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1. Introduction

In recent decades, a great attention has been focused on the study of fixed
point theorems(see [5, 6, 10, 11]). The F-contraction is a new contraction which
firstly defined by Wardowski [28] and generalization of the Banach contraction
principle. This concept has been expanded to F-weak contraction by Wardowski
and Dung [29]. Also, Dung and Hang [14] extended some fixed point theorems
by introduce the new notation of generalized F-contraction.

Throughout this paper, we denote by §, the set of all functions satisfying the
conditions:

(Fy) F is strictly increasing, i.e. for all z,y € Ry such that z < y, F(x) <
F(y);

(Fy) inf F = oo
(F3) F is continuous on (0,00).
In 2014, Piri and Kumam [23] define the concept of F-Suzuki contraction and

give a new version of fixed point which generalizes the result of Wardowski as
follows.

Definition 1.1. ([23]) Let (X,d) be a metric space. A mapping T : X — X
s said to be an F-Suzuki contraction if there exists T > 0 such that for all

1
z,y € X with Tx # Ty and id(x,Tx) < d(z,y),

7+ F(d(Tx,Ty)) < F(d(z,y)),

where F' € §.

Theorem 1.2. ([23]) Let (X,d) be a complete metric space and T : X — X
be an F-Suzuki contraction. Then T has a unique fixed point x* € X and for
every © € X the sequence {T™x} converges to z*.

Recently, some researchers have studied the existence of fixed point theorems
in b-metric spaces, for instance see [2, 3, 8, 9, 12, 13, 16, 19, 20, 24]. As, Piri
and Kumam [24] by introducing a generalized F-Suzuki contraction in b-metric
spaces extended the some of previous results as follows.

Definition 1.3. ([4]) Let X be a nonempty set and s > 1 be given real num-
bers. A mapping d : X x X — RT is said to be a b-metric if for all z,y,z € X
the following conditions are satisfied:

(a1) d(z,y) =0 if and only if v = y;
(a2> d<x’y) = d(ya 3?),'
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(a3) d(z,2) < s[d(z,y) + d(y, 2)].
In this case, the pair (X,d) is called a b-metric space (with constant s).

Definition 1.4. ([27]) Let (X,d) be a b-metric space and {x,} be a sequence
in X. We say that

(b1) {xn} b-converges to x € X if d(xp,x) — 0 as n — o0;
(b2) {zn} is a b-Cauchy sequence if d(Tm,xn) — 0 as m,n — oo;
(bs) (X,d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Let §¢ be the family of all functions F' : Ry — R such that F' is strictly
increasing and continuous on (0,00) and ¥ be a collection of all functions
¥ : [0,00) — [0, 00) satisfying the following conditions:

(¥1) 4 is continuous;

(P2) 9(t) =0 if and only if ¢ = 0.

Definition 1.5. ([25]) Let (X,d) be a b-metric space with constant s. A self-
mapping T : X — X is said to be a generalized F-Suzuki-contraction if there

1
exist F' € g such that, for all x,y € X with x #y and Q—d(z,Tx) < d(z,vy),
s
F(S5d(T.’L‘,Ty)) < F(MT (m,y)) - 1/J(MT(33’9))>
where ¢ € ¥ and

d(Tz,y) + d(z, Ty)
2s '

Mr(a,y) = max{d(x,w, d(T?z,y),

d(T?z,x) + d(T?x, Ty)
2s

d(T?x, Ty) + d(Tx, x),d(Tx,y) + d(y, Ty)}.

,d(T?x, Ty) + d(T?z, Tx),

Theorem 1.6. ([24]) Let (X,d) be a b-complete and T : X — X be an
generalized F-Suzuki-contraction. Then, T has a unique fixed point z* € X
and for every x € X the sequence {T"x}52 1 b-converges to z*.

In fact, in all of the above cases, we observe that the mapping is continuous
at the fixed point. In [26], Rhoades posed an open question as to whether it
is possible to define contractions which, by using them, proved the existence
of a fixed point, which does not have to be continuous in that mapping. Some
authors such as Kannan [17, 18], Pant [21], Bisht and Pant [7], A. Panta and
R. P. Panta [22] and etc provide solutions to the open problem on the existence
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of a contraction mapping which possesses a fixed point but not continuous at
the fixed point. In this paper, we address the following questions.

(Q1) Is it possible to remove the completeness assumption of the space in
Theorem 1.6. 7

(Q2) Is it possible to consider a more extension contraction than generalized
F-Suzuki-contraction in Theorem 1.67

(Qs3) Is condition generalized F-Suzuki-contraction in Theorem 1.6 have to
satisfy all the x and y, or not, we can limit it?

(Q4) What about the continuity of the function T at its fixed point?

In future, we show that Theorem 1.6 is hold whenever X is not a complete
b-metric space. For this purpose, we applying the notation of the orthogonal
sets that was first introduced by the Eshaghi Gordgi et al. [15] as follows.

