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Abstract. Let £ be a Lie algebra crossed module and Act,;(£) be a
pointwise inner Actor of £. In this paper, we introduce lower and upper

central series of £ and show that if Actpi(%)/fnnAct(%) is the

nilpotent of class k wherein Z;(L£) denotes the nth term of the upper
central series of £ , then Actp;(L)/InnAct(L) is the nilpotent of the
maximum class j 4+ k. Moreover, if dim(£*/(£* N Z;(£))) < (1,1), then
Actpi(L)/InnAct(L) is the nilpotent of the maximum class i + j — 1.
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1. Introduction

Let L be a Lie algebra over an arbitrary field F' and Der (L) be the
set of all derivations of L. The map ad, : L — L given by y — [z,¥]
is a derivation called the inner derivation corresponding to x for all
x € L. Clearly, the space Inner (L) = {ad,: = € L} is an ideal of
Der (L). A derivation « of L is called pointwise inner if o (x) € Imad,
for all x € L. The set of all pointwise inner derivations is a subalgebra of
the algebra of all derivations. We denote this subalgebra by Derp; (L).
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20 A. ALLAHYARI AND F. SAEEDI

If [x,L] := {[z,y] : y € L}, then
Dery; (L) ={a € Der (L) : a(x)€ [x,L], Yz € L}.

Clearly, Inner (L) is contained in Dery; (L).

The concept pointwise inner derivations of Lie algebras have been in-
troduced by Gordon and Wilson [8] in the study of isospectral defor-
mations of compact solvmanifolds. They, and later others have given
several examples of solvable and nilpotent Lie algebras and pointwise
inner derivations (see [2, 3, 16] for more informations).

Crossed modules in groups were introduced by Whitehead [17] in order
to study homotopy relations of groups. Lie algebra crossed modules were
used by Roisin and Lavendhomme as sufficient coefficients of a non-
abelian cohomology of a T-algebra in [13].

A crossed module of Lie algebras is a homomorphism d : Ly — Lg
along with an action of Lg on Li, denoted by (lp,l;) —' Iy for all
lop € Ly and [1 € L such that satisfies the following conditions:

(1) d(*l) = [lo,d(lh)],
(2) d(ll)lll = [llvlll]v

for all lp € Lo and [3,l) € Li. The crossed module £ is denoted as
[, . (Ll,Lo,d).

For an introduction and notation, we refer to Casas [4], Casas and Ladra
[5, 6].

llgaz et. al. [9] introduced the concept of solvability and nilpotence for
Lie algebra crossed modules. In this paper, we introduce the upper and
lower central series, actor, inner actor and pointwise inner actor for Lie
algebra crossed modules and show that if Actm'(%) /InnAct( %) is
the nilpotent of class k, then Act,;(L£)/InnAct(L) is the nilpotent of the
maximum class k + j. In addition, if dim(£*/(£'N Z;(£))) < (1,1), then
Actyi(L)/InnAct(L) is the nilpotent of the maximum class i + j — 1.

Note that if j = 0, the results would be the same as Jamshidi Rad and
Saeedi [10]. Also, if Lie algebra crossed module £ be identity, then the
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results would be the same as Amiri and Saeedi [2]. The idea of this paper
is obtained from papers of Rai [14] and Sah’s [15] in groups theory.

The paper is organized as follows. In Section 2, we introduce the defini-
tions and elementary symbols of Lie algebra crossed modules. In Section
3, we define the upper and lower central series for crossed modules and
prove some preliminary lemmas. In Section 4, after proving the required
lemmas, we express and prove the main theorem.

2. Preliminaries on Crossed Modules

The crossed module M : (M, My,d') is called a subcrossed module of
L : (L1, Lg,d) and shown as M < L if My and M; are subalgebras L
and L1, respectively and d’ is the restriction of d on M; and M acts on
M as Lg acts on L.

A subcrossed module M : (M7, My, d’) of a crossed module £ : (L1, Lo, d)
is an ideal of £ and shown as M < L if My and M; are ideals of Ly and
L1, respectively and for all Iy € Lo, mg € My, l1 € L1 and my € My

loml € M; and "™l € M.

