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1.

To analyse big data, finding the asymptotic distribution of the deviance
statistic is of great help. Chernoff [3] introduced a method for finding
the asymptotic distribution of this statistic in some nonstandard sit-
uations. His methodology then was extended by others such as Self &
Liang [10], Feder [4], Moran [9], Chant [2], Geyer [6] and Vu & Zhou [12].
Silvapulle & Sen [11] expand the methodology in more detail and con-
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Watson [13], Fisher, Embleton & Lewis [5] and Mardia & Jupp [8] treat
the problem by taking a geometrical view point of this distribution. Our
work is mainly towards the likelihood function of the distribution, con-
sidering the first and second derivative of the log likelihood function. In
a standard setup, the likelihood should satisfy some conditions which
are not true with the von Mises Fisher distribution [7]. However, if we
eliminate one parameter and replace it by a function of the other param-
eters, then it satisfies some standard conditions as we show in Section
3.. Referring to Vu & Zhou [12] for a full multivariate setup, we check
the assumptions and in Section 4., the asymptotic distribution of the
deviance statistics for some suggested hypotheses are presented. An ap-
plication is given in Section 6., where the data are the percentage of
leucocyte in blood samples of 10 patient. We choose to do some hy-
pothesis testings which are related to the methodology presented in this
paper.

As is shown in Ghodsi [7], eliminating one parameter is not however a
good method to analyse the von Mises Fisher distribution, because it
results in an unintuitive and complicated expressions. It is preferable to
develop a direct methodology for this distribution which can be found
in Ghodsi [7].

The von Mises Fisher distribution is used in Ghodsi [7] to analyse high
dimensional asset allocation of financial portfolios built from various
stock indices of countries. The methodology used in this paper is different
from the one applied in Ghodsi [7].

von Mises Fisher distribution is one type of spherical distributions whose
relatively informative and simple formulation makes it useful in the
study of the directional data. Directional data locates data on a circle,
sphere or hypersphere. Typical examples of directional data are related
to the earth and celestial sphere. The data can be represented by a vector

Ty —=1.

x which satisfy the condition x
Let S = {x € R? : 22 + 23 + --- + 2% = 1} denote a unit sphere in
R?. The von Mises Fisher distribution is defined on this sphere by the

following density function:

fx(x) = c(k)Lexp{rulx}, xeS%k>0,pcs? (1)
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where fx(z1,22,- - ,zq) is the density of a d dimensional random vector
X at the point x = (x1,29,---,x4) on the surface of the sphere. In
this distribution x > 0 represents the concentration and p is the mean
direction or the pole such that g = (1, 2, - -+ , pg) with p € S k is a
measure of precision. If kx = 0, then the data are distributed uniformly
over the sphere. When & is large, the distribution is concentrated on a
small portion of the sphere. pu is called the modal or mean vector of the
distribution and locates the density on the sphere.

In this investigation, we assume k # 0, therefore we choose the param-
eter space to be © = {(k, p1, -+ ,pg—1) € (0,00) x (—1,1)471} and the
true value of the parameter to be 8y = (ko, ft10, - , td—10) € O.

The first derivative of ¢(x) (the normalising constant in the von Mises
Fisher distribution) with respect to x will be denoted by ¢, and the
second derivative by c... These notations will be used throughout this

paper.

2. Chernoft’s Innovation for the Asymptotic Dis-
tribution of the Deviance Statistic

Chernoff [3] extends the work of Wilks [14] by considering subsets of
© such as hyperplanes, i.e., subspaces of dimension d — 1 or less. The
hyperplanes in R are points, in R? are lines and in R? are planes. Ev-
ery hyperplane divides the space in two parts. Under some regularity
conditions Chernoff considers the hypotheses

Hy : 0 is on one side of a hyperplane
H, :otherwise,

so his emphasis is quite different from Wilks’. He locates the true value
of the parameter, 8y, on the boundary of the two disjoint subsets defined
by the null and the alternative hypotheses. In the one-dimensional case
the null and alternative hypotheses are simply

H() :‘9290
Hy :60<6,.
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Let A be a neighborhood of 8y in © and let X be a random variable in
R? with density fx(x; ) for 8 € N'. Chernoff assumes

(CH1) for almost all x, the first, second and third derivatives of
log (fx(x;0)) with respect 0 exist, for every 8 € N;

(CH2) if 8 € NV, all of the first, second and third derivatives of fx(x;0)
are bounded by finitely integrable functions where these functions are
the same for the first and second derivatives and the expectation of the
third one does not depend on 6.

