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Abstract. In this paper, we study slant submanifolds of Riemannian
manifolds with Golden structure. A Riemannian manifold (M̃, g̃, ϕ) is
called a Golden Riemannian manifold if the (1, 1) tensor field ϕ on M̃ is
a Golden structure, that is ϕ2 = ϕ+ I and the metric g̃ is ϕ− compat-
ible. First, we get some new results for submanifolds of a Riemannian
manifold with Golden structure. Later we characterize slant submani-
folds of a Riemannian manifold with Golden structure and provide some
non-trivial examples of slant submanifolds of Golden Riemannian man-
ifolds.
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1. Introduction

The Golden ratio has fascinated Western intellectuals of diverse inter-
ests for at least 2,400 years. Some of the greatest mathematical minds
of all ages, from Pythagoras and Euclid in ancient Greece, through the
medieval Italian mathematician Leonardo of Pisa and the Renaissance
astronomer Johannes Kepler, to present-day scientific figures such as
Oxford physicist Roger Penrose, have spent endless hours over this sim-
ple ratio and its properties. On the other hand, the fascination with
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the Golden ratio is not confined just to mathematicians only but also
biologists, artists, musicians, historians, architects, psychologists, and
even mystics have pondered and debated the basis of its ubiquity and
appeal. In fact, it is probably fair to say that the Golden ratio has in-
spired thinkers of all disciplines like no other number in the history of
mathematics (see [13],[22]).

In [10] C. Hretcanu and M. Crasmareanu studied the some properties
of the induced structure on an invariant submanifold in a Golden Rie-
mannian manifold. [6], M. Crasmareanu and C. Hretcanu investigated
geometry of the Golden structure on a manifold by using a correspond-
ing almost product structure. In [11], C. Hretcanu and M. Crasmareanu
show that a Golden structure induces on every invariant submanifold a
Golden structure, too. In [7], A. Gezer, N. Cengiz, A. Salimov discussed
the problem of the integrability for Golden Riemannian structures. In
[15], M. Ozkan investigated Golden semi-Riemannian manifold and de-
fines the horizontal lift of Golden structure in tangent bundle.

In the end of twentieth century, B.-Y. Chen introduced the notion of
slant submanifolds of almost Hermitian manifolds [2, 3]. Later, A. Lotta
has extended his idea for contact metric manifolds [14] and the similar
extension of slant submanifolds ofK-contact and Sasakian manifolds has
been given by Cabrerizo et al. [1]. Notice that the slant and semi-slant
submanifolds of metallic Riemannian Manifolds were studied in [12].

In this paper, we study slant submanifolds of Golden Riemannian man-
ifolds. In Section 2, we give some basic concepts. In Section 3, we get
some results for submanifolds of a Riemannian manifold with Golden
structure. In Section 4, we characterize slant submanifolds of a Rie-
mannian manifold with Golden structure. At the end of the this paper,
we provide some non-trivial examples of slant Submanifolds of Golden
Riemannian manifolds.

2. Golden Riemannian Manifolds

In this section we give the some definitions and notations for Golden
Riemannian manifolds.
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Definition 2.1. ([8, 6]) Let (M̃, g̃) be an (m+n)− dimensional Rieman-
nian manifold and let F be a (1, 1)− tensor field on M̃ . If F satisfies
the following equation

Q(X) = Xn + anX
n−1 + · · ·+ a2X + a1I = 0,

where I is the identity transformation and (for X = F ) Fn−1(p), Fn−2(p),
..., F (p), I are linearly independent at every point p ∈ M̃ . Then the poly-
nomial Q(X) is called the structure polynomial.

If we select the structure polynomial Q(X) = X2+I (or Q(X) = X2−I)
we get an almost complex structure (respectively, an almost product
structure).

Definition 2.2. ([8, 9]) Let (M̃, g̃) be an (m+n)−dimensional Rieman-
nian manifold and let ϕ be a (1, 1)− tensor field on M̃ . If ϕ satisfies the
following equation

ϕ2 − ϕ− I = 0, (1)

where I is the identity transformation. Then the tensor field ϕ is called
a Golden structure on M̃ . If the Riemannian metric g̃ is ϕ compatible,
then (M̃, g̃, ϕ) is called a Golden Riemannian manifold [6].

