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Abstract. In this paper we first introduce NZ_ summable difference
sequence spaces and prove some properties of these spaces. We then ob-
tain the necessary and sufficient conditions for infinite matrix A to map
these sequence spaces on the spaces ¢, ¢p and £o. Finally, the Hausdorff
measure of noncompactness is used to obtain the necessary and suffi-
cient conditions for the compactness of the linear operators defined on
these spaces.
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1. Introduction and Preliminaries

We write w for the set of all complex sequences x = (x1)72, and
¢, co, c and £, for the sets of all finite sequences, convergent to zero,
and bounded sequences respectively. By e we denote the sequence of 1’s,
e=(1,1,1,...) and by e(™ the sequence with 1 as only nonzero term
at the nth place for each n € N, where N = {0,1,2,...}. Further by
cs and /1 we denote the spaces of all convergent series and absolutely
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144 I. AHMAD MALIK AND T. JALAL

convergent series respectively. For z = (z3)72, € w zlm = Yoo zre)
denotes the m-th section of .

A sequence space X is a linear subspace of w, such a subspace is called
a BK space if it is a Banach space with continuous coordinates P, :
X - C(n=0,1,2,...) where P,(z) = x,, = (vx)5>, € X. The
BK space X is said to have AK if every x = (x1);2, € X has a unique
representation x = Y - zxe®) | [12, Definition 1.18]. The spaces c, ¢
and /o, are BK spaces with respect to the norm ||z|s = supg{|zx| :
k € N}. For any two sequences x and y in w the product xy is given by

ry = (TkYk)7lo-
The f—dual of a subset X of w is defined by

X8 ={acw:ax = (apry) €cs forall z = (x;) € X}.

If A is an infinite matrix with complex entries a,;r n,k € N, we write
A, = (ank)i2y n € N for the sequence in the nth row of A. The
A—transform of any x = (z1) € w is given by Az = (A, (z))5—, where

Ap(z) = Z Ank Tk n €N,
k=0

provided the series on right converge for each n.

If X and Y are subsets of w, we denote by (X,Y), the class of all
infinite matrices that map X into Y. So A € (X,Y) if and only if
A, e XP n=0,1,2,...and Az € Y for all z € X. The matrix domain
of an infinite matrix A in X is defined by

Xa={recw: Az e X}.

If X and Y are Banach Spaces, then by B(X,Y) we denote the set of
all bounded (continuous) linear operators L : X — Y | which is itself a
Banach space with the operator norm ||L|| = sup, {||L(x)|y : ||z| = 1}
for all L € B(X,Y). The linear operator L : X — Y is said to be compact
if its domain L is all of X and for every bounded sequence (z,) € X, the
sequence (L(zy)) has a sub-sequence which converges in Y. The operator
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L € B(X,Y) is said to be of finite rank if dim R(L) < oo, where R(L)
denotes the range space of L. A finite rank operator is clearly compact.

The concept of difference sequence spaces was first introduced by Kizmaz
[7] and later several authors studied new sequence spaces defined by
using difference operators like Mursaleen and Nouman [14], Mursaleen
et. al. [13] , Jalal [5].

In the past, several authors studied matrix transformations on sequence
spaces that are the matrix domains of the difference operator, or of the
matrices of the classical methods of summability in spaces such as £,
co, ¢, L5 or others. For instance, some matrix domains of the difference
operator were studied in [7, 15], of the Riesz matrices in [2] and so on.

In this paper, we first define three new sequence space as the matrix
domains X7 of the product T of the triangles N? and A~ and obtain
basis for two of them and determine their G duals. We then find out
the necessary and sufficient condition for the matrix transformations to
map these spaces into cg, ¢ and f,. Finally we characterize the classes
of compact matrix operators from these spaces into ¢y, ¢ and ..

2. Nz, Summable Difference Sequence Spaces

The difference operator A~ is defined on w by

A xp=x_1—o ,k=0,1,2,... wherez_1=0 (1)
The A™ = (0nk), p= is @ triangular matrix written as
-1 k=mn,
k=1 1 k=n-1,
0 k> n.

