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1. Introduction

Fixed point theory is a fascinating theory that has been developed to demon-
strate the existence and uniqueness of the solution of a wide range of problems
which arise in nonlinear analysis, applied mathematics, and many related dis-
ciplines such as game theory, economics, medicine, biology, and physics.

The three important theorems that stand out in fixed point theory are the
Schauder [12], Brouwer [7], and Darbo [9] theorems. Among these, Schauder’s
theorem reveals an important generalization of Brouwer’s theorem from finite-
dimensional spaces to infinite-dimensional spaces. However, Darbo’s theorem
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provides an effective method for the existence and uniqueness of fixed points
of the set-valued transformations of non-compact operators. Recently, many
researches have been devoted to the solution of the classes of integral equations
given in [1, 6, 13] using the measure of noncompactness and Darbo’s fixed point
theorem.

On the other hand, contraction operators whose origin date back to Banach’s
contraction principle [3] and their generalizations have a central role in ob-
taining the solution of many important problems arise in various disciplines of
sciences and engineering and thus, have attracted the attention of numerous
researchers. As a generalization of the Banach contraction principle, Berzig
[5] introduced the concept of shifting distance function. Using this concept,
Samadi and Ghaemi [11] presented some generalizations of Darbo’s theorem
with an application to mixed-type integral equations. Later, Cai and Liang [8]
obtained some new generalizations of the Darbo’s fixed point theorem using
integral-type transformations. Quite recently, Karakaya et al. [10] introduced a
new concept of function sequences with shifting distance function and proved
some new Darbo type theorems. In this work, we investigate the behavior of
function sequences under integral type transformations as a generalization of
Darbo’s theorem. It is also to obtain the existence of the fixed point of this
transformation under the function sequences. In addition, the study will be
explained with an interesting example.

2. Preliminaries

Let C be a nonempty subset of a Banach space X. We define C' and Conv(C)
the closure and closed convex hull of C, respectively. Also, we denote by Mx
which is the family of all nonempty bounded subsets of X and Nx that is
subfamily consisting of all relatively compact subsets of X. Throughout this
work, we will show uniform convergence according to n in function sequences
with the symbol “ = “. Also we denote N, R, RT which are natural number,
real number and positive real number, respectively.

Definition 2.1. [see; [4]] A mapping 1 : Mx — RT is called a measure of
noncompactness if it satisfies the following conditions:

(M) The family Ker p = {E € Mx : u(E) = 0} is nonempty and Ker u C N,
(Mp) EC F = p(E) < u(F),

(M3) u(E) = u(E), where E denotes the closure of E,

(My) p(Conv (E)) = u(E),

(Ms) p(AE4+ (1 = XN)F) < M(E) + (1 — Mp(F) for A € [0,1],
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(Mg) If {E,} is a sequence of closed sets in Mx such that E,1; C E, and
lim p(E,) =0, then the following intersection is nonempty

[es)
Eo,= N E,,
n=1

forn = 1,2,--- . If (My) holds, then Eo € Ker p. Let lim p(E,) = 0. As
F. C E, for each n =0,1,2,...; by the monotonicity of u, we obtain

11(Eoo) < lim p(E,) = 0.

So, by (M), we get that E is nonempty and E € Ker pu.

Theorem 2.2. [see; [12]] Let C be a closed and conver subset of a Banach
space X. Then every compact, continuous map T : C — C has at least one
fixed point.

Theorem 2.3. [see; [9]] Let C be a nonempty, bounded, closed and convex
subset of a Banach space X and let T : C — C be a continuous mapping.
Suppose that there exists a constant k € [0,1) such that

WTE) < kp(E)

for any subset E of C, then T has a fized point.

Definition 2.4. [see; [5]] Let 9, ¢ : [0,00) — R be two functions. The pair
(1, d) is said to be shifting distance function, if the following conditions hold:
(4) for u,v € [0,00), if ¥(u) < ¢(v), then u < v,
(#) for {u},{vr} C [0, 00) with klim up = klim v = w, if Plug) < ¢(vg)
for all k € N, then w = 0.