Definition 1.7. ([15]) Let X # 0 and L C X X X be a binary relation. If “ 17
satisfies the following condition:

3wo: (Vy,yLao) or (Vy,zoly),

then “ L7 is called an orthogonality relation and the pair (X, L) an orthogonal
set(briefly O-set).

Note that in above definition, we say that x( is an orthogonal element. Also,
we say that elements z,y € X are L-comparable either x 1y or ylz.

Definition 1.8. ([1, 25]) Let (X, L) be an O-set. A sequence {x,} is called a
strongly orthogonal sequence(briefly, SO-sequence) if

(VMn, k;  zplanir) or (Vnk;  zpprplay).

Definition 1.9. ([1, 25]) Let (X, L) be an O-set. A mapping T : X — X is
said to be L-preserving if x Ly implies T'(x) L T(y).

Furthermore, we introduce a new contractive definition which is a generaliza-
tion of generalized F-Suzuki-contraction. Also, we show that this contractive
is sufficient to satisfy more limited number x and y in X to fined the fixed
point. In addition, we provide a new answer to the open question posed in
[26], that is, existence of contractive mappings which are discontinuous at their
fixed points. In the following, we present some examples to illustrate the main
results. Finally, in the last section, as an application, we consider the existence
and uniqueness of a solution for a boundary value problem of a nonlinear frac-
tional differential equation in b-metric space. Here, before the main result, we
explain the following definitions.
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Definition 1.10. Let (X, L, d) be an orthogonal b-metric space. A SO-sequence
{zn} in X is called b-convergent if and only if there exists x € X such that
lim,, oo d(zp, ) = 0. In this case, we write lim, o x, = .

Definition 1.11. Let (X, L, d) be an orthogonal b-metric space. Then X is said
to be L-reqular if for each SO-sequence {x,} with x,, — x for some x € X, we
conclude that

(Ynyz, Lz) or (Vnsa L xy,).

Definition 1.12. Let (X, L,d) be an orthogonal b-metric space. A mapping
f X — X is strongly orthogonal b-continuous(briefly, SO-b-continuous) in
x € X if for each SO-sequence {xy} in X if v, — x, then f(z,) — f(x). Also,
f is SO-b-continuous on X if f is SO-b-continuous in each v € X.

Definition 1.13. Let (X, L,d) be an orthogonal b-metric space. X is said to be
strongly orthogonal b-complete(briefly, SO-b-complete) if every b-Cauchy SO-
sequence is b-convergent.

Remark 1.14. [t is obvious that every b-complete is a SO-b-complete.

The following examples show that the converse of Remark 1.14 is not true in
general.

Example 1.15. Let X = (0,1] and D : X x X — RY defined by D(z,y) =
(lz — y|)?. Thus, (X, D) is a b-metric space with s = 2. Define orthogonal
relation “ 1 7 as follows

zly & zyée{xy}
Clearly, X is O-set with o = 1. Obviously, X is SO-b-complete. But X is not
1

b-complete. Because the b-Cauchy sequence x,, = — is not b-convergent in X.
n

Example 1.16. Let X =R and ¢ : X x X — R* define by

0, =1y
n+1 m+1 n+1 m+1
o< G T @ = (5=
oL, Y) = n+1 n+1
4) ) {77()’07 }
(e.9) € { (=00, 0, =)
1, otherwise.

Thus, (X, D) is a b-metric space with s = 2. Define orthogonal relation “ 1 ”
as follows
rly & z=0o 0<zx<y<l.

Clearly, X is O-set with o = 0. Obviously, X is SO-b-complete. But X is not

b-complete. Because the b-Cauchy sequence z,, = is not convergent in X.
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2. Main Results

In this section, we formulate our main results. We begin with the following
definition.

Definition 2.1. Let (X, d) be a b-metric space with constant s. A self-mapping
T:X — X is said to be a generalized F,-Suzuki-contraction if there exist F' €

1
Fc and p € N such that, for all x,y € X with v # y and 2—d(x,Tx) < d(z,y),
s

F(p*s°d(TPz, T?y)) < F(M,(2,y)) — ¥ (Mr(z,y)), (1)

where v € U and Mr(x,y) is the same as in Definition 1.5.

Theorem 2.2. Let (X,d, L) be a SO-b-complete(not necessarily b-complete)
with orthogonal element xy. Let T : X — X be an generalized F P, -Suzuki-
contraction, SO-b-continuous and L-preserving. Also, let X be L -reqular. Then
T has a unique fived point z* € X and for all x € X the sequence {T"z} b-
converges to x*.