The inverse of this matrix is S = (spx) given as

(-1 0<k<n,
Snk = 0 k> n.

Let (qr)32, be a given positive sequences and (Qn);2, be the sequence
defined as @, = >, ¢;. The (N?) transform of the sequence ()2,
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is the sequence ()22, defined as

1 n
tn:—Zqixi foralln=0,1,....
an’:O

The matrix N9 for this transformation is given by

_ 0L k<n
Nq _ Qn X X
(V) {o k> n.

The inverse of this matrix (see [4]) is

o {(—1)”*% n—1<k<n

0 0<k<n—2k>n.

We define the spaces N _ summable to zero, summable and bounded

respectively as

_ _ 1 <& Oo
(sz)o = (co, A7 ) e = {xew:NqA‘x: <QZQkA_$k> 660},
™ k=0 0

" k=0
(NZ*)OO = (eoo,A_)Nq = {-75 cw: NqA_J; = <
™ k=0

(N3-) =(c,A7 ) je = {az cw:NIA 2= <Ql Z%Axk> € c} )
n=0
! quA_$k> € &X,} .
0

n=

For any sequence z = (x3)72,, let 7 = 7(z) = (m,(x)),_, denote the

sequence with nth term given by

ra(@) = (N1 )o(2) = Ql Sadm (=012..) (2
" k=0

2.1 Basis for the new sequence spaces

First we determine Schauder bases for the spaces (Ni,)o and (NZ,).
For the convenience of the reader, we state the following known results:
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Proposition 2.1.1. [17] Every triangle T has a unique inverse S =
(Snk)p k=0 which is also a triangle, and x = T'(S(x)) = S(T'(z)) for all
x € w.

Proposition 2.1.2. [Theorem 2.1.3, 6] Let T be a triangle and S be
its inverse, if (b("))zozo is a basis of the linear metric space (X,d),
then (S(b(")))iozo is a basis of Z = Xp with the metric dp defined by
dr(z,z2) =d(T(z),T(2)) forall z,z € Z.

It is obvious that (co, A7) e = (co) ya.a—, So the basis for new spaces
are given by (NY- A*)fl (e(”)) = (A*)f1 : (]\7(1)71 (e(”)).

Theorem 2.1.3. Let 1, = ((Ni,) m)k for all k € N. Define the sequence
sk) = {s%k)} of the elements of (co, A™)yq as
neN

k (1
) Zj:IQJ (qﬁl %) 0<k<n 1) L Lt 1 1 Qk
Sp = Sk k=n o V=) 1) P +q7 :
0 k>mn k=0 [3= ’ !

for every fixed k € N. Then

i) The sequence {s(k)}k:eN is a basis for the space (co, A7) yq and any
x € (co, A7) jq can be uniquely represented in the form

xr = ZTkS(k).
k

ii) The set {s(*l),s(k)} is a basis for the spaces (¢, A™)xq and any
x € (¢, A7) §q has a unique representation in the form

=150 4 Z(Tk — )5
k

where for all k € N, | = limj,_.c ((N4-) ac)k

Proof. Since (X, A7) gq = (X) ya.a- for X = cg, ¢, loo, and e = (eR))2
is the standard basis for c.
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Also N1 is a triangle, A~ is triangle so N?- A~ is also a triangle and

Qk( L _ 1) 0<k<n

(vean) =)= e
0 k> n.

Hence {s(k)}keN is a basis for the space (co, A7)y and the results i)
and ii) are obvious to follow. [

Theorem 2.1.4. The sequence spaces (NZ—)(V (Ni-) and (NZ_)OO

are BK-spaces with norm || ||ya  given by
.

1 n
Qﬁ quA_xk
" k=0

Il s = sup

If Q, — o0 as (n — o), then (Ng,)o has AK, and every sequence
x = (z)72, € (NL_) has unique representation

w=le+ Y (e —1)e®, (3)
k

where | € C is such that x —le € (NX_)o.