(CHB3) if 8 € NV, the matrix Sg in (3) is finite and positive definite.

Throughout his proofs, he translates the origin so that 8¢ is zero and
considers the hypotheses

Hy :0eQCN
Hy :0ertCN

and illustrates his method of testing them through three examples which
can be found in Chernoff [3], Silvapulle & Sen [11] and more explicitly
in Ghodsi [7].

Recall that a set C C R? is a cone with vertex at 0 if 8 € C implies
a@ € C for all a > 0. Chernoff introduces the idea of a set ¢ C N
approximated by the cone Cy at 0 if

inf [)x —yl| = o(lyl) forye ¢
X€C¢

and
inf [[x — y|| = ofl[x|l) for x € Cj,
A4S

then proves the following theorem:

Suppose 8y = 0 and §¢ is the maximum likelihood estimator in a set

¢ C N and
1) the regularity conditions (CH1), (CH2), (CH3) are satisfied,

2) the origin is a boundary point of ¢ implies that §¢LO, for any
¢ CN,
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3) the sets Q and 7 are approximated by nonnull and disjoint cones Cg
and C..

Then the asymptotic distribution of the deviance statistic
dn = =2[Ln(6),) — Ln(6,,)]; (2)

where éi and 9; are local maxima of the log likelihood function £,,(0)
on 2 and QUT, is the same as it would be for the test of 8 € Cq against
0 ¢ C, based on one observation from a normal distribution with mean
0 and variance J~!. In this setup J = Sg with

: o\ T
Sp=F <61°g-’;’;(x’0)> <61°g";’f9(x’0)> ]; 6o, (3)
2
Fo=E |: 8080T log fx(X 9):| 6co. (4)

Some moments of the von Mises Fisher distribution are

BE(X) = A(r)u, E(HTX) = A(r),
T _ Ckk ar _ Crr o
BUX) =i VerleX) =g~ A )
A /4;) T

C:‘QK/
E(XIHTX) = C(K) i, Var

The proofs are in Section 7. as an Appendix to this article. Also, we

I — pp’) + a(k)pp’.

have

Ck
Var (paX; — piXa) = o (13 + p13), (6)

which proves that ¢, > 0 (See (39)).

These can be found in Watson (1983) as well as Ghodsi (2018). The
proofs in Ghodsi (2018) are based on the likelihood function of the dis-
tribution as we see them in Appendix. We use these moment formulae
throughout the next sections.
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3. Assumptions on the First and Second Deriva-
tive of the Log Likelihood Function

Let © = {(k,p1,.--,1ta—1),k > 0,; € (0,1)} denote the parameter
space, and 0y = (Ko, ft10, - - - , hd—10) the true value of 6.

To analyze the asymptotic behavior of the MLEs, we need some as-
sumptions on the asymptotic behavior of the first and second derivative
matrices and their expectations. Before defining them, we calculate first,
second and the expectations of the log likelihood function. We define the
derivative of £,(0) with respect to € to be the d-vector

AL, (0) OL,(0) 8£n(0)]T

Sn(0) = | 90, ' 06, T 06y

Similarly, we define the negative of the second derivative of £,,(8) to be
the d x d symmetric matrix

0*La(6)
9000"

Define D,, = E{S,,(60)S%(6¢)} and G,, = E{F,(8y)}, and

F..(0) =

o 1 n o _ R
X'n,: EZXZ = (X17X27"'7Xd)’
=1

so that
X1+ peXo + .o+ paXg = p’ X,

and
(aXi — piXa =1 X g.

The first derivative of £, is the d x 1 vector

0Ly, (0)
Ok
9L (0)
s 1ol o
S.(0)=| ™ :n{o KI]M(X—EX), (7)
: I
9L, (0) ’

Oprda—1
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where matrix M is

P pa 0 e 0
H2 0 pa - 0
M=| : @ i : o -
J _
ta—1 0 0 Hd
L Hd —H1 — K2 _:ud—l_ dxd
and

aT - (,uluu27 et 7,ud—1)a

It is easily verified that E(S,(6¢)) = 0. The matrix D,, =
E(Sn(60)S;, (80)) is

1 of

o [1 07 il
D,=n 0 £] M{Var(X)}M 0 £7|°
fid Ka

167
1)% (d—1)
al ’
(8)
9)

Using the expectation formulae (5) (because it is assumed that (X1, X;o)

are n random samples) we obtain

R [(5(“5) ~ dtg) iy O

where F' is
F=(ujI+aa’).

