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Abstract. In this article, the asymptotic distribution of the deviance
statistic for some hypothesis tests concerning the parameters of the von
Mises Fisher distribution is discussed. The focus is on the likelihood of
the distribution. We find the distribution of the deviance statistic using
Cherno↵’s idea about the distance from the cone constructed from the
null and alternative hypotheses.
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1 Introduction

To analyse big data, finding the asymptotic distribution of the deviance
statistic is of great help. Cherno↵ [2] introduced a method for finding the
asymptotic distribution of this statistic in some nonstandard situations.
His methodology then was extended by others such as Self & Liang [9],
Feder [3], Moran [8], Chant [1], Geyer [5] and Vu & Zhou [11]. Silvapulle
& Sen [10] expand the methodology in more detail and continue to write
a book considering constrained statistical analysis.
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In this paper, we derive the asymptotic distribution of deviance
statistics for some hypothesis tests concerning the parameters of the
von Mises Fisher distribution.

Watson [12], Fisher, Embleton & Lewis [4] and Mardia & Jupp [7]
treat the problem by taking a geometrical view point of this distribution.
Our work is mainly towards the likelihood function of the distribution,
considering the first and second derivative of the log likelihood function.
In a standard setup, the likelihood should satisfy some conditions which
are not true with the von Mises Fisher distribution [6]. However, if
we eliminate one parameter and replace it by a function of the other
parameters, then it satisfies some standard conditions as we show in
Section 3. Referring to Vu & Zhou [11] for a full multivariate setup, we
check the assumptions and in Section 4, the asymptotic distribution of
the deviance statistics for some suggested hypotheses are presented.

As is shown in [6], eliminating one parameter is not however a good
method to analyse the von Mises Fisher distribution, because it results
in an unintuitive and complicated expressions. It is preferable to develop
a direct methodology for this distribution which can be found in [6].

The von Mises Fisher distribution is used in [6] to analyse high di-
mensional asset allocation of financial portfolios built from various stock
indices of countries. The methodology that I use in this paper is di↵erent
from the one in my thesis.

von Mises Fisher distribution is one type of spherical distributions
whose relatively informative and simple formulation makes it useful in
the study of the directional data. Directional data locates data on a
circle, sphere or hypersphere. Typical examples of directional data are
related to the earth and celestial sphere. The data can be represented
by a vector x which satisfy the condition x

T
x = 1.

Let Sd = {x 2 Rd : x2
1

+ x2
2

+ · · · + x2d = 1} denote a unit sphere in
Rd. The von Mises Fisher distribution is defined on this sphere by the
following density function:

f
X

(x) = c()�1 exp{µT
x}, x 2 Sd, � 0,µ 2 Sd, (1)

where f
X

(x
1

, x
2

, · · · , xd) is the density of a d dimensional random vector
X at the point x = (x

1

, x
2

, · · · , xd) on the surface of the sphere. In
this distribution  � 0 represents the concentration and µ is the mean
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direction or the pole such that µ = (µ
1

, µ
2

, · · · , µd) with µ 2 Sd.  is a
measure of precision. If  = 0, then the data are distributed uniformly
over the sphere. When  is large, the distribution is concentrated on a
small portion of the sphere. µ is called the modal or mean vector of the
distribution and locates the density on the sphere.

In this investigation, we assume  6= 0, therefore we choose the
parameter space to be ⇥ = {(, µ

1

, · · · , µd�1

) 2 (0,1) ⇥ (�1, 1)d�1}
and the true value of the parameter to be ✓

0

= (
0

, µ
10

, · · · , µd�10

) 2 ⇥.
The first derivative of c() (the normalising constant in the von Mises

Fisher distribution) with respect to  will be denoted by c and the
second derivative by c. These notations will be used throughout this
paper.

2 Cherno↵ ’s innovation for the asymptotic dis-
tribution of the deviance statistic

Cherno↵ [2] extends the work of Wilks [13] by considering subsets of
⇥ such as hyperplanes, i.e., subspaces of dimension d � 1 or less. The
hyperplanes in R are points, in R2 are lines and in R3 are planes. Ev-
ery hyperplane divides the space in two parts. Under some regularity
conditions Cherno↵ considers the hypotheses

(
H

0

: ✓ is on one side of a hyperplane

HA : otherwise,

so his emphasis is quite di↵erent from Wilks’. He locates the true value
of the parameter, ✓

0

, on the boundary of the two disjoint subsets defined
by the null and the alternative hypotheses. In the one-dimensional case
the null and alternative hypotheses are simply

(
H

0

: ✓ � ✓
0

HA : ✓ < ✓
0

.