Proof. We consider the sequence {z,} defined by =, = T"xz¢, n =0,1,2,....
From the definition of orthogonal element z, we have

(VneN, g LT"zg=x,) or (VneN, x, =T"zy L ).
Also, since T is L-preserving, we have
(Yn,keN, z, =T zo L T" *xg = 2,41)

or
(Vn,k €N, xpix = T gy L Tlay = Tn)-
Therefore z,, is a SO-sequence.

We have the following results:

(1) If there exists ng such that d(x,,, Txy,,) = 0, then we have Tz, = z,,
and the proof is finished.

(2) If for all n, d(zy, Tzy) > 0, since {z,} is SO-sequence and

1
?d(xn,Txn) < d(zp,Tz,) = d(Tn, Tri1),
s

so by the assumption of the theorem, we have

P2 d(T7 0, T 2011)) < F(Mr(@n, 2041)) = (M (00, 2051)). (2)



CONTINUITY AND FIXED POINT OF A NEW EXTENSION ... 73

Since

maX{d('rTH In+1)7 d(Tanv xn—i—l)}

< Mrp(Tn, Tpy1)

d(Tn, Tny2) d(Tnio,Tn)
2s ’ 2s ’

d(Tny2, Tnt1), d(Tnt1, Tng2), d(Tn, $n+1)}

= max {d(xn, Tnt1), A(Tny2; Tni1),

s[d(xn, Tni1) + d(Tpp1, Tni2)]
2s ’

< max {d(xru anrl)a d(xn+27 anrl)a

d ns n d n b n
sld(@n, @ +1)J2r (@01, +2)],d($n+2,$n+1),d($n+17$n+2)7d($m$n+1)}
S

< max{d(xna xn+l)v d(T2IEn, xn+1)}a

therefore

F(pzssd($n+pvmn+p+l)) <F(max{d(zn, Tni1), d(Tn+1, Tni2)})
—Y(max{d(zn, Tnt1), d(Tni1, Tni2)})-

(3)

We consider two cases as follows:

Case 1. Let p = 1. In this case, if max{d(zp, zn11), d(Tn11, Tni2)} = d(Tnt1, Tnt2),
so from (3), we get

F(d(znt1,2n+42)) < F(d(@n41, Tpg2)) — Y(d(Tng1, Tnt2)),

which is a contradiction, and so we conclude that

F(d(znt1, Tny2)) SE(d(2n, Tng1) — P(d(@n, nt1)) < F(d(@n, Tng1)). (4)

Applying (4) and Fy, we have

d(Tny1,Tnr2) < d(Tn, Togr)- (5)

Therefore {d(2y, Tn+1) }nen I8 @ nonnegative decreasing sequence of real num-
bers, and so there exists 6 > 0 such that lim, oo d(Zp41,2,) = J. Letting
n — oo in (4), we have F(§) < F(0) — 1(0). This implies that ¢(J) = 0 and
thus § = 0, that is

lim d(x,,Tz,) = lim d(zp,Tne1) =0. (6)

n—oo n—oo
Case 2. Let p > 1. We adopt the following notations:

(d1) Let x =z, and y = @41
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(d2) Qn(ﬁﬁ, y) = max{d(xnv I’n-i-l)v d(xn-‘rlv zn-‘r?)v t ’d(xn-i'p—l? xn+]))}'

Here, we break the argument into two steps, each of which illustrates something
more.

Step 1: The sequence {Q,(x,y)} is decreasing.
For this purpose, applying (3) and (F}), we have

1
d(Tptp, Tntpr1) < ﬁ max{d(Tn, Tnt1), d(Tni1, Tny2)}

)

1
< WQn(x,y) < Qn(z,y),

50, Qn11(2,y) < Qu(x,y) for every n € N.

Step 2: lim,, o d(2y, Zpy1) = 0.
For every i € {0,1,2,--- ,p— 1} and n € N, taking ¢ = z,,; and y = Tp4i41
into the inequality (3), applying Step 1, then we get that

1
AT ptis Tntptritl) < oy max{d(Tn+i, Tnti+1) ATntit1, Tnrite)}
1

1
< WQ?H-Z(‘T’ZJ) < WQn(xay)’

1
80, Qn+p(,y) < —Qn(z,y). By induction procedure, we obtain that
ps

1
Qn-i—kp(xay) < (pTS5)an(‘T7y) for all TL,]C eN.

Therefore limy o0 Qniip(z,y) = 0, for all n € N. Applying Step 1, we have
lim, 0o Qn(z,y) = 0 and since d(z,,Tnt1) < Qn(z,y) for all n € N, we
conclude that lim, o d(zpn, Zn1) = 0.

