 342489 3144484 371984 

18 AIU 757515 547997 3631484 995620 692731 163927 

19 North 

American 

159422 182338 1141951 48329 51950   46857 

20 Federal 145442 53518 316829 131920 355624 26537 

21 Royal & 

Sunallianc

e 

84171 26224 225888 40542 51950 6491 

22 Asia 15993 10502 52063 14574 82141 4181 

23 AXA 54693 28408 245910 49864 0.1 18980 

24 Mitsui 

Sumitomo 

163297 235094 476419 644816 142370 16976 

 

Suppose that DMUs 19 and 24 combine the totality of their activities (i.e., considering 

neither stage alone). Let M
~

and   denote the merged unit and the target efficiency 

measure, respectively. Suppose that M
~

is efficient, i.e., . 1 The inputs, intermediate 

measures, and outputs of the merged unit are the sums of inputs, intermediate measures, 

and outputs in DMUs 19 and 24, respectively. Since a merger is meant to bring about an 

improvement in the performance of the merging units, the target efficiency measure must 

lie within a range between the maximum efficiency measure of the merging entities and 1. 

To achieve a target efficiency score of 1, we determine the minimum input and intermediate 

measure levels and the maximum output level based on model (9). The optimal solution 

for model (9) is: 



24 

   

   

   

1 2

1 2

1 2

, 6699063,3531614

, 83141,4182

, 373928621,17537941 .

 

 

 

 

 

 

 








 

Thereby, according to    1 2, 6699063,3531614    , the merged unit M
~

 must 

reduce its operating expenses and insurance expenses down to 99542 and 198949, 

respectively. Furthermore, underwriting profit should be reduced from 661491 to 592589 

based on    4182,83141, 21   , and investment profit should be maintained without 

any change; moreover, direct written premium should remain unchanged, and reinsurance 

premium should be reduced down to 835307. As another example, assume a merger 

between DMUs 18 and 19, resulting in the merged unit .
~

M We consider 1  . Next, 

model (9) is used to determine the levels of inputs, intermediate measures, and outputs 

required for M
~

to reach the target efficiency measure.  

Considering the optimal solution to (9), i.e.,    1 2, 891948,730335  ,      

   1 2, 12111852,210784    , and    1 2, 4773451,1467197  ,     M
~

should reduce 

operating expenses to 891948, increase underwriting profit to 10899390, reduce 

reinsurance premium to 11714, and keep insurance expenses, investment profit, and written 

premium constant. By solving model (7), the following optimal solution is obtained 

regarding a merger between DMUs 19 and 24. 

   

   

1 2

1 2

, 6699063,3531614

, 37392862,1753794 .

 

 

 

 

 



 

Suppose that M
~

is efficient. That implies that the operating expenses for the merged 

company M
~

should be increased to 6699063, requiring an increase by 6376344. Insurance 

expenses should also be increased by 3114182 in order to reach the goal of 3531614. 

Moreover, underwriting profit and investment profit should reach 37392862 and 1753794, 

respectively, which again requires an increase in the respective levels. The merger between 

these two insurance companies is a major consolidation, or in other words, model (7) is 

infeasible.  

4.3. Case 3. Real-life application: 20 commercial banks 

In this section, we provide another application of the proposed method. Table 7 

contains the factors considered in our example of 20 commercial banks, and the data set 

corresponding to the banks are presented in Table 8. 

 

Table 7. Factors related to 20 commercial banks 
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Factor Notation Definition 

Stage 1 inputs 1

ijX Interest expenses 

Stage 1 inputs 2

ijX Non-interest expenses 

Stage 1 outputs 

(intermediate products) 

1

djZ Total assets 

Stage 2 outputs 1

rjY Interest incomes 

Stage 2 outputs 2

rjY Non-interest incomes 

 