Let M : (My, Mo,d) and N : (N1, No,d)) are two ideals of crossed
module £ : (L1, Lo, d). Then, M NN is an ideal of £ and defined as

MNON: (M1 N Ny, My ﬂNg,d|).

Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then, the center of
this crossed module is an ideal of it and shown as Z(£) and defined as

Z(L) : (" Ly, Stry(L1) N Z(Lo), d))

in which
LOLl = {ll € L1|l0l1 = 0, v lo S Lo},

StLO(Ll) = {lo S L0|l0l1 = 0, Vi€ Ll}.

The crossed module £ is abelian, if it coincides with its center.
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Let £ : (L1, Lo, d) be a Lie algebra crossed module. The derived crossed
module of £ is defined as

£?: (Dpy(Ly),L§, d)),

in which Dy, (L1) = (®ly : lp € Lo, 1y € Ly (see [7]).

A homomorphism between two Lie algebra crossed modules £ : (L1, Lo, d)
and £ : (L}, L{,d) is a pair (f,g) of Lie algebra homomorphisms
f:Li — L} and g : Ly — L, satisfying the following conditions:

(1) d'f = gd,
(2) f(ol) =900 f(iy)
for all [y € Ly and I; € L.

Definition 2.1. Assume L : (L1, Lo, d) is a crossed module. A derivation
of L is a pair (o, B) : L — L satisfying the following conditions:

(1) a € Der(Ly),

(2) B € Der(Ly),

(3) do = fd,

(4) a(®l) = a(l) +70) (1),

forallly € Lo and 11 € L.

The set of all derivations of L is denoted by Der(L), which is a Lie
algebra with bracket as in the following:

[(ev, B), (o, 8)] = ([, '], [8, 8) = (@’ — /v, B3 — B').

Definition 2.2. Assume L : (L1, Lg,d) is a Lie algebra crossed mod-

ule. Then a map 6 : Ly — L1 is called crossed derivation if

3([lo, L)) =" a(1h) —"o 8 (lo),
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for all lp, 1, € Lo. The set of all crossed derivations from Lo to Ly is
denoted by Der(Lg, L1), which turns into a Lie algebra via the following
bracket:

[01, 02] = 01dd2 — 02ddy,
for all 61,069 € Der(Lg, Ly).

Proposition 2.3. Every § € Der(Lo, L1) induces two derivations 6° €
Der(Lg) and 6* € Der(Ly) defined as

80 =dé and &' =dd,
and satisfy the following identities:
(1) §6° = 610,
(2) 6% = do',
(3) (6%,6°) € Der(L).

Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then Der(L) acts
on Der (Lo, L1) as follows:

(@B)§ .= ad — 6,

for all o, € Der(L) and 6 € Der(Lg,L;). Now the homomorphism
A : Der(Lg, L1) — Der(L) defined by § — (dd, dd) is a crossed module
and it is denoted by Act(L). We have

Act(L) : (Der(Lg, L1), Der(L), A).

Proposition 2.4. There always exists a canonical homomorphism of
crossed modules as follows:

(57 77) tL— ACt(‘C)’
in which

e: Ly — Der(Lo, L) n:Ly — Der(L)
and
L — o, lo — (aloaﬁlo)
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with
G, (lo) = 1, ayy(l) =1y, By (l) = [lo, 1y,

for all 1y, 1, € Ly and Iy € Ly. The image of this homomorphism is an
ideal of Act(L), denoted by InnAct(L), and it is given by

InnAct(ﬁ) : (E(Ll)ﬂﬂLo), A|>
It can be easily shown that ker(e,n) = Z(L).

Definition 2.5. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
pointwise inner Actor of L is defined as

ACtpi (ﬁ) : (Derpi(Lo, Ll), Derpi (ﬁ), A‘),
wherein

Deryi(Lo, L1) = {6 € Der(Lo, L1) s.t Vlg € Lo 3y € Ly| 6(lo) =" 11},
Derpi(L) = {(a,ﬁ) € Der(£)| vy e Ly 3 e Ly s.t B(lo) = [I), o]

It can easily be proved that Acty(L) is a subcrossed module of Act(L)
including InnAct(L). (see [1]).