We shall prove that {z,} is a b-Cauchy SO-sequence. Suppose that {z,} is
not a b-Cauchy SO-sequence. Then, there exists some € > 0 and two sequences
of positive integers {p(n)} and {g(n)} such that, for all positive integers n, we
have

p(n) >q(n) >n, d(@pm), Tem) Z €, AT, s Tqm)) <& (7)
Applying triangular inequality and (7), we have

£ gd(xp(n)a xq(n)) < S[d(xp(n)a mp(n)fl) + d($p(n),1, xq(n))]
Sd(@p(nys Tp(n) 1) + 58,
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using (6), we get
e <limsup d(zp(n), Te(n)) < €.

n—oo

Also, we have

€< d(zp(n)a xq(n)) < S[d(xp(n)v xq(n)—i—l) + d(xq(n)-l-lv xq(n))]a
and
(s Ta(n)+1) < 8[d(Tp(n); Tgn)) + d(Zg(n), Tg(n)+1)]-
Then by (6), (8), (9) and (10), we can write

< limsup d(2p(n), Tg(n)+1) < s2e.
n—oo

Similarly,

< limsup d(24(n), Tp(n)+1) < s%e.

n—oo

Applying (11) and triangle inequality, we have

d(@p(ny> Tg(n)+1) < S[A(Tp(n), Tp(n)+1) + ATpn)+1, Tg(n)+1)];

we implies that

£ .
2 < llisolip d(mp(n)—i-la xq(n)—i—l)'

Using (8) and the inequality

d(zp(n)—ﬁ—la mq(n)+1) gs[d(xp(n)-ﬁ—la zq(n)) + d(xq(n)a :Eq(n)-‘rl)]
<8 [d(@p(n) 1> Tp(n) + AT p(n) To(m))]
+ Sd(l'q(n)7 l'q(n)+1),

we deduce that

lim sup d(xp(n)—i-la xq(n)—i—l) < s%e.

Therefore from (13) and (14), we have

19 . 3
2 < lmsup d(zp(n) 41, Tg(n)+1) < 5°€.

n—oo

Also, applying (8), we can show that

€ ) 3
— < Hmsup d(@p(n) ps Tg(n)+p) < 7€
S n—oo

75

(13)

(15)
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Since {z,} is SO-sequence, applying (6) and (8), there exists n; € N such that

for all n > ny, we deduce that
1 1
52T p(n) TTp(n)) < 5-€ < d(Tp(n), Tg(n))-
2s 2s

Therefore by assumption of theorem for all n > ny, imply that
F(d(@pn)+ps Ta(n)+p)) S F(Mr(2pn)s To(n))) = D(Mr(Zpn)s g(m)))- (16)
Since
A(Zp(n) To(n) S M1 (Zp(n), Tg(m))
= max {d(xp(n)ﬂ Ta(n))> ATp(n)+25 Ta(n) )

A(@p(n)+15 Tg(n)) + A&p(n), Tq(n)+1)
2s
A(@p(n)+2: Tp(n)) + ATp(n)2; Tg(n)+1)
2s
d(xp(n)+2a xq(n)Jrl) + d(xp(n)+2a xp(n)Jrl)a
d(@p(n)+2: Tn)+1) T A@p(n)+15 Tp(n))s A(Tp(n) 11,

)

)

Tg(n)) + ATqg(n), fﬂq(n>+1)}

< max {d(xp(n), Ta(n))s SIA(Tpm)+2, Tpn)+1) + A(Xpn)+15 Tan))]s

AT p(n)+1, Ta(n)) + A(Tp(n)> Tg(n)+1)
2s
8[d(@p(n)+2, Tp(n)+1) + ATpn)+1, Tp(n))]
2s
L A2 Tp)1) + ATp)+1: o)1)
2s ’
s[d(@p(n)+2, Tp(n)+1) + ATpny+1, Tan)+1)] + A(Tp(n)+2: Tp(n)+1):

sld(@p(n)+2: Tp(n)+1) + A@p(n)+1, Ta(n)+1)]1A(Tp(n) 11, Tp(n) )

)

A(@p(n)+1, Zg(n)) + d(Zq(n), $q<n>+1)}a
let n — oo on above inequality and using (8), (11), (12) and (15), we have

& < limsup M7 (@), Tq(n)) < 5°€. (17)

n—oo
Similarly, we can see that

e <liminf Mp(xp(,), Tq(n)) < s3e. (18)

n—oo
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Letting n — oo in (16), and applying (17) and (18), we deduce that

F(p®s® i sup d(2p(n) s Lp(n)1p))
<F(limsup M7 (2p(n), q(n))) — Y (limsup Mr(2p(n), Tg(n)))

n—oo

<F(s%) —h(e).
Since F' is increasing, we have

s3e €

li d( )< 5= =755 < £
imsup d(x , T = ,
o~ p(n)+p> Lp(n)+p p2sd p2s2 $2

which is a contradiction and so € = 0. Therefore {z,} is a b-Cauchy SO-
sequence. Since (X, L,d) is SO-b-complete, there exists z* € X such that

lim d(x,,z") =0. (19)

n—oo

On the other hand, T is SO-b-continuous function, then

T(z*) = lim T(x,) = lim (x,41) = 2",

n—oo

that is z* is a fixed point of T.