After some computation, F,,(0) can be written as

2

W@ wm

Fno _ c(k 2 (k Hd__ ,

(0) =n =1y £ X F
Hd 5

where F'is in (35), and

b’ = [alX14 plXoa Bl Xa-14] -

(10)

(11)

(13)
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Again using the moment formulae in (5), we see that the expectation of
this matrix in 8, which is G, is equal to D,,.

Theorem 3.1. D,, = G,, is a nonsingular positive definite square ma-

trix.

Proof. Let t1 = [t1,ts,...,t4) and tI | = [ts,...,t4] be two nonzero
vectors respectively in R? and R4,

2
n Crk C. 2 KCy T
t D t — t — ]t Fty_
Tt = ud(w) c2<n>)1+(”u3c<ﬁ>) d-1t b
_n (e G\
w2 \e(r)  E(r)) 1

KCg T KCxk T T
t, o Ity_ t ta—
- (nc(”)> (a1 Tba1) (nuZC(n) d-188

. 2
- (- () R () ()

K2

>0

We showed in (6) that ¢, > 0. Furthermore, if ¢, = 0, then D,, is zero, so
as a result we assume that ¢, > 0. By remembering that |u4| € (0,1), we
have the last expression positive just by applying the Cauchy-Schwarz
inequality as below

2
</|x1 (MTX) eXP{HuTx}dS> < </XI1(MTX)2 eXp{HuTX}dS>
exp{rptx}dS |,
X (/x|1 p{rp’ x} )

2 < cunc(k).

that is,

Further, we have strict inequality here because both the functions p”x
and 1 are nonzero and non-proportional through a scalar. So we have

Crr Cy

2 < cppe(r) —
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and the proof ends. [

For any positive definite matrix C, let C1/2(C7/?) be a left (the cor-
responding right), square root of C, that is, any matrices satisfying
C'2CT/2 = ¢, where CT/? = (CY/?)T  In addition, let C~1/2 = (C1/2)~1
and C~T/2 = (CT/?)~1. Usual versions of the square root are the Cholesky
square root and the symmetric positive definite square root. The left
and right Cholesky square roots C1/2 and C7/2 are defined as the lower
and upper triangular matrices with positive diagonal elements satisfy-
ing CY/2CT/?2 = C and CT/?2 = (CY?)T. Denote by || . |1 the sum of
the absolute values of the elements of a matrix. Also denote by Apmin(.)
and Apax(.) the minimum and the maximum eigenvalues of a symmetric
matrix. For any fixed A > 0, define subsets of R? by

No(A) ={0:(0—00)"G,(0 -6y <A%0cO).

To obtain the existence, consistency and the asymptotic distribution of
an ME for the model, we need the following assumptions on the asymp-
totic behaviour of the first and second derivative matrices and their
expectations. (Convergences are as n — oo unless otherwise stated.)

(B1) E{S,(60)} = 0, and the matrices D,, and G,, are finite, where the
expectations are taken with respect to the true distributions.

(B2) Anin{Gn} — oo. (When (B2) holds, G,, is positive definite for n
large enough, so we assume it to be so in general.)

(B3) supgen, (4) | Gn/*Fr()Gr"* — I |1 —-0.

(B4) For some positive definite matrix V, || G,'/’D, G, TP -V |1— 0.
(B5) Dy, /%8,,(80) —P N(0,1).

Based on E (X — EX) = 0 we can conclude that E{S,(0)} = 0. So
(B1) satisfies.

For (B2), we have A(G,) = nA(G) and A > 0 because G is positive
definite. Gy, is a positive definite matrix (Theorem 3.1) and nonsingular
SO G}/ % and G, /2 does exist (Cholesky decomposition). Because G,, =
D,,, we have G;l/ZDnG;T/2 = I, so we can take V = I, a positive
definite matrix. Therefore (B4) holds, too.
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Also D,, is a nonsingular positive definite matrix (Theorem 3.1), so,
based on Cholesky decomposition theorem D, /2 oxist. We have
E(D;,?8,(80)) = Dy /?E(S,(60)) = 0 and

Var(Dy, /%8, (80)) = Dy, /*Var(S,(60))D, /2 = 1. Also,

D 12M YT (X, — EX))

D 1/28,,(0,) =
n ( 0) \/’ﬁ s

(14)

thus from the Central Limit Theorem, D, Y 2Sn(90) is asymptotically
standard normal as n — oo. So (B5) holds.