Vi € Ly dlg € Ly s.t Oé(ll) —lo l1 }

Definition 2.6. Let L : (L, Lo, d) be a Lie algebra crossed module. Then,
ID*Act(L) is defined as

ID*Act(L) : (ID*(Lo, L1), ID*(L), A)),

in which
* o (5([ ) S DLO(LI) Yy € Lo,
LD (Lo, Ln) = {5 € Der(Lo, Ln) | 500) = 0, Wlo € Stry(L1) 1 Z(Lo)
and
Oé(ll) c DLO(Ll)L Vll S Ll,
% _ Oé(ll) = 0 Vll ero Ll,
ID*(L) =< (a,8) € Der(L) 8(ly) € L2, Vo € Lo,
ﬂ(lo) = 0 Vlo S StLO(Ll) N Z(Lo)
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It can easily be shown that ID*Act(L) is a subcrossed module of Act(L)
including Actpi(L) (see [1]).

Definition 2.7. Let L : (L1, Lo, d) be a Lie algebra crossed module and
N : (N1, No,d)) be an ideal of L. Then, ActN (L) is defined as

ActN (L) : (DerN (Lo, L1), DerN (L), A)),
in which
Der™N(Lg, L) = {6 € Der(Lo, L1) |6(x0) € Ny Vo € Lo} |

DerN(L) = {(a, B) € Der(L) |a(z1) € Ny Va1 € Ly, B(xo) € Ny Yao € Lo} -

3. Upper and Lower Central Series of Lie Al-
gebra Crossed Modules

Let £ : (L1,Lg,d) be a Lie algebra crossed module. Then the lower
central series L is defined as

Lo oLroL o

in which,
LY=L : (L, Ly, d)
L% : (Dpy(L1), L§, d))
c*: (DLO(DLO(Ll))7L8’d|)

L£r: (DLO(DLO(‘ o (DLO(Ll))))7 Lg)d|)'

n—1 times

For simplicity we use the £" : (D} (L1), Lg,d)). Also, the upper central
series L is defined as

Zo(L) CZ1(L) C -+ S Zp(L) € Zna (L) C -,
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wherein,
Zo(L£)=0
Z\(L) = Z(L) : (A1(L), Bi(£) N Z1(Lo), d))
ZQ(E) : (Ag(ﬁ), Bz(ﬁ) N ZQ(LQ), d|)
Zn(‘c) : (An(‘c)a Bn(‘c) N Zn(LO)a d\)?
where

Z0i

ALy ={mel| a=0 Vo el 1<j<iy,

F0zgy

[eg,201,202]
0

Bi(L) = { € Ly 3 Yy € Ly, woj € Ly, 1< <

R O

1x1 _ 07 [wownlw“woiﬂlxl -
for Vi € N.

Definition 3.1. Let £ : (L1, Lo,d) be a Lie algebra crossed module.
If there is n € ZT such that L = 0 or Z,(L) = L, then L is the

nilpotent of class n.

Lemma 3.2. Let £ : (L1, Lo, d) be a Lie algebra crossed module and
To € Lf). Then

(1) z1 € Aj(L) if and only if "0z € Aj_i(L);
(2) [xo,yo] € Bj_i(ﬁ) N Zj_i(Lo) < Yo € Bj(ﬁ) N Zj(L()).
Proof. The proof is straightforward. [

Lemma 3.3. [10] Let L : (L1, Lo,d) be a Lie algebra crossed module
and for all k >0, (4, (a,B)) € Act’;i(ﬁ). Then
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(1) For all o € Lo , there are by, € DEO(Ll) and ¢z, € L’g so that
d(zg) =" by, and B(z0) = [Czy, Tol;

(2) For all x1 € Ly , there is by, € LE so that a(z1) =1 1.