Theorem 2.5. [see; [11]] Let C' be a nonempty, bounded, closed and convex
subset of the Banach space X . Suppose thatT : C — C' is a continuous mapping
such that

P(WTE) < ¢(u(E)) (1)

for any nonempty E C C, where p is an arbitrary measure of noncompact-
ness. Then, T has a fized point in C.

Theorem 2.6. [see; [8]] Let C be a nonempty, bounded, closed and convex
subset of the Banach space X . Suppose that T : C — C'is a continuous mapping

such that
w(TE) w(E)
v ( / @(t)dt> <o ( / w(t)dt> (2)
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for any nonempty E C C, where p is an arbitrary measure of noncompactness
and ¥, ¢ : [0,00) — R are a pair of shifting distance functions. Moreover, let
¢ : [0,00) — [0,00] be a Lebesgue-integrable function, which is summable on
each compact subset of [0,00) and fOE p(t)dt > 0 for each € > 0. Then, T has
at least one fixed point in C.

Definition 2.7. [see; [10]] Let ¢y, ¢y, : [0,00) — R be two function sequences. Let
the pair (1, @) be shifting distance function. The pair (U, ¢n) is said to be
function sequences with shifting distance function property which satisfy the
following conditions:

(1) for u,v € [0,00), if Yn(u) = P(u),én(v) = ¢(v) and ¢(u) < ¢(v), then
u < v,
(i7) for {ug},{vx} C [0,00) with klim up = klim v = w, it Yu(ug) =
Y(ug), on(vr) = ¢ (vi) and P(ux) < ¢ (vg) for all k € N, then w = 0.
Lemma 2.8. [see; [10]] Let 1, ¢y : [0,00) — R be two function sequences .
Assume that the function sequences hold following conditions:

(1) if {¢¥n} upper semi-continuous function sequences and 1, < Vni1, then
P — ¥ is uniform convergence according to n,

(#3) if {Pn} lower semi-continuous function sequences and ¢p = ¢ny1, then
¢n — ¢ is uniform convergence according to n.

Then (tn, ¢n) is the function sequence with shifting distance function property.

Theorem 2.9. [see; [10]] Let C' be a nonempty, bounded, closed and convex
subset of the Banach space X . Suppose that T : C — C' is a continuous mapping
such that

Un(W(TE)) < dn(u(E)) 3)
for any nonempty E C C, where p is an arbitrary measure of noncompact-
ness and Pn, ¢n : [0,00) — R be the function sequences with shifting distance
function property. Then, T has a fized point in C.

3. Main Results

Theorem 3.1. Let C' be a nonempty, bounded, closed and convex subset of the
Banach space X. Suppose that T : C'— C is a continuous mapping such that

w(TE) u(E)
¥ ( / so(t)dt><¢n ( / so(t)dt> (4)

for any nonempty E C C, where p is an arbitrary measure of noncompact-
ness and V¥n, ¢n 1 [0,00) — R be the function sequences with shifting distance



AN APPLICATION OF FUNCTION SEQUENCES TO THE ... 163

function property. Furthermore, let ¢ : [0,00) — [0, 00] be a Lebesgue-integrable
function, which is summable on each compact subset of [0,00) and fOE p(t)dt >0
for each € > 0. Then, T has a fized point in C.

Proof. We define a sequence {Ey} such that Fy = F and Ey, = Conv (TEy_1)
for all £ > 1. Then we get

TE, = TECE=E,
E1 = Conv (TE()) Q E= Eo.

If this process is continued, we have
EgyD2E1D2E, D+ D Ep D

If there exists an integer k > 0 such that u(Ey) = 0, then Ej is relatively
compact and since

TEk Q Conv (TEk) = Ek+1 g Ek,

Theorem 2.2 implies that 7" has a fixed point on the set E}, for all £ > 0. Now,
we assume that u(Ex) > 0 for all & > 0. By using (4) we have

#(Ert1) u(Conv(TEw))

wn<4 wwm> wn<A w@ﬂo (5)
w(TEy)

wn<A <mwm>
u(Eyg)

¢n<A wwﬁ>.