For ϕ−compatible metric, we have

g̃(ϕX, Y ) = g̃(X,ϕY ) (2)

for any X,Y ∈ Γ(TM̃), where Γ(TM̃) is the set of all vector fields on
M̃ . If we interchange X by ϕX in (2), then (2) may also be written as

g̃(ϕX,ϕY ) = g̃(ϕ2X,Y ) = g̃(ϕX, Y ) + g̃(X,Y ) (3)

Let M̃ be an n-dimensional differentiable manifold with a tensor field F

of type (1, 1) on M̃ such that F 2 = I. Then F is called an almost product
structure. If an almost product structure F admits a Riemannian metric
g̃ such that

g̃(FX, Y ) = g̃(X,FY ), ∀X,Y ∈ Γ(TM̃),
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then (M̃, g̃) is called almost product Riemannian manifold.

An almost product structure F induces a Golden structure as follows

ϕ =
1
2
(I +

√
5F ) (4)

Conversely, if ϕ is a Golden structure then

F =
1√
5
(2ϕ− I) (5)

is an almost product structure ([6]).

Example 2.3. [11] Consider the Euclidean 4−space R4 with standard
coordinates (x1, x2, x3, x4). Let ϕ be an (1, 1) tensor field on R4 defined
by

ϕ(x1, x2, x3, x4) = (ψx1, ψx2, (1− ψ)x3, (1− ψ)x4)

for any vector field (x1, x2, x3, x4) ∈ R4, where ψ = 1+
√

5
2 and 1 − ψ =

1−
√

5
2 are the roots of the equation x2 = x+ 1. Then we obtain

ϕ2(x1, x2, x3, x4) = (ψ2x1, ψ
2x2, (1− ψ)2x3, (1− ψ)2x4)

= (ψx1, ψx2, (1− ψ)x3, (1− ψ)x4) + (x1, x2, x3, x4).

Thus, we have ϕ2 − ϕ− I = 0. Moreover, we get

ϕ(x1, x2, x3, x4), (y1, y2, y3, y4) = (x1, x2, x3, x4), ϕ(y1, y2, y3, y4)

for each vector fields (x1, x2, x3, x4), (y1, y2, y3, y4)∈ R4, where  ,  is
the standard metric on R4. Hence, (R4,  , , ϕ) is a Golden Riemannian
manifold .

Theorem 2.4. [7] Let (M̃, g̃, ϕ) be a Golden Riemannian manifold. Then
Golden structure ϕ is integrable if and only if ∇̃ϕ = 0, where ∇̃ is the
Levi-Civita connection of g̃ on M̃ .
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3. Submanifolds of a Golden Riemannian Man-
ifold

Let (M, g) be a submanifold of a Golden Riemannian manifold (M̃, g̃, ϕ),
where g is the induced metric on M . Then, for any X ∈ Γ(TM) we can
write

ϕX = PX +QX, (6)

where P and Q are the projections of TM̃ onto TM and trTM , respec-
tively, that is, PX and QX are tangent and transversal components of
ϕX. For any V ∈ Γ(TM⊥) we can write

ϕV = tV + sV, (7)

where tV and sV are tangent and transversal components of ϕV . Then
we have

P 2 = P + I − tQ, Q = QP + sQ, (8)

s2 = s+ I −Qt, t = Pt+ ts. (9)

From (2) and (3), we easily see that

g(PX, Y ) = g(X,PY ), (10)

g(PX,PY ) + g(QX,QY ) = g(X,Y ) + g(PX, Y ). (11)

If M is ϕ− invariant, then Q = 0. Hence, from (8) and (9) we have

P 2 = P + I, s2 = s+ I. (12)

Therefore (P, g) is Golden structure on M . Conversely, if (P, g) is a
Golden structure on M , then Q = 0 and M is ϕ− invariant in M̃ . In
this case we have the following theorem.