Now, we show that z* is unique. For this purpose, let y* € X be another fixed
point of T'. Since z is an orthogonal element, by the definition of orthogonality,
we have

(xo L y*) or (y* L o).
Since T is L-preserving, then
(xn =T"2x0 LTy =9y*) or (y" =T"y* LT "z =x,).

Therefore, y* and x,, are comparable. Also, under assumption (2), we have
for all n € N, d(z,Tz,) > 0. Therefore for all n € N, we conclude that
d(y*,x,) > 0. Since if there exists m € N such that d(y*,z,,) = 0, then

*

y* = xp,, and so Tx,, = Ty* = y*, that is d(z,, Txm) = 0. Then, we have
1

Q—d(y*7 Ty*) < d(y*,x,) and from the assumption of the theorem, we implies
s

that

Fd(y", wntp)) = F(A(TPy", T xn)) < F(Mr(y®, 2n)) — (Mz(y", n)). (20)
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Since

* * * d(T *axn +d *,TIL'n
MT(y ’In) :max{d(y ,;L‘n),d(sz axn)a ( Y )28 (y ),

d(T?y*, Tx,) + d(Ty*,y*), d(T?y*, Tx,) + d(Ty*, y*),
A(Ty",y") + d(Twn,0) |

d(y*7 Zn) + d(y*7 xn-i-l)
25 ’

< max {d(y*, Tn),

d(y*a xn-&-l)
2s d
= max{d(y*v xn)) d(y*v 1‘71-&-1)7 d(l‘n, xn-l—l)}-

(y*7 xn-‘rl)a d(.]?n, xn—i—l)}

Letting n — oo and using (19), we have lim,, .o M7 (y*, z,) = d(y*, 2*).
Applying (20) and continuity of F' and v, we get

Fld(y™,2")) < F(d(y", z7)) — ¢(d(y”", z7)).

This is contradiction, and so x* = y*. Finally, we proof that T is a Picard
operator. Let © € X be arbitrary. We consider two cases:

1
Case 1. If z—d(T"xo, T 20) > d(T™xo, T"x), letting n — oo and using (19),
s

we have lim,,__,oo 7"tz = 2*, and proof is finished.
Case 2. If ;Sd(T”xO,T”HmO) < d(T"™zy,T"x), hence for all n € N, we get
F(p*s*d(T" P, T Px)) < F(My (T 20, T"x)) — ¢(My (T 0, T"x)).
Letting n — oo, we conclude that
lim F(p*s°d(T" Pzo, T"Px)) < lim F(Mp(T"zo,T"x))
n—00 n—so0

— lim Y (Mgp(T"xo, T"x)).

Applying (F1), (F3) and continuity of ¢, we deduce that
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1
lim d(T""Pzy, T""Px) < — lim Mg(T"zo, T"z)
pSO n—-00

n—-o0

1
= lim max {d(T"acO, T"2),d(T" 2z, T"x),

p35 n—--o0

d(T" g, Trx) + d(T™xo, T 2)
2s
d(T" 2z, T"xo) + d(T™ 220, T 2)
2s
d(T"P22o, T w) + d(T" 22y, T ag),

d(T" 220, T"2) + d(T" 20, T™20),
d(T" g, T"z) + d(T"x, T”Hx)}.

9

)

If p = 1, as proved in the proof of Theorem 1.6, lim,, o, d(T"x, T""12) = 0.
Recalling (19), we observe

m T"Pg)

li
n—-uoo

d(z*, lim T"z) = d(z",

1

< ; n—-o00 n—-so00
1., .
= E[(a: 7nhﬁ)rnoo T"z).

This implies that lim,, .., T"x = x*.
If p > 1, using (19) and triangle inequality, we obtain that

d(z*, lim T"x)=d(z*, lim T""Px)

1
< ——=[(@% lim T"z) +d( lim 7"z, lim T )]
p S n——-aoo n——-maoo n—-mao
1 .
< gl i )
+s[d( lim T"z,z*)+d(z*, lim T"'z2)]
n——>00 n—=o0
3 * s n
Hence
(1= e, Jim T72) <0,

sincep € Nand p > 1, we get lim,,__, o T"™x = z*. This completes the proof. [
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Remark 2.3. In Theorem 2.2, we looked for fixzed point of functional T in the
case that the contraction (1) satisfied for all L-comparable elements x,y € X

1
with  # y and 2—d(m,Tac) < d(z,y), that is enough to be in a more limited
s

number x and y. We note that, since in the entire proof process of Theorem
2.2, we use the SO-sequence {xy}, so the above is true