Suppose that (4) holds. Then we get that { #(Ex) (t)dt} is a decreasing se-

quence of p051t1ve real numbers by (i7) of Definition 2.7 and there exists r > 0

N

such that [} (Br) (t)dt — r as k — oco. By using together with (5) and Lemma
2.8, we get 1, (fo P ot )dt) =1 (fo P )dt) and

u(Ert1) w(TE)
w(A ¢@ﬁ>=w<A w@ﬁ>. (6)

Also, if f”(E’“) (t)dt — r as k — oo, then fON(E’““) o(t)dt — r as k — oo.
Hence, from Theorem 2.6, we have

w(Ek+1) w(TEy) w(Ey)
gg¢<4 wwm>:ggy<A w@ﬁ><gg¢<é w@ﬁ)
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Indeed, ¥(r) < ¢(r). From (i7) of Definition 2.7, we obtain r = 0. Hence,
we have fO”(E’“) p(t)dt — 0 as k — oo. On the other hand, since Ey.1 C E,
we obtain that TFEy C Ek and fOM(E’“) p(t)dt — 0 as k — oo. Using (M) of
Definition 2.1, F, = ﬁ Ek is nonempty, closed, convex, and invariant under

T. Hence the mappmg T belong to Ker p. Therefore, Schauder’s fixed point
theorem implies that T has a fixed point in F,, C E. [

Example 3.2. We denote the following function sequences by

o (at) = 4n(1 4—21;):—1211 +1 () = n%(2 —|T—LQU) + 1.

It holds the conditions of Definition 2.7. We assume that

WTE) w(E)
uz/ p(t)dt, v z/ p(t)dt,
0 0

wW(TE) 1 [uE)
/ w@ﬁéf/ (1)t
0 0

If we take ¢(t) = 1, according to Darbo’s fixed point theorem, T has a fixed
point.

Remark 3.3. If we take p(t) =1 fort € [0,00) in Theorem 3.1 such that

W(TE) w(E)
Yn / p(t)dt | = Yo (W(TE)) < dn(u(E)) = 60 / oran
0 0

then we obtain Theorem 3.4 given in [10].

Remark 3.4. Taking p(t) = 1, ¥, (t) = I, (t) and ¢n(t) = kI, (t) such that
I, = I in Theorem 8.1, then we have

w(TE) n(E)
W(TE) =, ( /0 ga(t)dt> < n ( /0 so(t)dt) = ku(E),

so we get Darbo’s fized point theorem, where k € [0,1).

we get

If we take (v,) = (I5,) such that lim I, = I uniformly convergence for all

n—oo
n € N in Theorem 3.1, we obtain the following result.

Corollary 3.5. Let C' be a nonempty, bounded, closed and convex subset of the
Banach space X. Suppose that T : C — C' is a continuous function such that

w(TE) w(E)
I, </0 gp(t)dt) < oy </0 go(t)dt)
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for any nonempty subset of E C C, where p is an arbitrary measure of non-
compactness and ¢y, : [0,00) — R be a function sequences such that

(a) for u,v € [0,00), if I;, (u) < ¢ (v), then u < v,
() for {ur},{vk} C [0, 00) with klim up = klim v = w, if I, (ug) < ¢n(vg) for
all n,k € N, then w = 0.

Also let ¢ : [0,00) — [0,00) be a Lebesgue-integrable function, which is
summable on each compact subset of [0,00) and [; ¢(t)dt > 0 for each £ > 0.
Then, T has a fixed point in C.

Theorem 3.6. Let C' be a nonempty, bounded, closed and convex subset of the
Banach space X. Suppose that T : C — C' is a continuous mapping such that

WTE) n(E) w(E)
¥n ( /O so(t)dt> < Un < /0 cp(t)dt> — n ( /O cp(t)dt) (7)

for any nonempty E C C, where p is an arbitrary measure of noncompactness
and Pp, dn 1 [0,00) — RT be a pair with shifting distance function property.
Also the pair (¢, @) is two nondecreasing and continuous functions satisfying
P(t) = ¢(t) if and only if t = 0. Furthermore, let ¢ : [0,00) — [0,00) be
a Lebesgue-integrable function, which is summable on each compact subset of
[0,00) and fos o(t)dt > 0 for each € > 0. Then, T has a fized point in C.