Theorem 3.1. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g̃, ϕ). Then M is ϕ− invariant if and only if the induced
structure (P, g) of M is a Golden structure.
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From now, we use the same symbol g for the induced metric g and the
metric g̃. Now, let the Golden structure be integrable, that is, ∇̃Xϕ = 0,
for any X on M̃ where ∇̃ is the Levi–Civita–connection of g. Then, the
Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM), (13)

∇̃XV = −AVX +∇t
XV, ∀V ∈ Γ(trTM), (14)

for any X,Y ∈ Γ(TM), where ∇XY,AVX belong to Γ(TM), while
h(X,Y ),∇t

XV belong to Γ(TM⊥). From the Gauss formula, we obtain

∇XϕY + h(X,ϕY ) = P∇XY +Q∇XY + th(X,Y ) + sh(X,Y ). (15)

Equating the tangential and normal components of Eqn. (15), we derive

∇XϕY = P∇XY + th(X,Y ), (16)

h(X,ϕY ) = Q∇XY + sh(X,Y ). (17)

If M is ϕ− invariant then from (16) and (17), we obtain

(∇XP )Y = 0, h(X,PY ) = sh(X,Y ) (18)

From (12) and (18), we have the following Proposition.

Proposition 3.2. Let (M, g) be a ϕ− invariant submanifold of a Golden
Riemannian manifold (M̃, g, ϕ). Then the induced structure P is inte-
grable.

If M is anti-invariant and ϕ is integrable, then we get

∇XϕY = −AϕYX +∇⊥XϕY = Q∇XY + th(X,Y ), (19)

Comparing the tangential and normal parts of (19), we obtain AϕYX =
0. Then we have the following result.

Proposition 3.3. Let (M, g) be a ϕ− anti-invariant submanifold of a
Golden Riemannian manifold (M̃, g, ϕ). If ϕ is integrable then AϕYX =
0, for any X,Y ∈ Γ(TM)
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Now, we compute the relations for curvature tensors with respect to the
Golden structure. We know that

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

the curvature tensor of M̃ with respect to Levi-civita connection ∇̃. If
ϕ is integrable, using (2) and (3) we obtain the following result.

Proposition 3.4. Let (M, g) be a submanifold with curvature tensor R
of a Golden Riemannian manifold (M̃, g, ϕ). If ϕ is integrable then we
have

(i) R(X,Y )ϕ = ϕR(X,Y ),

(ii) R(ϕX, Y ) = R(X,ϕY ),

(iii) R(ϕX,ϕY ) = R(ϕX, Y ) +R(X,Y ),

(iv) g(R(X,Y )ϕZ,ϕW ) = g(R(X,Y )Z,ϕW ) + g(R(X,Y )Z,W ),

(v) g(R(X,Y )ϕZ,W ) = g(R(X,Y )Z,ϕW ).

for any X,Y, Z,W tangent to M .

For a Riemannian manifold the Ricci tensor is defined by [21]

S(X,Y ) =
n

i=1

g(R(Ei, X)Y,Ei) (20)

for any X,Y ∈ Γ(TM), where E1, . . . , En are local orthonormal vector
fields tangent to M .

Proposition 3.5. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g, ϕ). If ϕ is integrable then we have

(i) S(ϕ2X,Y ) = S(ϕX, Y ) + S(X,Y ),

(ii) S(X,ϕ2Y ) = S(X,ϕY ) + S(X,Y ),

(iii) S(ϕX,ϕY ) = S(ϕX, Y ) + S(X,Y ),
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(iv) S(ϕX, Y ) = S(ϕY,X)

for any X,Y tangent to M .

Proof. Using (2), (3), (20) and Proposition 3. we have

S(ϕ2X,Y ) =
n

i=1

g(R(Ei, ϕ2X)Y,Ei)

=
n

i=1

g(R(Ei, Y )ϕ2X,Ei)

=
n

i=1

g(ϕR(Ei, Y )X,ϕEi)

=
n

i=1

g(R(Ei, Y )X,Ei) + g(R(Ei, Y )ϕX,Ei)

= S(X,Y ) + S(Y, ϕX). (21)

This equation is verify (i). Similarly, we can easily obtain (ii), (iii) and
(iv). 
As we know that

(∇WR)(X,Y )ϕZ = ∇W (R(X,Y )Z)−R(∇WX,Y )ϕZ

−R(X,∇WY )ϕZ −R(X,Y )∇WϕZ (22)

and

(∇ZS)(ϕX, Y ) = ∇ZS(ϕX, Y )− S(∇ZϕX, Y )− S(ϕX,∇ZY ). (23)

Then from Eqns. (22), (23) and Proposition 3.4, Proposition 3.5, we
obtain the following proposition.

Proposition 3.6. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g, ϕ). If ϕ is integrable then we have

(i) (∇WR)(X,Y )ϕZ = ϕ(∇WR)(X,Y )Z,

(i) (∇ZS)(ϕX, Y ) = (∇ZS)(X,ϕY ),
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for any X,Y, Z,W ∈ Γ(TM).