Let N be a neighborhood of ✓
0

in ⇥ and let X be a random variable in
Rd with density f

X

(x;✓) for ✓ 2 N . Cherno↵ assumes
(CH1) for almost all x, the first, second and third derivatives of
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log (f
X

(x;✓)) with respect to ✓ exist, for every ✓ 2 N ;
(CH2) if ✓ 2 N , all of the first, second and third derivatives of f

X

(x;✓)
are bounded by finitely integrable functions where these functions are
the same for the first and second derivatives and the expectation of the
third one does not depend on ✓.
(CH3) if ✓ 2 N , the matrix S✓ in (3) is finite and positive definite.

Throughout his proofs, he translates the origin so that ✓
0

is zero and
considers the hypotheses

(
H

0

: ✓ 2 ⌦ ⇢ N
HA : ✓ 2 ⌧ ⇢ N

and illustrates his method of testing them through three examples which
can be found in Cherno↵ [2], Silvapulle & Sen [10] and more explicitly
in [6].

Recall that a set C ✓ Rd is a cone with vertex at 0 if ✓ 2 C implies
a✓ 2 C for all a > 0. Cherno↵ introduces the idea of a set � ⇢ N
approximated by the cone C� at 0 if

inf
x2C�

||x� y|| = o(||y||) for y 2 �

and

inf
y2�

||x� y|| = o(||x||) for x 2 C�,

then proves the following theorem:
Suppose ✓

0

= 0 and b✓� is the maximum likelihood estimator in a set
� ⇢ N and
1) the regularity conditions (CH1), (CH2), (CH3) are satisfied,

2) the origin is a boundary point of � implies that b✓�
P�!0, for any

� ⇢ N ,
3) the sets ⌦ and ⌧ are approximated by nonnull and disjoint cones C

⌦

and C⌧ .
Then the asymptotic distribution of the deviance statistic

dn = 2[Ln(✓̂
2

n)� Ln(✓̂
1

n)], (2)
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where ✓̂
2

n and ✓̂
1

n are local maxima of the log likelihood function Ln(✓)
on ⌦ and ⌧ , is the same as it would be for the test of ✓ 2 C

⌦

against
✓ 2 C⌧ based on one observation from a normal distribution with mean
0 and variance J

�1. In this setup J = S

0

with

S✓ = E

"✓
@ log f

X

(X;✓)

@✓

◆✓
@ log f

X

(X;✓)

@✓

◆T
#
; ✓ 2 ⇥, (3)

F✓ = E


� @2

@✓@✓T
log f

X

(X;✓)

�
; ✓ 2 ⇥. (4)

3 Assumptions on the first and second deriva-
tive of the log likelihood function

Let ⇥ = {(, µ
1

, . . . , µd�1

), > 0, µi 2 (0, 1)} denote the parameter
space, and ✓

0

= (
0

, µ
10

, . . . , µd�10

) the true value of ✓.
To analyze the asymptotic behavior of the MLEs, we need some as-

sumptions on the asymptotic behavior of the first and second derivative
matrices and their expectations. Before defining them, we calculate first,
second and the expectations of the log likelihood function. We define
the derivative of Ln(✓) with respect to ✓ to be the d-vector

Sn(✓) = [
@Ln(✓)

@✓
1

,
@Ln(✓)

@✓
2

, . . . ,
@Ln(✓)

@✓d
]T .

Similarly, we define the negative of the second derivative of Ln(✓) to be
the d⇥ d symmetric matrix

Fn(✓) = �@2Ln(✓)

@✓@✓T

Define Dn = E{Sn(✓0

)ST
n (✓0

)} and Gn = E{Fn(✓0

)}, and

Xn =
1

n

nX

i=1

Xi = (X
1

, X
2

, . . . , Xd),

so that
µ
1

X
1

+ µ
2

X
2

+ . . .+ µdXd = µT
Xn,
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and
µdXi � µiXd = eµT

Xi,d.

The first derivative of Ln is the d⇥ 1 vector

Sn(✓) =

2

66664

@Ln(✓)
@

@Ln(✓)
@µ

1

...
@Ln(✓)
@µd�1

3

77775
= n


1 0

T

0


µd
I

�
M

�
X� EX

�
, (5)

where matrix M is

M =

2

666664

µ
1

µd 0 · · · 0
µ
2

0 µd · · · 0
...

...
...

. . .
...

µd�1

0 0 · · · µd

µd �µ
1

�µ
2

· · · �µd�1

3

777775

d⇥d

=


a µdI

(d�1)⇥(d�1)

µd �a

T

�
,

(6)

and

a

T = (µ
1

, µ
2

, · · · , µd�1

), (7)

It is easily verified that E(Sn(✓0

)) = 0. The matrix Dn =
E(Sn(✓0

)ST
n (✓0

)) is

Dn = n2


1 0

T

0


µd
I

�
M{Var(X)}MT


1 0

T

0


µd
I

�
.

