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this paper is to show that there is an infinite dimensional closed vector
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1. Introduction

In this paper we investigate large linear structures within the set of func-
tions with special integrability properties. The appropriate terminology
are lineability, spaceability and algebrability. These terminologies were
considered by many authors (see e.g. [1, 2, 3, 4, 6, 7]), whose definitions
are as follow:

Definition 1.1. Suppose that κ is a cardinal number.

• Let L be a vector space and A be a subset of L. We say that A is
κ-lineable if A ∪ {0} contains a κ-dimensional vector space;
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• Let L be a Banach space and A be a subset of L. We say that A is
spaceable if A∪ {0} contains an infinite dimensional closed vector
space;

• Let L be a linear commutative algebra and A be a subset of L. We
say that A is κ-algebrable if A∪{0} contains a κ-generated algebra
B (i.e., the minimal system of generators of B has cardinality κ);

• Let L be a linear commutative algebra and A be a subset of L. We
say that A is strongly κ-algebrable if A∪{0} contains a κ-generated
algebra B that is isomorphic with a free algebra (denote by X =
{xα : α < κ} the set of generators of this free algebra);

• The set X = {xα : α < κ} is a generating set of some free algebra
contained in A∪{0} if and only if the set

∼
X of elements of the form

xk1α1
xk2α2
...xknαn is linearly independent and all linear combinations of

elements from
∼
X are in A ∪ {0}; equivalently for any κ ∈ N,

any nonzero polynomial P in κ variables without a constant term
and any distinct y1, y2, ..., yk ∈ X, we have P (y1, ..., yk) = 0 and
P (y1, ...yk) ∈ A.

So far a variety of sets of functions have turned out to enjoy some of
the above properties. For example the set of continuous nowhere differ-
entiable functions on [0,1] is lineable [9], and also spaceable [8], the set
of continuous nowhere Hölder functions is c-algebrable, the set of differ-
entiable functions on R which are nowhere monotone is c-lineable and
so on. For a good survey about large algebraic structures see [12].

The present paper deals with strongly McShane (product) integrable
functions (see Definitions 1.4 and 1.5) from the point of view of large
algebraic structures. In fact we show that the set of non strongly Mc-
Shane (product) integrable functions is spaceabl as well as strongly c-
algebrable.

We need the following notation.

A tagged partition of an interval [a, b] is a collection of point-interval
pairs D = (ξi, [ti−1, ti])mi=1, where a = t0  t1  ...  tm = b and
ξi ∈ [ti−1, ti] for every i ∈ {1, 2, ...,m}.
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If we replace ξi ∈ [ti−1, ti] by ξi ∈ [a, b], then the collection D is called
a free tagged partition. Given a function δ : [a, b]→ R+ (called a gauge
on [a, b]), a free tagged partition is called δ-fine if

[ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)), i = {1, 2, ...,m}.

In the rest of this paper, we assume that X is a real and unital Banach
algebra with infinite dimension, and for all f : [a, b] → X, we define
fX(x) := f(x)X , for each x ∈ [a, b].

Definition 1.2. ([14, Theorem 1.3.11]) A function A : [a, b] → X is
called Bochner integrable if there is a sequence of simple functions An :
[a, b]→ X, n ∈ N such that

lim
n→∞

An(x) = A(x) a.e., on [a, b],

and

lim
n→∞

b

a

An −AX = 0.

Definition 1.3. ([13]) A function A : [a, b] → X is called Henstock-
Kurzweil integrable if there exists a vector Sf ∈ X with the following
property: For each  > 0 there is a gauge δ : [a, b]→ R+ such that



m

i=1

f(ξi)(ti − ti−1)− Sf


X

< ε, (1)

for every δ-fine tagged partition of [a, b]. In this case, Sf ∈ X is called

Henstock-Kurzweil integral of f over [a, b], and is denoted by
b
a
f(t)dt. If

(1) holds for all δ-fine free tagged partitions of [a, b], then f is called
McShane integrable over [a, b].

Definition 1.4. ([13]) A function A : [a, b] → X is called strongly
Henstock-Kurzweil integrable if there is a function B : [a, b] → X such
that for each  > 0 there is a gauge δ : [a, b]→ R+ such that

m

i=1

A(ξi)(ti − ti−1)− (B(ti)−B(ti−1))X < ε, (2)
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for every δ-fine tagged partition of [a, b]. If (2) holds for all δ-fine free
tagged partitions of [a, b], then f is called strongly McShane integrable
over [a, b].

Definition 1.5. ([13, definition 3.4]) A function A : [a, b]→ X is called
strongly Kurzweil product integrable if there is a function W : [a, b]→ X

such that W (t)−1 exists for all t ∈ [a, b], both W and W−1 are bounded,
and for every  > 0, there is a gauge δ : [a, b]→ R+ such that

m

i=1

I +A(ξi)(ti − ti−1)− (W (ti)W (ti−1)−1)

X
< ε, (3)

for every δ-fine tagged partition of [a, b]. In this case, we define the

strongly McShane product integral as
b
a
(I +A(t)dt) =W (b)−1W (a).