Using the Proposition 3.4, and Proposition 3.5 we get the following
proposition.

Proposition 3.7. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g, ϕ). If ϕ is integrable then we have

(i) (R(ϕX1, ϕX2).S)(X,Y ) = (R(ϕX1, X2).S)(X,Y )+(R(X1, X2).S)(X,Y ),

(ii) (R(X1, X2).S)(ϕX,ϕY ) = (R(X1, X2).S)(ϕX, Y )+(R(X1, X2).S)(X,Y ),

for any X1, X2, X, Y ∈ Γ(TM).

Proof. Using proposition 3.4, we have

(R.S)(ϕX1, ϕX2;X,Y ) = −S(R(X,Y )ϕX1, ϕX2)− S(ϕX1, R(X,Y )ϕX2)
= −S(R(X,Y )X1, ϕX2)− S(R(X,Y )X1, X2)
− S(ϕX1, R(X,Y )X2)− S(X1, R(X,Y )X2)
= (R.S)(X1, X2;X,Y ) + (R.S)(ϕX1, X2;X,Y ).(24)

From this equation, (i) is obtained. Similarly, we have (ii). 
N.O. Poyraz and E. Yasar introduced a locally Golden product space
form ([16]). We will use same notation. Similar calculations of semi-
Riemannian product real-space form, they have obtained the Rieman-
nian curvature tensor R of a locally Golden product space form (M =
Mp(cp)×Mq(cq), g, ϕ) as follows :

R(X,Y )Z = (− (1− ψ)cp − ψcq

2
√
5

){g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY }

+ (− (1− ψ)cp + ψcq
4

) {g(ϕY,Z)X − g(ϕX,Z)Y + g(Y,Z)ϕX − g(X,Z)ϕY } .
(25)

where Mp and Mq be two real-space forms with constant sectional
curvatures cp and cq, respectively. From (20) and (25), we obtain

S(Y,Z) =

(− (1− ψ)cp − ψcq

2
√
5

)(n− 2) + (− (1− ψ)cp + ψcq
4

)traceϕ

g(Y, Z)

+

(− (1− ψ)cp − ψcq

2
√
5

)(traceϕ− 1) + (− (1− ψ)cp + ψcq
4

)(n− 2)

g(ϕY,Z).

(26)
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If we choose traceϕ = constant, using (26), we get

(∇ZS)(X,Y ) =

(− (1− ψ)cp − ψcq

2
√
5

)(n− 2) + (− (1− ψ)cp + ψcq
4

)traceϕ

(∇Xg)(Y,Z)

+

(− (1− ψ)cp − ψcq

2
√
5

)(traceϕ− 1) + (− (1− ψ)cp + ψcq
4

)(n− 2)

(∇Xg)(Y, ϕZ)

Because of the fact that ∇ is Levi-Civita connection, the equation (27)
yields the following result.

Theorem 3.8. Let M = Mp(cp) ×Mq(cq) be a locally Golden product
space form (with traceϕ = constant) and let ϕ be integrable. Then M

is Ricci symmetric.

Now, we evaluate R.S for a locally Golden product space form M =
Mp(cp)×Mq(cq). From (25) and (26), we derive

(R(X,Y ).S)(Z,W ) = −S(R(X,Y )Z,W )− S(Z,R(X,Y )W )

= −2

(− (1− ψ)cp − ψcq

2
√
5

)(traceϕ− 1)

+ (− (1− ψ)cp + ψcq
4

)(n− 2)

g(R(X,Y )W,ϕZ). (27)

This equation gives the following theorem.

Theorem 3.9. Let M = Mp(cp) ×Mq(cq) be a locally Golden product
space form and let ϕ be integrable. ThenM is not Ricci semi-symmetric.

Using equation (27) in Proposition 3.7, we have the following conse-
quence.

Corollary 3.10. Let M =Mp(cp)×Mq(cq) be a locally Golden product
space form and ϕ is integrable. Then

(R(ϕX, Y ).S)(ϕZ,W ) = 0. (28)
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4. Slant Submanifolds of a Golden Riemannian
Manifold

Let (M, g) be a submanifold of a Golden Riemannian manifold (M̃, g̃, ϕ).
For each nonzero vector X tangent to M at p, let θ(X) be the angle
between TM and ϕX. If θ(X) is independent of the choice of p ∈ M

and X ∈ TpM then M is called a slant submanifold. If the slant angle
θ = 0 and θ = π

2 , then M is an ϕ−invariant and ϕ−anti-invariant
submanifold, respectively. A slant submanifold which is neither invariant
nor anti-invariant is called proper slant submanifold.