It remains to verify (B3). Fix A > 0, n > 1 and choose 6 > 0. Keep
(Ky 1y 12y - - -5 pd—1) € Np(A), from the definition of N, (A),

(6-60)" . (6-6)) _ A
10— 0] 16— 60 10— 60

)\min (Gn) <

where Apin(Gr) = inf}, - uTGpu. On noting that Apin(Gy) > 0, we
have

AQ
0—0>< ——
| o N Amin(G)’
because it is clear that G, = nG. So
A
|k — Ko| < —, (15)
nAmm(G)
and
A
i — io| < —F— or i1=1,...,d—1.
|1i — pio () /
A

A 4 4 A
nAmin(G) and |MZ| < |/~LZO‘ + n)\min(c"’) for

i=1,...,d—1. Also, we need to add another assumption that |ug4| > 0,
where § > 0.

So we have |k| < |ko| +
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To verify assumption (B3), it is sufficient to show that

sup || n'Fn(0) — Go |1

0EN,(A)
= sup || n'Fn(0) —n 'F,(00) + 1 'F,(80) — Go |1
0EN,(A)
< sup || nT'Fu(0) —n ' Fu(00) 1+ || nT Fa(B0) — Go |
0EN,(A)
P
—0, as n — oo.

where Gg = n'G,(0p). From the weak law of large numbers, we
have n_an(Bo)LGo as n goes to infinity. To show that || n=!F,(0) —

n1F,(00) |1 2.0, based on (15), we consider three elements sepa-
rately. For the first element, we have

—1 1 —
sup | —p; Xig + — i Xid
0N, (A) | Hd Hdo
[ o -
= sup 0 X4l
0cN,(A) | Hdo  Hd
= sup |HO M‘\Xd!
0cN,(A) | Hdo  Hd
ol = L 1 1 _
< sup (WJFMOI(—)) | X 4]
0N, (A) | t1al ltaol |1l
< o(vn)|X4l.

We have ]Yd]LE | X 4|, from the weak law of large numbers when

n — oo. Also E|Xy4| is bounded, so the last equation goes to zero as
n — 00.

If we use the same technique for the second and third elements in F,,(0),
2 2\ — 2 2 N
which respectively are ’/@ <%) X4 — ko (%W) Xd‘ and
d do

M—’%mujyd — :TO,U'iO,UjOYd , we can see that the sup of these on N, (A)
d do
tend to zero as n — oo.

We have now verified that all of the assumptions (B1)- (B5) hold for
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the von Mises distribution. Consider €2 to be a subset of © and satisfy
assumption (A2) as below:

(A2) A subset Q of © is said to satisfy (A2) if there is a closed cone
Cq with vertex at 0y such that Co NN = QN N, where N is a closed
nonempty neighborhood in R? of 6.

or a weaker condition

(A2') A subset Q of O is said to satisfy (A2') if 2 contains 6y, and if the
intersection between Q and a closed neighborhood N of 8 is a closed
subset of R?.

4. Hypothesis Testing

Our first aim is to test the simple hypothesis

(16)

Hy :k=ko, p1=p10, ---, fd—1 = Hd—10
H, :otherwise,

where 0 < pi9 < 1 and k9 > 0. So 8 is in O, the interior of the
parameter space, 8 € V. To do this we find the distribution of the
deviance statistic in (2)

Here €2 and 7 are two fixed subsets of © which specify the subsets of the
parameter space corresponding to the null and alternative hypotheses
respectively.

They are required to satisfy the assumption (A2) with corresponding
Cq and C..

For the hypotheses specified in (16), we have Q = {(ko, p10, - - -, hd—10)}
and 7 = {(Kaulw-'nu'dfl) € (0,00) x (071) Xooony X(Ovl)

- (K’O) /,Ll(], L 7,ud710)}'

Let T}, = ﬁldxd and define

Ca, ={0:0=T,G1/2(0 — 6)),6 € Cq} (17)
and similarly for @.n. Then

Cq, ={(0,0,...,0)} and C,, =R% (18)
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Now we can check the following assumption, (A3), of Vu & Zhou (1997).