If (3) holds for all δ-fine free tagged partitions of [a, b], then A is called

strongly McShane product integrable over [a, b], and is defined as
b
a
(I+

A(t)dt) =W (b)−1W (a).

2. Spaceability of Sets of Non Strongly McShane
(product) Integrable Functions

Let G be the set of functions f : [0, 1] → X that are non strongly
McShane (product) integrable, such that G endowed with the supremum
norm. Our aim is to show that the set G is spaceable. In order to do this,
let us recall some theorems that will be needed, and use the idea from
[10, 11] to produce the assertions.

Theorem 2.1. ([14, Theorem 5.1.4]) A function f : [a, b] → X is
Bochner integrable if and only if f is strongly McShane integrable.

Theorem 2.2. ([13, Theorem 4.14]) For every function f : [a, b]→ X,
f is strongly McShane product integrable if and only if f is Bochner
integrable.

Theorem 2.3. ([14, Theorem 1.4.3]) A measurable function f : [a, b]→
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X is Bochner integrable if and only if fX : [a, b]→ [0,∞) is Bochner
integrable.

The next proposition is a usefull technique of proving strong McShane
integrability of functions. Assume that {zk}k∈N is a sequence in X and
define the function f : [0, 1]→ X as follows:

f :=
∞

k=1

χ( 1

2k
, 1

2k−1 ]
zk, f(0) = 0. (4)

Proposition 2.4. ([14, Proposition 5.4.1]) If
 1
2k
zk


X

< B for all
k ∈ N and B > 1, then the function f : [0, 1] → X given by (4) is

strongly McShane integrable if and only if the series
∞
k=1

1
2k
zk is absolutely

convergent.

We also need the following.

Assume that {xn} is a sequence in the Banach spase E. Then {xn} is said
to be a basic sequence whenevere for each vector x ∈ span{xn : n ∈ N},
we can find a unique sequence {an} of scalars such that

∞
n=1

anxn = x.

The last equality means that

N
n=1

anxn − x


X

→ 0 as N →∞. In other

words, {xn} is the Schauder basis of the subspace span{xn : n ∈ N}.

Lemma 2.5. ([5, Lemma 2.1]) Let E be a Banach space and {xn} ⊆
E\{0}. The following properties are equivalent:

1. {xn} is a basic sequence.

2. There is a constant 0 < C < ∞ such that for every pair r, s ∈ N
with s  r and every finite sequence of scalars a1, ..., as, one has

r
n=1

anxn

  C


s

n=1
anxn

.

Assume that {zk}k∈N is a sequence in X and f : [0, 1] → X is the
function given by (4) with the following property: If

 1
2k
zk


X
< B for all

k ∈ N and B > 1, then the series
∞
k=1

1
2k
zk is non absolutely convergent.
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Thus due to Theorem 2.4 the function f is non strongly McShane inte-
grable and hence by Theorem 2.1 and Theorem 2.2, f is non strongly
McShane (product) integrable. Now suppose that for each j ∈ N, (njk)k is
a strictly increasing subsequence of N such that for all natural numbers
i, j with i = j, we have nik = njm, for all k,m ∈ N, and that the series
∞
k=1

1

2
n
j
k

z
njk

is not absolutely convergent. Now for each k ∈ N put Bk =

( 1
2k
, 1
2k−1 ]. Then for all j = k, m(Bi∩Bk) = 0, and m(∪kBk) = 1, where

m denotes the Lebesgue measure. For each j assume fj :=
∞
k=1

χB
n
j
k

z
njk
,

thus fj ∈ G, moreover by the disjointness of the supports, {fj}j is lin-
early independent in X.

Theorem 2.6. span({fj}j) ⊂ G ∪ {0}. In particular, G is spaceable.

Proof. Let m,n ∈ N such that m < n, and a1, ..., an ∈ R, so
m
j=1

ajfj


X




n
j=1

ajfj


X

, and hence (fj)j is a basic sequence, and

therefore a Schauder basis for span({fj}j). Noticing that the

B
njk



k
are pairwise disjoint, we get:



m

j=1

ajfj


X

= sup








m

j=1

ajfj(x)


X

: x ∈ [0, 1]






= sup








∞

k=1

m

j=1

ajznjk
χB

n
j
k

(x)


X

: x ∈ [0, 1]






 sup








∞

k=1

n

j=1

ajznjk
χB

n
j
k

(x)


X

: x ∈ [0, 1]






= sup








n

j=1

ajfj(x)


X

: x ∈ [0, 1]




 =



n

j=1

ajfj


X

.

It follows by Lemma 2.6 that, for each g ∈ span({fj}j) with g = 0, there

is a nonzero sequence (αj)j of real numbers satisfying g =
∞
j=1

αjfj . The
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proof is now complete. 
Note that by the definition of lineablity and spaceability, we can conclude
the lineability of G.
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