Lemma 3.4. Let L : (L1, Lo, d) be a Lie algebra crossed module, (0z,, (g, Bay)) €
InnAct(L) and (&', (c/,3')) € Act(L) be arbitrary. Then

(1) 10, 02,] = Ost(d(w1))s
(2) &, aue] = gy
(3) 16, Bio] = Bar(1o)-
Proof. (1) Let Iy € Lo
[0, 62, ](lo) = (8'd0, — 05,dd")(lo) = 0'ddy, (lo) — bz, (lo)
= 8'd("xy) — 0y, (d0' (Ip)) = 8'd(Px1) 1) 2,
= &'([lo, d(21)]) = [0"(lo), 1] =" &' (d(w1)) ="V 6" (lo) = [6'(Lo), 1]

=0 §'(d(x1)) = [21,6"(l0)] — [8' (lo), 1] =" &'(d(1))
= 05'(d(w1)) (l0)-

(2) Let x1 € Ly

[, oqp] (1) = (& wy — agy@’) (1) = & gy (1) — e (1)
=a/(fozy) =0 o/ (z1) =P o (1) +0(0) gy o o (x1)

:ﬂ’(lo) T = aﬂ/(lo)(‘rl)

(3) Let zg € Lo

168, Bio)(x0) = (661, — BiB') (o) = B'Biy(20) — B3 (0)
= B'([lo, o)) = [lo, B'(x0)] = [8'(l0), x0] + [lo, 5 (w0)] — [lo, B'(x0)]
= [6'(lo), x0] = B/ (1) (0). O

Lemma 3.5. Let £ : (L1, Lo,d) be a Lie algebra crossed module. Let

(6215 (Qag Bag)) and (Oy, , (Qyys Byy)) are two arbitrary elements of InnAct(L).
Then
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(1) (021, 0y,] = b1y 2015
(2) [y Qyo] = Qg )5
(3) [Beos Byol = Brzo,yol-
Proof. It can be easily proved similar to Lemma 3.4. O

Lemma 3.6. Let £ : (L1, Lo, d) be a Lie algebra crossed module and H
be a subcrossed module of ID*Act(L) contains InnAct(L). Then

HNAt? O (L) = Z(H).

Proof. See [11], Corollary 4.3. O

4. Main Theorem

In this section, first we state and prove some essential lemma, and then
present the main theorem of this paper.

Lemma 4.1. Let N : (N1, Ny, d) be an arbitrary ideal of a Lie algebra
crossed module L : (Ly, Lo, d). If

(Actpi(f/,))j < (Inn(Act(f[))k Jj,keN

then
(Actpi (L)) < (Actpi(£))* N ActN (L) + (InnAct(L))F.

Proof. Assume (4, (a, 3)) € (Actyi(£))’. We know that § € DjAm_

Now take & be crossed induced derivation by ¢ on ]L\,—g Hence

(5)(Api(LOv Ly)).

seD’ (Api(fracLoNy, fracLiNy)).
Am’(ﬁ)

By the assumption, we have

; Ly 14
J (= C DF ~2)) C DF (=, ==2)).
DApi(%)(Apl(NO’fTGCLlNl)) = Dn(Lo)(f(Nl)) = DApi(%)(Apl(Noj Nl))

No
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Using the first part of Lemma 3.3, for all o + Ny € ﬁ,—g, there exists
by, + N1 € D¥, ( L) such that

o
8(zo + No) ="0TNo by + Ny =" by + Ny
Therefore,
8(wo+No) = 6(w0)+ Ny =" byy+N1 = (zg) =" byy+n1  for ny € Ny.
Then
6(x0) = b, (x0) + na.

We take
A=0+ 67{’10 .

Hence, A € DerV (Lo, L1). Now without loss of generality, assume k < j
we have

§eD’

Deryi(e)(Derpi(Lo, L1)) € Dhe, ) (Deryi(Lo, L1))-

Therefore,
A=6+40p, € Dpy, ()(Deryi(Lo, L1)).

Consequently,

§ = A+, € D, ey (Derpi(Lo, L1)) N Der™ (Lo, L) + Df 1y (€(Ln)).

(1)
‘ L
Let (a, ) € Derfm-(ﬁ) Consider @ be induced derivation by a on ﬁl
1
By the assumption, we have
Ll LO k Ll
a € Der? (Nl) Cy (NO) - Derpi(ﬁl).