Remark 2.4. Let p = 1 in Theorem 2.2, we can proof this theorem without
assuming the SO-b-continuity of the T. It is easy to see that for SO-sequence
{zn}, we have d(Tp41,Tni2) < d(Tpn,Tny1) and limy, oo d(zp,2*) = 0 by re-
peating the firstly steps in the proof of Theorem 2.2. We only show that z* is

unique fized point of T'. For this purpose, we show that for all n € N,
1 1
?d(xn,Txn) < d(xp,z*) or Z—d(Txn,T2xn) < d(Txp,x"). (21)

s S

Let by contrary, there exists m € N such that

1 1
%d(xm,Txm) > d(xpm,z*) and %d(Txm,Tgxm) > d(Txpm, x"). (22)

Hence
(QS)d(mma ZE*) < d((L‘m, Txm) < S[d(d?m, .I*) + d(l‘*, TCCm)],

which implies that
AT, ™) < d(z*, TTm)- (23)

Applying (5) and (23), we have
d(Txm,TQm) < ATy, Tx) < S[d(@m, ) + sd(z*, Trp)] < (28)d(TTm, x").
This is a contradiction, and so (21) holds. Since X is L-regular, then x,, and

z* are L-comparable. Let ;d(xn,Txn) < d(xp,x*), under the assumption of
s

theorem, we have
F(d(ns1,Ta")) = F(d(Tan, Ti)) < F(Mp(itn, ™)) — 6(Mr(zn,2%)). (24)
Since
d(z*, Tz*) < Mpd(x,,x*)

d(xpy1, %) + d(xy, Tx*)
25

= max {d(gcn7 ), d(xpta,2"),
d(xpt2,Tn) + d(Tpye, Tx™)
2s
d(xpt1,2") + d(z™, Tx*)}

) d(xn+27 Tl’*) + d(xn+27 xn+1)



CONTINUITY AND FIXED POINT OF A NEW EXTENSION ... 81

d(xpt1,2*) + d(zy, Tx*)
2s
sld(Tn+2, Tny1) + d(@nt1, Tn)] + d(@ny2, TT¥)
2s ’
d(Tpt2, T2") + d(Tni2, Tni1)

d(xpyo, Tx*) + d(pi1, ), d(Xpi1, %) + d(x”, Tw*)}

< max {d(xn, ), d(xpaa, "),

Applying (2), we get
lim My (z,,z*) = d(a*, Ta").
The continuity of v and F, and (24) imply that
F(d(z*,Tz*) < F(Mp(z*,Tx")) — p(Mr(x*, Tx™)),

1
that is * = Tx*. On the other hand, if let Z—d(Txn,szn) < d(Txy, z*).
s

Like the above process, we get x* = Tx*. The uniqueness of =* is obtained as
Theorem 2.2 and this completes the proof.

In the following, we present the example that clearly shows the existence of a
contraction mapping which possesses a fixed point without being continuous
at this point, and this is exactly the answer to the open problem posed by
Rhoades in [26].

Example 2.5. Let X = (—3,3) and define a metric ”d” on X by

0, T=Yy
d(z,y) = { vl z=0and y #0
§|x —y|, otherwise.
Then (X, d) is a b-metric space with coefficient s = —. But it is not a metric

space since the triangle inequality is not satisfied. Suppose that
zly <= x=0.

Then (X, L) is an O-set with orthogonal element xy = 0. Clearly, (X, L,d) is
not a b-complete, but it is SO-b-complete(In fact, if {z,} is an arbitrary b-
Cauchy SO-sequence in X, then z,, = 0 for all n € N and z,, = 0 is b-convergent
to zero.). We see that X is L-regular. Let T': X — X be the mapping defined
by

T
- <0
4’ v

Tr=q2x+1, 0<zx<l1
-z x> 1.

32’
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Clearly T is 1-preserving, since for all z,y € X such that x L y, if x = 0, then
Tz =0.
For each 1-comparable elements z,y € X, observed that

1
Z—Sd(:c,Tx) <d(z,y) & y#0.

Now, we consider the following cases:

(A1) If 2 =0 and y < 0, then
Te=0,T?2=0,Ty = % and T2y = % Therefore

1
T2 T2 — Yy _
AT, T2y) = a0, ) = Ly

17
M (x,y) = d(Te,y) +d(y, Ty) = d(0,y) + d(y. 5) = < Iyl

(A2) If  =0and 0 < y < 1, then

2 1
szO,T%;:O,Ty:Qy—&—landTQy:—( y?;_ ).Therefore
2y +1) 1
d(T2%, T%) = d(o,— 2Dy — Loy 1
(T%2, T%) = d(0, ——5—) = 5512y + 1],

5 3
Mrp(z,y) = d(Tx,y) +d(y, Ty) = d(0,y) + d(y, 2y + 1) = §|y\ +3

(A3) If 2 =0 and y > 1, then

_ 2, _ __Y 2, _ Y
Tr=0,T2=0,Ty = 39 and Ty 128.Therefore
1
d(T?z,T?%y) = d w,_ L
(T2, T%) = d(0, 15) = 155 1ul
Y 163
Mr(z,y) = d(T,y) +d(y, Ty) = d(0,y) + d(y, —55) = Iyl

4
In all above cases, taking F'(t) = In(t) and ¥(t) = %t, we have

F(4s°d(T?2, T?y)) < F(Mr(z,y)) — ¥(Mr(2,y)).