Proof. Since (X, A*)Nq = Xy,.a- for all X = co,c,lo and the spaces
cp, ¢, U are BK spaces with respect to natural norm [8, 217-218] and the
matrix Ny - A~ is a triangle so by Theorem 4.3.12, [17], gives (N%_)
(N%_) and (NZ,)OO are BK spaces

07

The space (Ni, )o has AK and the unique representation of elements of
(N4 _) are simply followed from Theorem 2 of [1] and [11].

2.2 (3 Dual of the new spaces

In order to find the 8 dual we need the following results of [16]

Lemma 2.2.1. If A = (ank);5—o then A € (co,l1) if and only if

sup
KeF

ank| < 00,

keK
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where I’ stands for the class of all finite subsets of N.

Lemma 2.2.2. If A = (an);5—o then A € (co,c) if and only if

[e.9]
supz lank| < oo,
" k=0

lim a,r — ai = 0.
n—oo
Lemma 2.2.3. If A = (ank) ko then A € (co,lx) if and only if

oo
supz lank| < oo,
" k=0

n
Theorem 2.2.4. Let (q;)2, be positive sequences, Qn = Zqi and

1=0
a = (ax) € w we define a matriz C = (cuk)p ko @S
1 1 n ,
Qs (qm - %) 2j—k41 OSk<n
Cnk = — Qrag k=mn
qr
0 k> n,
and consider the sets
€= {a cw: supz |enk| < oo} O {a €w: lim cyy exists for each k€ N}
n k/. n—oo

c3=<acw: lim Z\cnk| :Z lim ¢, i ={a€w: lim chk exists p .
n—oo k k n—oo n—odo k

Then [(NZ_)O}ﬂ =ciNes, [(Ni_)]ﬁ =c1NeaNey and {(Ni—)m}ﬁ =

coMcs.
_ B
Proof. We prove the result for [(Ni—)o} for the other two same pro-

cedure can be followed. Let x € (NZ,)O then there exists a y such that
y= Ng,x.



150 I. AHMAD MALIK AND T. JALAL

Hence

n n
Zakxk = Zak (Ngf)il Yk
k=0 k=0
n k—1
1 1
= a |>_Q ( - ) Yj — Cq?:yk
k=0 =0

aj+1  gj

n n

1 1 Qrag

= E Q-1 ( - > E a; — Yk
k=0 G j=k+1

So ar = (apxy,) € cs whenever x € (NZ_)O if and only if Cy € cs
whenever y € cy.

_ B
Using Lemma 2.2.2 we get [(Ng_)o] = ¢1 Ncy In the same way we can
show the other two results as well. [

By Theorem 7.2.9, [17] we know that if X is a BK-space and a € w then

lal* = Sup{ > agwy ||zl = 1}

provided the term on the right side exists and is finite, which is the case
whenever a € X7,

~-

Theorem 2.2.5. For [(NZ,)OV [(Nq,)]ﬁ and [(Ni,)oor the norm

Il |I* is defined as

i, 1 1) & Qna
Jall* = sup | 3 @4 (—) Sy + [@ntn
" k=0 n

Qe+l Gk 57

Proof. If z[" denotes the nth section of the sequence = € (Ni_)o then
using (2) we have

Tlgn} = 7% (x [”] Z qj _acgn .
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_ B
Let a € [(Ng*)o} , then for any non-negative integer n define the

sequence d™ as

1 n .
Qu (‘1k+1 - q?) diki1aj 0<k<n
_ Qurag b

k> n.

=

Let [lalln = sup,, [P 1 = sup, (3232 dj"'1) where T = [(N4)]”.
The inequality ||a|lm < ||al|*  is obvious.

Also

n k
n 1 n n
k]‘ = ag Z Ej(QjT} - Qj—lT][-,]l)

k=0 =0

n—1 n
1 1 a
<3 o <_) S ay | | | 2% i)
k=0 dk+1 dk k1 dn
1 = anQn
< sup T Qk < ) aj| +
| Z dk+1 Qk Z ! dn

j=k+1
— (| - n]
a5 d

_ ]| -
lallmllz™ | 5e

Hence [|a|* < la/[x
From the above inequalities we get the required conclusion. [

Some well known results that are required for proving the compactness
are.