By using the second part of Lemma 3.3., for all 1 + N; € ]](,—1, there
exists by, € LE such that

a(z1 +Np) =1 2y + Ny = a(xy) + Ny =1 21 + Ny,

Therefore,
a(ry) =be1 x1 +ny for ng € Ny.
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We take
T=atap, .

Thus, v € Der™ (L;). Now without loss of generality, assume k < j, we
have
o€ Der (L) C Der i(Ly).

Therefore,
Yy=a+oay, € Der (Lq).

Consequently,

a=7+am, € Der (L) N Deer(Ll) +7n (Lo) (2)

_ L
Consider 3 be induced derivation by § on FO' By the assumption, we
0

have
k., Lo

Lo
cD k(Z9y.
NO) erpi( )

L
ﬁeDer(O)C ( (N,

No

Using the first part of Lemma 3.3, for all o + Ny € WO there exists
czo € LE such that

B(l’o + No) = [Cwo,xo] + Np.
Therefore,
B(xo+No) = B(x0)+No = [czg, o] +No = B(0) = [czq, To]+n0  for ng € No.

We take
Z = ﬁ + /B—CIO'

Then, Z € Der™o(Lg). Now without loss of generality, assume k < j
we have
B e Der (Lo) C Der i(Lo).

Therefore,
Z=0+ P, € Der’;i(Lo).

Consequently,

B=27Z+p,, € Derk;(Lo) N Der™ (Lg) + n*(Lo). (3)
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Now, by using (1), (2) and (3), we get
(Actyi (L)Y < (Actpi(L)F N ActN (L) + (InnAct(£))*. O
Assume
[, Act(L)] : ([Lo, Der(Lo, L1)] + [L1, Der(Ly)], [Lo, Der(Ly)])

wherein

[Lo,DST(LQ,Ll)] = {6(1‘0) |.’E0 € Lg,0 € DGT(Lo,Ll)};
[Li,Der(L1)] = {a(z1) |z1 € L1, € Der(L1)};
[Lo, Der(Lg)] = {B(x0) |xo € Lo, 3 € Der(Ly)} .

we have following Lemmas,

Lemma 4.2. Let L : (L1, Lo, d) be a Lie algebra crossed module. Then
(L7, Act“ (L)) € Zj—ia (£). (4)

Proof. It can be proved by induction on .
Let i = 1, it is clear from definition of Act%i(£)(L).
Assume for 4, (4) holds. That is,

[Liy, Der?1©) (Lo, L1)] + [Dy, (L1), Der?©(Ly)] € Aj_i41(L),

[L§, Der® ) (Lo)] € Bj—i+1(£) N Zj—i41(Lo).

Now, take d € DerZi(£) (Lo, L1) and Iy € Lé“. Then, there exist x¢g € Ly
and yo € L} such that Iy = [z¢,yo]. Thus,

d(lo) = ([0, yo]) =" 6(yo) —** 6 (o).

By inductive assumption (yo) € A;j—;+1(£) and using the Lemma 3.2
20§(yo) € Aj—i(L). Moreover, since §(zo) € A;(L) and yo € LY, by using
the Lemma 3.2 %6 (zg) € Aj_;(L). Therefore, 6(ly) € A;j—;(L). Conse-
quently,

(L5, DerZiE)(Lg, Ly)] € Aj_i(L). (5)
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Let (o, 8) € DerZi8)(L£) and x; € Dﬁl(Ll). Hence, there exist y; €
DiL0 (L1) and yo € Lo such that x; =% y;. Thus,

O[(CCl) = a(yoyl) =Y a(yl) +/B(y0) Y1

Now, by given inductive assumption and B(yo) € 5;(L£) N Z;(Lo), we
conclude that a(z1) € A;—;(L). Hence,

(D (L), Der®O(Ly)] € Aji(L). (6)

Take xg € Lé"’l, then there exist yg € Lé and zg € Lo such that xg =
[yo, Zo]. ThllS,

B(wo) = Blyo, 20] = [B(¥o), 20] + [y, B(20)]-

By inductive assumption and 3(zg) € B;(£) N Z;(Lo), we conclude that
B(zo) € Bj—i(L) N Zj—i(Lo). Therefore,