On the similar line of B.-Y. Chen [2, 3], we give the following character-
ization of slant submanifolds in a Golden Riemannian manifold.

Theorem 4.1. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g, ϕ). Then, M is slant submanifold if and only if there
exists a constant λ ∈ [0, 1] such that

P 2 = λ(ϕ+ I), (30)

Furthermore, if θ is slant angle of M , then λ = cos2θ.

Proof. LetM is a slant submanifold of M̃ . Then cos θ(X) is independent
p ∈M and X ∈ TpM . Therefore, from Eqns. (2) and (6), we get

cos θ(X) =
g(ϕX,PX)
|PX||ϕX| =

g(X,ϕPX)
|PX||ϕX| . (31)

On the other hand, by definition we have cos θ(X) = |PXϕX | and from
(31), we derive cos θ(X) = g(X,P 2X)

|ϕX||ϕX| cos θ(X) . Thus, we obtain cos
2 θ(X) =

g(X,P 2X)
g(X,X)+g(ϕX,X) . Hence, we have P

2 = λ(ϕ+ I).

Conversely, if we assume that P 2 = λ(ϕ+ I), then we obtain λ = cos2θ,
i.e., θ(X) is constant on M and hence M is slant, which proves the
theorem completely. 
Using Eqn. (1) we have the following consequence of the above theorem.

Corollary 4.2. Let (M, g) be a submanifold of a Golden Riemannian
manifold (M̃, g, ϕ). Then, M is a slant submanifold if and only if there
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exists a constant λ ∈ [0, 1] such that

ϕ2 =
1
λ
P 2, (32)

where λ = cos2θ and θ is the slant angle of M .

Lemma 4.3. Let (M, g) be a slant submanifold of a Golden Riemannian
manifold (M̃, g̃, ϕ). Then, for any X,Y ∈ Γ(TM), we have

g(PX,PY ) = cos2θ(g(X,Y ) + g(X,PY )), (33)

g(QX,QY ) = sin2θ(g(X,Y ) + g(PX, Y )). (34)

Proof. From (10) and (30), we obtain

g(PX,PY ) = g(X,λϕY + λY ) = cos2θ(g(X,Y ) + g(X,PY )).

Moreover, from (11) and (33), we derive

g(QX,QY ) = g(X,Y )+g(PX, Y )−g(PX,PY ) = sin2θ(g(X,Y )+g(PX, Y )).

Hence, the proof is complete. 
Now, we construct some non-trivial examples of slant submanifolds of a
Riemannian manifold with Golden structure.

Example 4.4. Consider a submanifoldM of Euclidean 4-space R4 given
by the following immersion

x(u1, u2) = (u1 cos θ, u1 sin θ, u2, 0).

Then the tangent space TM is spanned by the following vector fields

e1 = (cos θ, sin θ, 0, 0), e2 = (0, 0, 1, 0).

Now, we consider the Golden structure from Example 2.3. Then, we
obtain

ϕe1 = (ψ cos θ, ψ sin θ, 0, 0), ϕe2 = (0, 0, 1− ψ, 0).
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Thus, we derive

ϕe1, e1 = ψ, ϕe2, e2 = 1− ψ, ϕe1, e2 = 0

and

Pe1 = ψe1, P e2 = (1− ψ)e2.

If Θ is the slant angle of M , then we get cosΘ = 1, thus M is a ϕ−
invariant submanifold.

Example 4.5. Consider the Euclidean 4−space R4 with standard coor-
dinates (x1, x2, x3, x4). Let ϕ be an (1, 1) tensor field on R4 given by

ϕ(x1, x2, x3, x4) = (ψx1, (1− ψ)x2, ψx3, (1− ψ)x4)

for any (x1, x2, x3, x4) ∈ R4, where ψ = 1+
√

5
2 and 1−ψ = 1−

√
5

2 are the
roots of the equation x2 = x+ 1. Then, we obtain

ϕ2(x1, x2, x3, x4) = (ψ2x1, (1− ψ)2x2, ψ
2x3, (1− ψ)2x4),

= (ψx1, (1− ψ)x2, ψx3, (1− ψ)x4) + (x1, x2, x3, x4).