Proposition 2.2.6. [Theorem 7, 9] Let X and Y be BK spaces, then
(X,Y) C B(X,Y) that is every matriz A from X into Y defines an
element L4 of B(X,Y) where

Ly(z) = A(z), VaoelX.
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Also A € (X, ) if and only if

[A[]" = sup [ Ap[|* = [|Lal] < oco.
n

If (b(k)):ozo is a basis of X, Y and Yy are FK spaces with Y1 a closed
subspace of Y, then A € (X, Y1) if and only if A € (X,Y) and A (b(k)) €
Y1 forall k=0,1,2,....

Proposition 2.2.7. [Proposition 3.4, 10] Let T be a triangle

(1) If X and Y are subsets of w, then A € (X,Yr) if and only if B =
TAe (X,Y).

(i) If X and Y are BK spaces and A € (X,Yr), then
[Lall = L]l

Using Proposition 2.2.6 and Theorem 2.2.5 we conclude the following
corollary:

n
Corollary 2.2.8. Let (qx)72, be a positive sequence, Qn = qu and
k=0
A~ be the difference operator as defined in (1), then

i) Ae ((Ni_)oo ,foo) if and only if

m—1 m
sup Z Qk (1 _ 1) Z a/nj + 'Qmanm’ < 0, (4)
k=0 Uk

and

An@Q

€cy, Vn=0,1,.... (5)

i) A€ ((]\7&,) ,foo) if and only if condition (4) holds and

An@Q
q

€, Vn=01,2.... (6)
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i) A€ <(NZ—)0 ,&o) if and only if condition (4) holds.

) A€ ((Ng_)o,co) if and only if condition (4) holds and

lim a,, =0, forallk=0,1,2.... (7)
n—oo

v) A€ <(Ng_)0 , c) if and only if condition (4) holds and

lim a,r = o, forallk=0,1,2.... (8)
vi) A€ ((Ni_),co) if and only if conditions (4), (5) and (7) holds
and

JLH;OZCLM:O, forallk=0,1,2.... 9)
k=0

vii) A € ((N}

4_).¢) if and only if conditions (4), (5) and (8) holds

and

o
nlLIEOZank = q, forallk=0,1,2.... (10)
k=0

3. Hausdorff Measure of Noncompactness

Let S and M be the subsets of a metric space (X,d) and € > 0. Then S
is called an e—net of M in X if for every x € M there exists s € .S such
that d(x, s) < e. Further, if the set S is finite, then the e—net S of M is
called finite e—net of M. A subset of a metric space is said to be totally
bounded if it has a finite e—net for every € > 0.

If Mx denotes the collection of all bounded subsets of metric space
(X,d). If Q € Mx then the Hausdorff Measure of Noncompactness of
the set @ is defined by

X(Q) =inf{e > 0: @ has a finite € —net in X}.

The function x : Mx — [0,00) is called Hausdorff Measure of Noncom-
pactness.
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The basic properties of Hausdorff Measure of Noncompactness can be
found in ([3, 4, 12]). Some of those properties are
If Q, Q1 and @2 are bounded subsets of a metric space (X, d), then

X(Q) =0 < Q is totally bounded set,
X(@) = x(Q),
Q1 C Q2 = x(Q1) < x(Q2),
X(Q1 U Q2) = max {x(Q1), x(Q2)},
X(Q1 N Q2) = min {x(Q1), x(Q2)} -

Further if X is a normed space the y has the additional properties con-
nected with the linear structure.

X(Q1 + Q2) < x(Q1) + x(Q2)
x(nQ) = [nlx(Q), neC.

The most effective way of characterizing operators between Banach Spaces
is by applying Hausdorff Measure of Noncompactness. If X and Y are
Banach spaces, and L € B(X,Y), then the Hausdorff Measure of Non-
compactness of L, denoted by ||L||, is defined as

L1y = x (L(Sx)) -

Where Sx = {z € X : ||z|| = 1} is the unit ball in X.
From [Corollary 1.15, 16] we know that

L is compact if and only if ||L||, = 0.