(L6, Der” ™) (Lo)] € B;-i(£) N Z;—i(Lo). (7)
By using (5), (6) and (7), we obtain
(LY ActZ O (L)) € Z;_4(L). O
Lemma 4.3. Let L : (L1, Lo, d) be a Lie algebra crossed module. Then
Z5(£), (ID* Act(L))'] € Z; +(L). ®)

Proof. First, take i = 1 and prove (8) by induction on j. By definition
of ID*Act(L), it is clear that [Z(L),ID*Act(L)] = 0 = Zy(L). Thus,
(8) holds for j = 1. Now, assume that for j, (8) holds. That is,

[B;(£) N Zj(Lo), D" (Lo, L1)] + [4;(£), ID*(L1)] € Aj—1(L),
[B;(£) N Zj(Lo), ID*(Lo)] € Bj-1(£) N Zj—1(Lo).

Let § € ID*(L(), Ll) and xg € Bj+1(£) ﬂZj_H(L()) we show that (5(1‘0) S
A;(L). To this end, for all yg € L, using the Lemma 3.2 we have

[xo,yo] € BJ(E) N Zj(L()).
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Also,

§([wo, yol) =" 8(yo) =¥ 6(xz0) = Yd(z0) =" 6(yo) — ([0, Yo])-

By given inductive assumption &([zo,y0]) € Aj—1(£). On the other
hand, since 0(yo) € Dr,(L1) we conclude that *(yg) € A;_1(L). Then,
Y4§(xo) € Aj—1(L). By using the Lemma 3.2, §(xg) € A;j(L). Conse-
quently,

[Bj+1(£) N Zj11(Lo), ID* (Lo, L1)] € A;(L). (9)

Let (0,9) € ID*(L) and z1 € Aj1(L) we show that a(x1) € A;(L). To
this end, for all xg € Ly, using the Lemma 3.2 we have

Ty € Aj(ﬁ)
On the other hand,
(™) =20 a(zy) +°00) ) = o)) = a(®0z;) =P g,

By given inductive assumption, it is clear that a(*°x1) € A;_1(L). Also,
since f € ID*(Lg) then there exists yo,20 € Lo such that f(xg) =
[Yo, 20]. Moreover, using the Lemma 3.2, it is easily seen that Blao) gy €
A;_1(L). Hence, ™ a(x1) € Aj_1(L), and using the Lemma 3.2, a(z;) €
A;(L). Consequently,

[Aj+1 (L) NID*(L1)] € Aj(L). (10)

On the other hand, since zg € Bj;1(£) N Z;j4+1(Lo) then for all I € Lo,
using the Lemma 3.2

[.ro, l()] € Bj(ﬁ) N Zj(L(]).
Now, using a similar method, we can easily conclude that
B(xo) € B;(£) N Zj(Lo).

Thus,
[Bj+1(£) N Zj+1(Lo), ID*(Lo)] € B;(£) N Zj(Lo). (11)
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By using (9), (10) and (11), we have
[Zj+1(£), ID* Act(L)] € Z;(L).

Then for i = 1, (8) holds.

In the following, assume that for 4, (8) holds. Hence, we have
(B(£) 1 Z5(Lo), Diype ey (ID* (Lo, L)) + [A;(£), 1D (L)) € A (L),

[B§(£) N Z;(Lo), ID*(Lo)] € Bj—i(£) N Z;—i(Lo).

Let § € Dy py(ID*(Lo, L)) and wo € B;(£)NZ;(Lo), thus, there exist

o € D}D*(ﬁ)(ID*(LO,LI)) and (a, 8) € ID*(L) such that § =(®0%) §,.
Moreover,

§(z0) =P 81 (z0) = ady(z0) — 618(0).

By given inductive assumption and (10), then, we have a(d1(zp)) €
A;_i—1(L). Also, again by inductive assumption and (11), we get
01(B(xo)) € Aj_i—1(L). Consequently,

5(z0) € Aj_i_1(L). (12)

Let (o, ) € ID*"T1(L) and 21 € A;(L), thus, there exist oy € ID**(Ly)
and ag € ID*(L;) such that o = [y, aa]. Moreover,

a(zy) = [a1,a9)(z1) = (g — avan ) (1) = aras(z1) — asan (z1).