(A3) is satisfied if there exists a closed cone Cp with vertex at 0, not
depending on n, such that the sets CQ asymptotically coincide with CQ
in the sense that as n — oo,

sup | inf |30 — inf |56
|ﬁ‘:1 GGOQn 6cCq

On noting that ég)n and CN'Tn as defined in (18) are not dependent on n,
we can take

Cao =1{(0,0,...,0)} and C,=R" (19)
Then (A3) holds.
Lemma 4.1. The asymptotic distribution of d,, for

Hy :rk=kKo, M1 =p105 -5 Hd—1 = 4d—10
H, :otherwise,

is a chi square distribution with d degrees of freedom.

Proof. Based on Theorem 2.2 in Vu & Zhou (1997), because L,, and its
first and second derivatives exist and are continuous functions on @aNAN,
(A3) holds and also (B1) - (B5) hold. So the asymptotic distribution of
d,, exists and is the same as the distribution of

inf ||N —@|* - 1nf IIN —8||?, (20)
OECQ ocC.

where N = (N1, Na, ..., Ng)T is a random vector which has a multivari-
ate normal distribution with mean zero and identity matrix I and 0 is
a d - dimensional vector.

Based on (19), we have

inf ||N—0|>= N+ NZ+...+ N7
OGCQ

While the second inf is over C; = R%, so it equals zero. Therefore we
can conclude that the distribution of d,, is the same as the asymptotic
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distribution of N2 + N2 + ... + NC%, the sum of d standard Normal
variables, that is a chi square with d degrees of freedom. [J

Lemma 4.2. d,, for the hypothesis test

HO TH = Mo (21)
Hy 1 7& Ko,

has a chi square distribution with d — 1 degrees of freedom.

Proof. In this simple hypothesis, © is (0,00) x {pg}, N is a neighbor-
hood around & x py in R, Cq becomes zq—axis, and Cq is R. Therefore,
the distance of N = (N1, No, ..., Ng)T from Cq is

N? + N2+ ...+ N7 . For the alternative hypothesis, 7 is (0, 00) x

H{(=1,+1) x (=1,41) x ... x (=1,+1)} — po}, the centre of C; is at
r, p, and N is a ball around &, p. Therefore, C; is R?. The distance of
N = (N1, Na, ..., Ng), which is in R, from R? is zero. Thus

inf [|[N—8||>— inf [|[N—0|>=NZ+NZ+...+N7 |,

cCq cCr

which has a chi square distribution with d — 1 degrees of freedom. [

Lemma 4.3. For the hypothesis test

Hy :k=kKp (22)
Ha : Kk # Ko,

dn, has a chi square distribution with one degree of freedom.

Proof. Q = ko x (—1,41) x ... x (=1,+1), NV is a neighborhood around
ko, Cq is a hyperplane which goes through xg, and finally C~'Q becomes
(z2,23,...,2q) hyperplane. As a result infy,_s [N — 6] = N2 7 =
{[0,00) — Ko} x (—1,41) X ... x (—=1,+1), N is a ball centred at (kg, i),
p € (—1,41) x ... x (=1,+1), C; is a d dimensional plane in R¢, and
57 is R% centred at 04. We have

inf [N -6~ inf [[N—8|=N{-0=N;, (23)
0cCq 0cC

and has a chi square distribution with one degree of freedom. [
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Figure 1. Histograms and Quantile plots of d,, for different tests in
Table 1; Right is for n = 100 and Left is when n = 1000; Each row in
this Figure coincides with the number of row in the Table 1.
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Table 1: Simulation result for the hypothesis tests of the parameters
of a von Mises Fisher distribution in different dimensions; the number
in the columns of Figure reflects, relatively, the number of row and
column in Figure 1.

Row Dimension n r Ho Dis. of dy, Est. df | Figure
1 2 100 | 100 k=10 2(1) [ 1.28 | 1,1
2 100 | 1000 k=10 (1) | 1.19 | 1,2

2 2 100 | 100 k=10, = 0.5 X2(2) | 251 | 2,1
2 100 | 1000 k= 10,41 =05 xX2(2) | 249 | 22

3 2 100 | 100 = 0.5 X2(1) | 117 | 3,1
2 100 | 1000 pr = 0.5 x2(1) | 111 | 3,2

4 3 100 | 100 k=10 x2(1) | 1.04 | 41
3 100 | 1000 K= 10 2(1) | 118 | 4,2

5 3 100 | 100 k= 10,41 = 0.5 x2(2) | 268 | 5,1
3 100 | 1000 k= 10,41 =05 xX2(2) | 243 | 52