Hence, applying Theorem 2.2 and Remark 2.3, T" has a unique fixed point
x = 0. Also, it can be easily see that T is discontinuous at the fixed point z = 0
and Theorem 1.6 is not applicable this example.
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Now, we illustrate our main results by another example.

Example 2.6. Let X = Q. Suppose that z L y < zy € {z,y}. Clearly, X
with the b-metric given by

p(z,y) = supep|z(t) — y(t)",

is a b-metric space with coefficient s = 2°-1. Furthermore (X, 1) is an O-set
with orthogonal element xg = 1. Clearly, X is not a b-complete, but it is SO-
b-complete(because if {x,} is an arbitrary b-Cauchy SO-sequence in X, then
there exists SO-subsequence {x,, } of {z,} for which z,, =1 for each k > 0,
and so {zp, } — 1).

We see that X is L-regular. Let T': X — X be the mapping defined by

For all z,y € X such that x L y, if x = 1, then Tx = 1, and so Tx L Ty.
Similarly, if y = 1, we have Tz | Ty. Therefore T is 1-preserving. For each
L-comparable elements z,y € X with x # y, observed that

1

Ed(m,Tm) <d(z,y) & (x=1AyeQ)V(rzeQAy=1).
Now, we consider three cases as follows.

(B1) If £ =1 and y # —6, then d(Tz,Ty) = 0.

(B2) f x =1 and y = —6, then d(Tz,Ty) = 1 and My (z,y) = d(Tz,y) +
d(y, Ty) = 18.3.

(B3) Ifx = —6and y = 1 then d(Tx,Ty) = 1 and My (z,y) = d(z, Tz) = 9.85.

t
Taking F' = In(¢) and ¢(t) = 20" Therefore, for all 1-comparable z,y € X

with @ # y, we have F(4s°d(Txz,Ty)) < F(Mr(z,y)) — ¢¥(Mr(z,y)). Hence,
applying Theorem 2.2 and Remark 2.3, T has a unique fixed point.

3. Some Consequences
In this section, we consider some special cases, where in our result deduce
several well-known fixed point theorems of the existing literature.

Similarly, applying the steps in the proof of Theorem 2.2, we obtain following
results.
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Corollary 3.1. Let (X, 1,d) be a SO-b-complete with constant s and X be
L-reqular. Also, let T : X — X be a self-mapping, SO-b-continuous and
preserving and there exists T > 0 such that, for all 1 -comparable z,y € X,

%d(vax) <d(z,y) = 7+ F@4s°d(TPz,TPy)) < F(Mr(z,y)),
S

where where My (x,y) is defined in Definition 1.5. Then T has a unique fized
point ¥ € X.

Corollary 3.2. Let (X, 1,d) be a SO-b-complete with constant s and X be
L-reqular. Also, let T : X — X be a self-mapping, SO-b-continuous and
preserving such that, for all 1-comparable v,y € X,
1
2s

where

d(z,Tz) <d(z,y) = FAs’d(T?2,T"y)) < F(Mr(z,y)) — (N (z,y)),

Nr(x,y) = max{d(ac7 y),d(z, Tx),d(y, Ty)

d(z, Ty) + yd(y,T) d(T?z,z) + d(T?z, Ty)
2 9 2 9
d(T%, Ta), d(T,y), (T, Ty>}7

and 1 is defined as in Theorem 1.6. Then T has a unique fized point x* € X.

Corollary 3.3. Let (X, 1,d) be a SO-b-complete with constant s and X be
L-regular. Also, let T : X — X be a self-mapping SO-b-continuous and -
preserving such that, for every x,y € X,

%Sd(a;Tx) <d(z,y) = F(485d(Tpac,pr)) < F(Mrp(z,y)) — v(d(z,y)),

where Mry(z,y) is defined in Definition 1.5 and v is defined as in Theorem
1.6. Then T has a unique fized point z* € X.