By given inductive assumption and (10), we have
as(aq(z1)), ar(aa(z1)) € Aj—i—1(L). Consequently,

a(xl) S Aj—i—l(ﬁ)- (13)
Using the same way, let x9 € B;(£) N Z;(Lo). Since 8 € ID*(Ly),

thus, there exist f; € ID*i(LO) and (2 € ID*(Lg) such that 3 =
[B1, B2]. Moreover,

B(xo) = [B1, B2](z0) = (B162 — B251)(x0) = B1B2(x0) — P21 (x0)-
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By given inductive assumption and (11), we have (3231 (x¢), 8102(x0) €
Bj_i1(L)N Zj_;i—1(Lg). Consequently,

ﬁ(.’IJQ) S Bj—i—l(ﬁ) N Zj—i—l(LO)- (14)
Now, by using (12), (13) and (14), we get
(Z;(L), ID*Act(£))"™] C Z;_;1(L). O

Lemma 4.4. Let L : (L1, Lo, d) be a Lie algebra crossed module and H :
(H1, Ho, A|) a subcrossed module of Act(L) such that H be a subcrossed
module of ID*Act(L) contains InnAct(L). Then

HNOAct? D) (L) = Z;(H). (15)

Proof. We prove (15) by induction on j. First, by Lemma 3.6 (15)
holds for j = 1.

Now, assume that for j, (15) holds. Hence, we have
Hy N DerZi®) (Lo, L) = Aj(H),
Hoy N DerZi0)(L) = B;j(H) N Z;(Hy).
Let 6 € Hy N Der?i+1(£)(Ly, Ly) and (a, B) € Hy are arbitrary. We have
*6(10) = a(6(lo)) = 5(B(lo))  Vlo € Lo.

Since §(lp) € Aj4+1(L) and o € ID*(Ly), using the Lemma 4.3 a(6(lp)) €
A;(L). Moreover, since § € ID*(Lg), then there exist xg,yo € Lo such
that 3(lo) = [zo,yo]. Thus,

6(B(lo)) = ([0, yo]) =*° 6(yo) =** 6(0).

Now, since §(xo), d(yo) € Aj1+1(L), then by Lemma 3.2 we have 6(5(lp)) €
A;(L). Consequently,

(a’ﬁ)é e HinN DeTZj(L)(Lo,Iq).
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Thus, (*A)§ e A;(H), and using the Lemma 3.2, 6 € A;j;1(H). Hence,
we conclude that

Hy N DerZi+1E) (Lo, L1) C Aj1(H). (16)

Conversely, suppose 6 € Aj1(H). It is clear that § € Hy. It is enough
to show § € DerZi+1(£)(Lg, Ly). Since § € Aj41(H), by the Lemma 3.2,
for all (a, 3) € Ho, (%5 € Aj(H).

Consider (ay,, 81,) € Hop, then
(@o80)§ € Aj(H) = HinDer%iF) (Lo, Ly) = ©oP0)§(xg) € Aj(L), Vo € Lo.

Therefore, we have

aiy8(x0) — 6y, (w0) =" 6(x0) — 6([lo, xo))
=1 §(x0) =" 6(0) +7 6(lo)
=" 4§(lp) € ( ), Vi € Lo.
Now, by the Lemma 3.2 6(lp) € Aj41(£). Thus, § € DerZi+1(&)(Ly, Ly).

Consequently,

Ajy1(H) C Hy N DerZitiE)(Lg, Ly). (17)
Using (18) and (19)

Hy N DerZi+1 ) (Lo, L) = Aj1(H).

Also, assume (o, 3) € Hy N DerZi+1(8)(L). We show that (a, ) €
Bji1(H) N Zj41(Hp). To this end, for all (/, ) € Hy

[(c, 8), (&, B)] = ([ev, &), [8, B]) = (ac — &/r, BB" — B5').
Consider x; € Ly be arbitrary, then
(ad — d'a)(z1) = ad (x1) — ' a(z1).