6 3 100 | 100 | x=10,m=05,m=01 | x2(3) | 4.61 | 6,1
3 100 | 1000 | x =10, =05,m =01 | Xx2(3) | 4.09 | 6,2

7 10 100 | 100 k=10 x2(1) | 1.10 | 7,1
10 100 | 1000 k=10 X2(1) | 1.27 | 7,2

8 10 [ 100 | 100 b = iz = s = 0 x2(3) | 3.49 | 81
10 100 | 1000 P x2(3) | 3.38 | 8,2

9 10 [ 100 | 100 p1 = n2 = s 2(2) | 227 | 9,1
10 | 100 | 1000 w1 =z = ua x2(2) | 2.10 | 9,2

5. Simulation Results

Row one in Table 1 and Figure 1 show the results of simulations from
a 2 dimensional von Mises Fisher distribution when we test x = 10 and
calculate d,, for this test. In order to do this, we simulate n = 100 data
from a 2-dimensional von Mises distribution with x = 10 and calculate
the value of d,, for the test

Hy :xk=10
Hy :xk#10



NONSINGULAR INFORMATION MATRIX AND THE VON ... 177

based on the formula of d,, in (2). Table 1 shows these results, while con-
sidering two different replications of » = 100 and r = 1000 to calculate
d,. The program is written in Mathematica and “Est. df” in Table 1 is
the estimated degree of freedom in a chi square distribution and is the
mean of the data.

The column Hj in Table 1 describes the null hypothesis which we test.
The alternative hypotheses are in the form of non-equalities for the rows
1 to 7 and for the columns 8 and 9 the alternatives are “at least one
equality is not satisfied”. The distribution of d,, is chi square with the
degrees of freedom calculated based on the methodology in Lemmas
4.1 to 4.3. There are totally 18 figures in 1 that are in 9 rows and
2 columns. The number of rows and columns are written in the last
column of Table 1. For example, the number 1,2 shows the figure which
is in the first row and second column of Figure 1.

6. Data Analysis

The data in Table 2 are the percentage of different leucocytes in blood
samples of ten patients determined by four different methods A, B, C and
D (Aitchison [1], Page 383). We take the square roots of the percentages
to put the data on the sphere and assume a von Mises Fisher distribution
to fit the data. The aim is to test

Hy :p1 =070, pe=0.60,
H, : at least one equality does not satisfy,

(1)

separately for each method. We calculate the deviance statistic d,, and
use Lemma 4.2 to conduct this hypothesis testing. According to Lemma
4.2, the statistic d,, for the hypotheses (1) has a chi square distribution
with 2 degrees of freedom. The likelihood function is

L,(0) = —nlogc(k) + nepu’X,
where the normalizing constant in 3 dimensions is

(k) = 47 Si:h(ﬁ) '
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The maximum estimators of the parameters in each method with the
corresponding d,, for the hypothesis testing (24) and the data in Table
2 are

14 = (0.803,0.395,0.447)T k4 = 80.35, dy, = 44.476%,

Iip = (0.627,0.734,0.263)7, kp = 46.405, dn, = 17.576%,

fic = (0.719,0.606,0.339) 7, ko = 45.422, d, = 1.211,

Iip = (0.733,0.582,0.352)7, kp = 60.761, d, = 1.608.

These results show that for the methods A and B the null hypothesis in
(24) is rejected at 0.05 level, however it not rejected for the methods C
and D.

For testing the hypotheses
Hy: k=50
Hy: k#50,

the distribution of d,, is a chi square with one degree of freedom according
to Lemma 4.3. The values of d,, in each method are 1.933,0.057,0.095,
0.356 respectively for the methods A, B, C and D in Table 2. Therefore,
the null hypothesis of k = 50 is not rejected at 0.05 level for all the
methods.

7. Appendix

The proofs for the moments introduced in (5) and (6) are done in here.
Consider

c(k) = /egd exp{rp! x}dw(x). (25)

From (25) we have

~ 0c(k)
“ T ok

= /egd(uTX) exp{rp! x}dw(x) = c(k)E(un’X).