Table 8. Data set related to 20 commercial banks 

Bank 1

ijX 
2

ijX 
1

djZ 
1

rjY 
2

rjY 

Bank 01 3956.796 1894.426 368189.74 9001.004 8701.497 

Bank 02 481.239 319.976 2736416.08 974.854 597.726 

Bank 03 305.2 138.6 2573126.00 479.8 252.2 

Bank 04 4710.680 3996.259 2492463.15 12920.337 6060.768 

Bank 05 1.081 1.282 2106796.00 3.054 0.377 

Bank 06 954.437 1208.703 2610582.12 1991.004 7278.097 

Bank 07 3.965 5.082 837537.23 13.359 3.003 

Bank 08 14.630 16.863 4810226.26 44.659 14.938 

Bank 09 11.771 6.579 184253.00 22.952 15.134 

Bank 10 364.920 244.750 1687155.00 923.51 1942.935 

Bank 11 4897.442 2787.181 2634139.00 11294.607 9363.232 

Bank 12 14.665 8.973 2382397.54 28.124 10.971 

Bank 13 6.077 14.249 2139275.49 26.994 10.207 

Bank 14 397.627 371.535 2521552.18 894.845 1902.878 

Bank 15 661.120 830.166 2118418.10 2325.128 1748.531 

Bank 16 12.125 7.346 856301.00 33.573 19.530 

Bank 17 1222.026 1049.479 1536766.99 2959.509 2651.546 
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Bank 18 931.172 838.346 2073668.69 2460.798 2765.485 

Bank 19 4070.351 2845.498 1024399.25 8377.368 7726.906 

Bank 20 3721.233 858.463 1639225585 6953.701 2779.716 

 

Suppose that Bank 19 and Bank 20 combine the entirety of their activities. Consider 

a target efficiency measure equaling 1 for the merged bank .
~

M  
Model (9) yields the 

following optimal solution. 

   1 2 1 2, , , , 15,17,23,15,4810226  .         
 

This means that interest expenses must equal 15, implying the need for a reduction by 

 7776.584 7791.584 15  . 
 

Non-interest expenses require a value of 17 in the merged bank M
~

, indicating the 

need for a reduction by 3686.961. Interest incomes must equal 23, achieved through a 

decrease by 15308. Non-interest incomes should be equal to 15, requiring a reduction by 

10491.622. Furthermore, the intermediate measure must have a value of 4810226, which 

requires a reduction in the respective level. This merger is a major consolidation, indicating 

the infeasibility of model (9). 

Now, consider the consolidation of the activities of Bank 19 and Bank 20 in the first 

stage, and suppose that the target for the merged bank M
~

 is efficient. The post-

consolidation parameter values are obtained by model (7) as follows.  

   

   

1 2

1 2

, , 15,17,4810226

, , 0,0,12606424 .v v l

     



 

This implies that the values for interest expenses, non-interest expenses, and the 

intermediate measure should equal 15, 17, and, 4810226, requiring reductions by 7776.584, 

3686.961, and 12606424, respectively. The values obtained by model (8) for the 

consolidation of Banks 19 and 20 in the second stage are as follows.  

   

   

1 2

1 2

, , 23,15,184253

, , 15308,10491,0 .u u l

     



 

This indicates that the required values for interest incomes and non-interest incomes 

are 23 and 15, achieved through reductions by 77768.584 and 3688.961, respectively. 
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5. Conclusions 

Financial institutions are nowadays faced with issues such as branch mergers or the 

presence of an excessive number of branches. The extension of financial institutions or 

mergers between them can, to some extent, be an indication of their turnover. However, a 

larger number of branches or mergers cannot necessarily lead to the success of financial 

institutions affiliated with a given organization. Therefore, in this paper, we consider a 

given financial institution as a two-stage network. Tools such as DEA and InvDEA are 

quite helpful in DMU mergers occurring in two separate stages with consideration to 

intermediate measures. Generally speaking, two-stage network InvDEA makes it possible 

to merge DMUs with a desirable level of efficiency, and therefore, the use of two-stage 

network DEA is crucial in many organizations such as universities or banks. This is 

because the graduation of students in postgraduate education happens in a two-stage 

process (education-oriented and research-oriented), and in a banking system, the two-stage 

process of loans investment and contracts with foreign currency services affect the branch 

evaluations. 

As can be observed in Table 7, results from our analysis of 20 commercial banks 

showed that before consolidation, Bank 19 and Bank 20 had a 15% and a 14% share in the 

primary inputs of the decision-making units, respectively. Figure 2 illustrates the shares of 

these two DMUs in regard to other factors. As can be seen in Figure 3, M
~

 has a 92% share 

in the primary inputs (
1

ijX ) of DMUs 19 and 20 after consolidation, as well as having a 3% 

share in the secondary inputs (
2

ijX ). Furthermore, M
~

has a 4% and a 1% share in the 

intermediate measures (
1

djZ ) and the secondary final outputs (
2

rjY ), respectively, while 

having no share in the primary final outputs (
1

rjY ). For future research, we recommend 

considering an assumption of returns to scale in network inverse DEA, as well as modelling 

unit expansion patterns in NInvDEA. 
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Fig. 2. Shares of DMUs 19 and 20 in measures related to each DMU before consolidation 

 

 

 

Fig. 3. Shares of each DMU in measures related to DMU M
~

after consolidation 
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