Proof. Suppose that (7) holds. If by taking limit on (7), we have

wWTE) w(E) w(E)
(0 (/0 w(t)dt> <Y (/0 w(t)dt> —¢ (/0 go(t)dt) . ©®

Along with that, by using hypothesis in expression, we suppose that

w(E) w(E)
(0 </O @(t)dt) =¢ </O <p(t)dt> )

Then we get f(]“(E) (t)dt = 0. By using the conditions of Theorem 3.1, E is
relatively compact and then Theorem 2.2 implies that T" has a fixed point in
C'. Conversely, we suppose that u(E) = 0. Then we can show the following

form in
) w(E) w(E)
v ( / so(t)dt) —¢ ( / @(t)dt> .

Since fO“(E) p(t)dt = 0, it is easy to see that E is relatively compact. From
the condition of Theorem 2.2, we say that T has a fixed point in C. Also since
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(¥, ¢) € RT, fOM(TE) (t)dt = 0. So by repeating the conditions of Theorem 3.1,
we obtain that T" belong to Ker p. As a result, mapping 7" has a fixed point
inFE, CE. O

Theorem 3.7. Let C' be a nonempty, bounded, closed and convex subset of the
Banach space X. Suppose that T : C — C is a continuous mapping such that

WTE) w(E) w(E)
Un ( /O <p(t)dt> < én ( /O w(t)dt) — 0, ( /O <p(t)dt> (9)

for any nonempty E C C, where j is an arbitrary measure of noncompact-
ness and Yy, dn, O : [0,00) — RY be function sequences with shifting distance
function property, triplet functions (Y, dn,0n) — (¥, $,0) be uniform con-
vergence in n and {i,} be sequences of continuous functions. Also, the pair
(dn, 0n) = (@, 0) is two nondecreasing and continuous functions. Furthermore,
let ¢ : [0,00) — [0,00) be a Lebesgue-integrable function, which is summable
on each compact subset of [0,00) and [ ¢(t)dt > 0 for each e > 0. Moreover,
assume that the following conditions hold:

i) 0,(t) = 6(t) = 0 if and only if ¢ = 0 and 6,, > 0 for all n,
i1) for any sequence in {ay} in RT with ar, — ¢ > 0,

Uy, (1) — klim supey (ar) + klim inf 6, (ar) > 0.

Proof. By the similar idea used in Theorem 3.1, we assume p(E)) > 0 for all
k > 0. By using (9), we have

M(Ek+1) H(CORU(TEk))
¥ / ot = / ()t
0

0

w(TEk)

= 4 ( /0 so(t)dt) (10)
u(Ey) u(Ey)

< on (/0 w(t)dt> —0n (/0 sa(t)dt> :

Since 6,, > 0 for all n, we have

w(Er+1) w(Ex)
¥n </o @(t)dt> < én (/0 so(t)dt) .

Also, from Definition 2.7, we get the following inequality

H(Ekt1) n(Ex)
/ (1)t < / p(t)dt.
0 0
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Thus { 0“ (E) go(t)dt} is positive but decreasing sequence. Therefore, there ex-

ists s > 0 such that klim fOM(E’“) p(t)dt = s. Since {1} is sequence of con-

tinuous functions and shifting distance function property, also let (¢, ¢n, 0r)
= (¢, ¢,0), we have

w(Egy1) w(Eg) u(Ey)
lim supr—oc) / e(t)dt | < limsupp—oo® / o(t)dt | + lim supp—oo — 0 / o(t)dt
0 0 0
W(Egt1) n(Er) w(Eg)
¢ [ im supy— oo / e(t)dt | < limsupp—oo® / o(t)dt | + lim supp—os — 0 / o(t)dt
0 0 0

w(Ey) w(Ey)
¥(s) < limsupp—ocd / o(t)dt -I—limkinf@ / o(t)dt | .
0 - 0

Equivalently, we have

w(Ex) w(Er)
¥ (s) — lim supg— 0o d (/ g@(t)dt> +lim inf 6 (/ ga(t)dt) < 0.
0 0

— 00

Hence leII;o fOH(Ek)ap(t)dt = s = 0 and from the definition of y(t), we get
kllrgo w(Ey) = 0. As a result, we can say that T has a fixed point in C. Hence
this completes the proof.
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