4. Application to the Nonlinear Fractional Bound-
ary Value Problems

In this section we give an application of our main results to a nonlinear frac-
tional boundary value problem. For this let X = C[0,1] endowed with the
metric d induced by
d(u,v) = sup |u(t) —v(t)|*
t€[0,1]
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Thus, (X,d) is a b-metric space with s = 2. Consider the following fractional
differential equations boundary value problem

{ D ult) = f(t,u(t)), tel0,1], 3<a<4, 25)

(0) = u(1) = (0) = (1) =0,
where Dg, is the standard Riemann-Liouville derivative and f € C[0, 1] such

that

(Cy) For all t € [0,1] and u € X, f(¢,u) is increasing related to the second
variable;

(Cy) For all t,¢t € [0,1] and u,v € X with u(t)v(t') < max{v(t),v(t)}, we
have

Fu®) (o) < {6 ut)o() or f(E,ut )o(t));

3 or all u,v € with u(t)v(t) < v(f) and t € , we have
(C3) Forall u,v € X with u(t)v(t) < v(t) and t € [0,1], we h
1
£t u(®) = £t 0)] < 7:Qw )2,

|Tu — v|*+|u — Tv|?
v|?

) 4 7
1 T?u — Tol2+|T?u — Tul?, |T?u — Tv|*+|Tu —
ul?, |Tu — v]?+|v — Tv|?}.

where Q(u,v) := max{|u —v|?, |T?u

|T%u — ul?+|T?%u — To|?

Theorem 4.1. Let the above conditions are satisfied. Then problem (25) has
a unique solution.

Proof. We define the operator equation T': X — X as follows:

_ /0 Gt ) (s, uls))ds, (26)
where
e (L—pt 40 _S)t]arzg_t) =005 5 cpgn
(t,5) = (1- 5)a_2ta_2[(31:(2)+ (@—2)(1 - t)s], 0<t<s<1

The Greens function G(¢,s) defined above has the following property, for all
t,s €[0,1]
M()K(S)

G(t,s) < W,
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where My = max{a — 1, (a — 2)?} and k(s) = s2(1 — 5)*2. So, we conclude
that
G(t,s) <1, forall t,s€[0,1]. (27)

On the other word, we know that fractional differential equations boundary
value problem has a unique solution if and only if T" has a unique fixed point. We
consider the following orthogonality relation in X:

’

ulv & u(t)(t) <max{v(t),v(t)},
for all ¢,t € [0,1] and u,v € X. Clearly, X is complete with the metric “d”

defined above, then it is SO-b-complete. Also, from definition, X is L-regular.
Now, we prove the following steps to complete the proof.

Step 1. T is l-preserving. Let u,v € X with v 1 v. We must show that
Tu(t)To(t") < maz{T(v(t)),T(v(t))}, for all t,t" € [0,1] and u,v € X. Ap-
plying (Cy), we have two cases:

(). S5, u(s))F(5'u(s)) < (s, u(s)o(s) for all 5,5" € [0,1). Applying (26),
(27) and (C}), for all ¢,¢ € [0,1], we have

Tul(t :/01 :/1G(t s)G(t’,s’)f(s,u(s))f(s’,v(s’))ds] ds’
[ [ e

&) Tw(t)
<
<
<

o
o

G(t, s)G(t s )f(s,u(s)v(s))ds] ds’

/0 1 / 1G (5, u(s )v(s))ds] ds
/01 /1G (s ))ds} ds
/OlG t,s)f(s,v(s))ds

=T(v(t)) < max{T(v(t)),T(v(t))}.

o

o

(2). f(s,u(s))f (s, 0(s)) < f(s',uls)o(s")) for all s, € [0,1]. Applying (26),
(27) and (Cy), for all t,t € [0 ,1] we have
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—_

Tu(t)Tv(t )

N
S— — 5— 5— 5—

r prl
GG 5 (s, ul NI o6 s s

—

/

1
G(t,s)G(t s ) f(s ,u(s (s ))ds] ds

/A

1
G(t',s)f(s u(s’)v(sl))ds} ds

1

/A

G(t',s)f(s v(s,))ds} ds

1

’ ’

<[ Gt s)f(s,v(s))ds

/

=T(v(t)) < max{T(v(t)),T(v(t ))}.
These imply that T"is L-preserving.

Step 2. We Show that there exists ¥ € ¥ and F € §¢ such that for each
L-comparable elements u,v € X with u # v

d(u, Tu) < d(u,v) = F(4s°d(Tu,Tv)) < F(M,(u,v)) —(Mg(u,v)).
For this purpose, applying (Cs5), we have

Tu(t) —|/Gts s, u(s ds—/Gts 5, v(s))ds?
</|Gt8||fSU()) Fs,v <>>|ds}

< 7qu1/2/ |Gts|ds}

1
We consider the definition of d, we have d(Tu(t), Tv(t)) < (§)SMT(m,y), and
so we have
In[27d(Tu(t), Tv(t))] < In Mp(u,v) — In2.
We set F(t) = In(t) and 7 = In2. Applying Corollary 3.1, T has a unique

fixed point in X which is a unique solution of fractional differential equations
boundary value problem (25). O
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Remark 4.2. By previous results, we can not guarantee the accuracy of The-
orem 4.1 because conditions (C1) and (C1) does not apply to all u,v € X, it
applies only on limited numbers of them.
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