Thus, we have ϕ2 − ϕ− I = 0. Moreover, the metric   is ϕ− compati-
ble. Hence, (R4,  , ϕ) is a Golden Riemannian manifold. Now, consider
a submanifold M of R4 given by the immersion

x(u1, u2) = (ψu1, (1− ψ)u1, ψu2, (1− ψ)u2).

Then we have

e1 = (ψ, 1− ψ, 0, 0), e2 = (0, 0, ψ, 1− ψ)

and

ϕe1 = (ψ + 1, 2− ψ, 0, 0), ϕe2 = (0, 0, ψ + 1, 2− ψ).

Thus, we derive

ϕe1, e1 = 4, ϕe2, e2 = 4, ϕe1, e2 = 0



36 OĞUZHAN BAHADIR AND SIRAJ UDDIN

and

Pe1 =
4
3
e1, P e2 =

4
3
e2.

Then M is a slant submanifold with slant angle Θ = cos−1


4√
21


.

Example 4.6. Consider the Euclidean 4−space R4 with standard co-
ordinates (x1, x2, x3, x4). Let ϕ be an (1, 1) tensor field on R4 defined
by

ϕ(x1, x2, x3, x4) = ((1− ψ)x1, (1− ψ)x2, ψx3, ψx4)

for every point (x1, x2, x3, x4) ∈ R4, where ψ = 1+
√

5
2 and 1−ψ = 1−

√
5

2

are the roots of the equation x2 = x + 1. Then it is easy to see that
ϕ is a Golden structure on R4 with ϕ− compatible metric  . Hence,
(R4,  , ϕ) is a Golden Riemannian manifold. Consider a submanifold
M of R4 given by

x(u1, u2) = (kψu1, kψu2, (1− ψ)u1, (1− ψ)u2),

for any k = 0, 1. Then we have e1 = (kψ, 0, 1−ψ, 0), e2 = (0, kψ, 0, 1−ψ),
ϕe1 = (−k, 0,−1, 0), ϕe2 = (0,−k, 0,−1). Then, we obtain

ϕe1, e1 = ϕe2, e2 = −1 + ψ − k2ψ, ϕe1, e2 = 0.

If θ is the slant angle of M , then M is a slant submanifold with slant
angle θ = cos−1


−1+ψ−k2ψ√

k2+1


.

Now, we give another useful result for slant submanifolds of Golden
Riemannian manifolds.

Theorem 4.7. Let (M, g) be a submanifold of Golden Riemannian man-
ifold (M̃, g̃, ϕ). Then M is proper slant submanifold of M̃ if and only if
there exists a constant k ∈ [0, 1] such that

tQX = k(P + I)− (1− k)Q (35)

for any X,Y ∈ Γ(TM). Furthermore k = sin2 θ and θ is the slant angle
of M .
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Proof. From (8) we know that

tQX = −P 2X + PX +X (36)

for any X ∈ Γ(TM). If M is a slant submanifold, then using (6) and
(30), we obtain

tQX = −λ(ϕX +X) + PX +X,

= −λ(PX +X)− λQX + PX +X,

= (1− λ)(PX +X)− λQX.

Conversely, we suppose that tQX = k(P + I) − (1 − k)Q, k ∈ [0, 1].
Then from Eqns. (6) and (8), we derive

P 2X = PX +X − tQX

= PX +X + (1− k)QX − k(PX +X),

= (1− k)(ϕX +X).

If we put (1 − k) = λ = cos2 θ, then M is a slant submanifold. Hence,
the theorem is proved completely. 

5. Conclusions

In this section, we give the brief description of our outstanding results. In
the beginning we prove some curvature properties on the submanifolds
with integrable structure of a Golden Riemannian manifold (Proposition
3.2-Proposition 3.7). Later, we prove that on a locally Golden product
space formM =Mp(cp)×Mq(cq) with integrable structure ϕ,M is Ricci
symmetric but not Ricci semi-symmetric (Theorems 3.8-3.9). The main
purpose of this paper is to characterize slant submanifolds with Golden
structures, which discuss in the last sections. Moreover, at the end of
the study, we provide some non-trivial examples of slant submanifolds
in Euclidean spaces with Golden structures.
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