Now, since &/ (x1) € Dr,(L1), using the Lemma 3.2, a(a/(z1)) € A;(L£). On
the other hand, by given the assumption, a(z1) € Aj4+1(L£), and using
the Lemma 3.2, o/(a(z1)) € A;(L). Therefore, for all 1 € Ly

[ov, @] (1) € A;(L). (18)
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Also, if xg € Ly be arbitrary, using a similar method, we have
8, 8](x0) € B;(L£) N Z;(Lo). (19)
Using (18) and (19)
(e, 9), (o, )] € Ho N Der®9(L) = B;(H) N Z;(Ho).
Now, by the Lemma 3.2
(a,8) € Bj+1(H) N Zj1(Ho).

Conversely, suppose (o, 3) € Bj1(H)NZj41(Hp). We show that (a, ) €
Hy N DerZi+1(£)(L£). Tt is clear that («,3) € Hy. It is enough to show
(o, B) € DerZi+1(E)(L). Let (aq,,B;,) € Ho be arbitrary, then using the
Lemma 3.2 and inductive assumption, we have

(. 8), (ady B1,)] = ([ev, ], 18, B, ]) € Bi(H)NZ;(Ho) = HonDer” ™) (L).

Moreover, using the Lemma 3.4, Proposition 2.4 and the above state-
ment, we obtain

18, B1o) (o) = B0 (o) = [B(lo), x0] € Bj(L£) N Zj(Lo) Vo € Lo.

Now, using the Lemma 3.2 3(lg) € Bj11(L£)NZ;4+1(Lo). Similarly, it can
be shown for all [; € Ly, a(ly) € Aj+1(L). Thus, (o, 3) € DerZi+1(E)(L),
and consequently,

(a, B) € Hy N DerZi+1E)(£). O
Corollary 4.5. Let £ : (L1, Lo, d) be a Lie algebra crossed module. Then
Actyi(L) N Act?iE) (L) = Z;(Actpi(L)).

Proof. Using the Lemma 4.4, it is clear. [
We are now ready to provide the main theorem.

Theorem 4.6. Let L be a Lie algebra crossed module and Actpi(zj"(:l:))

/InnAct(Zjl(:ﬁ)) the nilpotent of class k, then Acty;(L)/InnAct(L) is the
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. . . . L L
nilpotent of the maximum class k+j. Moreover, zfActh-(Zj 78] )/InnAct(m)
be an obvious crossed module, then Act,;(L)/InnAct(L) is the nilpotent
of the maximum class j.

Proof. Since Actp;( Zﬁﬁ)) /InnAct( ijﬁ)) is the nilpotent of the class k,

S0
k+1
Act,;" (

) C InnAct(

L
Z;(L) Z(5)

By given the Lemma 4.1, we have
Actl (L) € Actyi(£) N ActZ5)(L) + InnAct(L),
and using the Corollary 4.5
Act’;;rl(ﬁ) C Zj(Actpi(L£)) + InnAct(L).

Therefore,
Act? (L) C InnAct! ().

Thus, we conclude that Acty;(£)/InnAct(L) is the nilpotent of the max-
imum class k+j5. O

Note that a Lie algebra crossed module £ : (L1, Lo, d) is said to be
finite dimentional if the Lie algebras Li and Lg are both finite dimen-
tional. In the case of finite dimentional, we define dim(L) to be the
ordered pair(dim Lq,dim Lg). Clearly, a total order is defined on the
class of all finite dimentional Lie algebra crossed modules by means of
dim(L : (L1, Lo,d)) < dim(L" : (LY, L{,d)) if and only if dimL; <
dim L, or dim L; = dim L} and dim Ly < dim L.

By the above we have,

Corollary 4.7. Let L : (L1, Lo, d) be a non-abelian Lie algebra crossed
module such that dim(L /(L1 N Z;(L£))) < (1,1), then Acty;(£)/InnAct(L)

is the nilpotent of the maximum class i + j — 1.

Proof. It is proved by considering £¢/(£' N Z;(L)) = (L/(Z;(L)))¢, us-
ing Theorem 4.6 and Corollary 3.10 [10]. O
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