Proposition 3.1. [Theorem 6.1.1 X = ¢y, 3] Let Q € M, and P, :
co —cg r € N. Then, we have

T—00 er

X(Q) = lim (Sup II(IPT)(SU)H) ,

where I is the identity operator on cgy.
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Proposition 3.2. [Theorem 6.1.1, 3] Let X be a Banach space with a
schauder basis {e1,ea,...}, and Q € Mx and P, : X — X (n € N be
the projector onto the linear span of {e1,ea,...,e,}. Then, we have

n—oo

é lim sup (ilelg (I — Pn)(x)‘> < x(@Q)

< inf (supll(f—Pn)(w)H> < lim sup (iggna—mxx)n) ,

where a = lim sup ||I — B, ||, and I is the identity operator on c.
n—oo
If X = c then a = 2. (see [3], p.22).

4. Compact Operators on the Spaces (Ni_)o,
(N3-) and (N3-),

Theorem 4.1. Consider the matriz A as in Corollary 2.2.8, and for
any integers n,s, n > s set

141 ) = supsup ZQJ (-2 3 an Qn;anm'

n>s m qj+1 q; i1

If X be either (NZ—)O or (Ni_) and A € (X, co). Then
Zally = lim 4. (12)
If X be either (N3_), or (NA-) and A € (X,c). Then
1 .. s
L tim A1) < [ Lall < lim 4], (13)

and if X be either (NZ,)O . (NY

A-) or (NX_)_ and A€ (X, l). Then

< ILally < Jlim (4] (14)
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Proof. Let F = {x € X : |z|]| < 1} if A € (X,¢9) and X is one of the
spaces (]\_fi_)o or (N%_), then by Proposition 3.1.

[Lally = x(AF) = lim SUEH(I— Py) Axl|| . (15)
S— 00 xe

Again using Proposition 2.2.6 and Corollary 2.2.8 we have

| A[]* = sup ||(I — Ps) Az (16)
zeF

From (15) and (16) we get
IZally = lim [ A,
§—00
Since every sequence x = ()7, € ¢ has a unique representation

x=le+ 302 o (x — e,
Where [ € C is such that x — le € co.

We define P; : ¢ — ¢ by P. le—l—z;rk—l ) s=0,1,2,....
Then ||I — Ps|| = 2 and using (16) and Proposmon 3.2 we get

1

N T (s)

- lim A < [Lall < Jim 4]

Finally we define Py : loo — lx by Ps(x) = (%0, 21,...,25,0,0...),
x = (z) €l

Clearly AF C Py(AF) + (I — Ps)(AF)
So using the properties of x we get

X(AF) < x[Ps(AF)] + x[(I — Ps)(AF)]

< sup 17— PS)A(:E)II-

Hence by Proposition 2.2.6 and and Corollary 2.2.8 we get

< Lally < lim [|A4]®
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Which completes the proof. O

A direct corollary of the above theorem is

Corollary 4.2. Consider the matriz A as in Corollary 2.2.8, and X =

(NZ,)O or X = (N%_) then if A€ (X,cp) or A € (X,c) we have

L4 is compact if and only if lim ||A||®®) =
§—00

Further, for X = (Ng_)o , X = (VY

9.) or X = (NZ_)OO, if A €
(X, ls) then we have

Ly is compact if lim ||A]®) = 0. (17)

In (17) it is possible for L4 to be compact although lim [|A||*)

that is the condition is only sufficient condition for L 4 Stgolge compact.
For example, let the matrix A be defined as A4, = e n=0,1,2,...
and ¢, =3", n=0,1,2,....

Then by (4) we have

Supmz (- 1) 5 o S

mn | Bkt1 j=k+1 3
Now by Corollary 2.2.8 we know A € (( g ) EOO) .
But 2 1 7 1
Al = S+(1-3T" V s.

Which gives lim, o || 4] = L#o0.

Since A(z) = x; for all z € (NZ,)OO, so L4 is a compact operator.
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