Thus
Cx

E(p'X) = 0




NONSINGULAR INFORMATION MATRIX AND THE VON ... 179

Table 2: Percentage of leucocyte in blood samples

Patient | Method | Polymorphonuclear Small Large
Number leucocyte lymphocyte | lymphocyte
1 A 75 16 9
B 35 62 3
C 74 21 5
D 69 27 4
2 A 66 24 10
B 33 66 1
C 44 53 3
D 54 41 5
3 A 57 11 32
B 23 57 20
C 32 46 22
D 35 40 25
4 A 83 10 7
B 61 39 0
C 73 22 5
D 82 15 3
5 A 61 11 28
B 24 60 16
C 32.5 49.5 18
D 37 42 21
6 A 51 14 35
B 38 48 14
C 39.5 44 16.5
D 42 40 18
7 A 56 18 26
B 71 23 6
C 70 14 16
D 56 23 21
8 A 61 9 30
B 28 54 18
C 26 56 18
D 44 36 20
9 A 49 26 25
B 32 61 7
C 54 30 16
D 43 43 14
10 A 74 18 8
B 44 54 2
C 66 31 3
D 68 28 4
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By considering the second derivative we see that

2C K
o= T [ (T expln X)) = el ("X

Thus c
E(p'X)? = . 27
(uTX)? = (27)
Put pg = \/1 —pd—p3—---—p2 | #0in (25) and consider the first

and second derivative of c¢(k) with respect to ;. Let i) = (ua, —pi)”

and X; 4 = (X;, Xg)T for 1 <i <d— 1. We find that

E(f] X;q) =0 (28)
2 2
_ + it
B! X;q)* = Pl pix,)
Kpd

Solving equations (26) and (28), we obtain

CK/ .
E(X;) = — i, =1,2,---,d, 29
(X) = fm (29)
hence
EX = -~ (30)
~ W’
Therefore, we have
E(uIX, )2 = -5 (12 + 12). 31
(l’l’z ,d) HC(KZ) (:ud =+ N’z) ( )

In the next step, the derivative of ¢(k) is first taken with respect to x
and then with respect to p;:

320(/‘6)_ m_ﬂx /icz-—&x T ) ) expd il < duw(x
g = [ (7= Bt st = B 7)) expla o)

The result is the following equation:

B (A Xi0)(1"X) ) = 0. (32)
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Alternatively when the first derivative is taken with respect to u; and
then pj, we have

O*c(r)
OuiOpj
/ (—Fc'ui/;j Tq+ K2 (z; — ﬁavd)(:lsj - 'ujxd)> exp{rp? x}dw(x),
Ix|=1 1y 1d 1d
which gives
~T ~T . Cy
E(p; Xia)(1j Xj4) = () it (33)

Consider (27), (31), (32) and (33). These are the elements of E(MXX"MT)
for matrix M satisfying (8). Therefore we have

Ko Q) 0 - 0
0 T4 u3 1H2 e 1Hd—
re(k) | : : g :
0 pipa—1 Hopd—1 - HG_q + B3
(34)
Another representation for this matrix is
TaxT cy [ 0
E(MXX"M*) = Cr -
( ) ke(k) [Od—l F } ’
where
F = (u3I+aa’) (35)

and a is defined in (9). Then

alF =al (Mﬁ + aaT) =al

and
1 1
P (I — aaT) F= i (I — aaT) (,u?lI + aaT)
1 T T

= — (,uflI +aal — p2aa’ — aa aaT)
d

= pqgl.
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So
EXX" =M (EMXX'MT) M7
_ [ a i(l—aaT) o o” al Hd
ke(k) [ia —al 0 F i(l—aaT) —a

_ o [feea pal a’ Ltd
re(k) [ S pd —aT i(l —aa’)
e I e 1) aal  pg4 (”C“ - 1) a

Cr Cr

ke(k) | g M—1)aT 1+;@(L:H—1>

Cr c

T
KCro aa Haa
= I+ 1
/fvc(ff){ <cn )[udaT N?z]}

_ % I, + Cr (K/Cl-ﬂi . 1> #’“T

ke(k) ke(k) U ¢k
KCC(”K) (I-pp")+ CC(”:) ppt (36)

From (30) and (36), we have

Var(X) = 5(*;) (I-pp’)+ <W> pp’ (37)

Also from (27) and (26), we have

X

2 2
Var(u”X) :E(,ﬁx C;)> = Zon _ On (38)
from (28) and (31),

~ Ci
Var(py Xia) = - 1 + ) - (39)
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