Using the expectation formulae presented and proved in [6] (because it
is assumed that (Xi1, Xi2) are n random samples) we obtain

Dn = n
c

µ2

dc()

"⇣
c
c() �

c2
c2()

⌘
/ c
µ2

dc()
0

T

0 F

#
, (8)

where F is

F =
�
µ2

dI+ aa

T
�
. (9)
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After some computation, Fn(✓) can be written as

Fn(✓) = n

"
c
c() �

c2
c2()

�1

µd
b

T

�1

µd
b


µ3

d
XdF

#
, (10)

where F is in (9), and

b

T =
⇥
µ̃T
1

X

1,d µ̃T
2

X

2,d . . . µ̃T
d�1

Xd�1,d

⇤
. (11)

Again using the moment formulae in [6], we see that the expectation of
this matrix in ✓

0

, which is Gn, is equal to Dn.

Theorem 3.1. Dn = Gn is a nonsingular positive definite square ma-

trix.

Proof. Let t

T
d = [t

1

, t
2

, . . . , td] and t

T
d�1

= [t
2

, . . . , td] be two nonzero

vectors respectively in Rd and Rd�1,

t

T
dDntd =

n

µ2

d

✓
c
c()

� c2
c2()

◆
t2
1

+

✓
n

c
µ2

dc()

◆
t

T
d�1

F td�1

=
n

µ2

d

✓
c
c()

� c2
c2()

◆
t2
1

+

✓
n
c
c()

◆
(tTd�1

Itd�1

) +

✓
n

c
µ2

dc()

◆
t

T
d�1

aa

T
td�1

=
n

µ2

d

✓
c
c()

� c2
c2()

◆
t2
1

+

✓
n
c
c()

◆ d�1X

i=2

t2i +

✓
n

c
µ2

dc()

◆ d�1X

i=2

tiµi

!
2

> 0

From Theorem 2.1 of my thesis, we have c � 0. Furthermore, if c = 0,
then Dn is zero, so as a result we assume that c > 0. By remembering
that |µd| 2 (0, 1), we have the last expression positive just by applying
the Cauchy-Schwarz inequality as below
 Z

|x|=1

(µT
x) exp{µT

x}dS
!

2


 Z

|x|=1

(µT
x)2 exp{µT

x}dS
!

⇥
 Z

|x|=1

exp{µT
x}dS

!
,
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that is,

c2  cc().

Further, we have strict inequality here because both the functions µT
x

and 1 are nonzero and non-proportional through a scalar. So we have

c2 < cc() !
c
c()

� c2
c2()

> 0

and the proof ends. ⇤
For any positive definite matrix C, let C1/2(CT/2) be a left (the

corresponding right), square root of C, that is, any matrices satisfy-
ing C1/2CT/2 = C, where CT/2 = (C1/2)T . In addition, let C�1/2 =
(C1/2)�1 and C�T/2 = (CT/2)�1. Usual versions of the square root are
the Cholesky square root and the symmetric positive definite square
root. The left and right Cholesky square roots C1/2 and CT/2 are de-
fined as the lower and upper triangular matrices with positive diagonal
elements satisfying C1/2CT/2 = C and CT/2 = (C1/2)T . Denote by k . k

1

the sum of the absolute values of the elements of a matrix. Also denote
by �

min

(.) and �
max

(.) the minimum and the maximum eigenvalues of a
symmetric matrix. For any fixed A > 0, define subsets of Rd by

Nn(A) = {✓ : (✓ � ✓
0

)TGn(✓ � ✓
0

)  A2,✓ 2 ⇥}.

To obtain the existence, consistency and the asymptotic distribution of
an ME for the model, we need the following assumptions on the asymp-
totic behaviour of the first and second derivative matrices and their
expectations. (Convergences are as n ! 1 unless otherwise stated.)
(B1) E{Sn(✓0

)} = 0, and the matrices Dn and Gn are finite, where the
expectations are taken with respect to the true distributions.
(B2) �min{Gn} ! 1. (When (B2) holds, Gn is positive definite for n
large enough, so we assume it to be so in general.)

(B3) sup✓2Nn(A)

k G

�1/2
n Fn(✓)G

�T/2
n � Ik k

1

P�!0.

(B4) For some positive definite matrix V , k G

�1/2
n DnG

�T/2
n �V k

1

! 0.

(B5) D�1/2
n Sn(✓0

) !D N(0, Ik).
Based on E

�
X � EX

�
= 0 we can conclude that E{Sn(✓)} = 0. So

(B1) satisfies.
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For (B2), we have �(Gn) = n�(G) and � > 0 because G is positive
definite.

Gn is a positive definite matrix (theorem 3.1) and nonsingular so

G

1/2
n and G

�1/2
n does exist (Cholesky decomposition). Because Gn =

Dn, we have G

�1/2
n DnG

�T/2
n = I, so we can take V = I, a positive

definite matrix. Therefore (B4) holds, too.
Also Dn is a nonsingular positive definite matrix (theorem 3.1), so,

based on Cholesky decomposition theorem D

�1/2
n exist. We have

E(D�1/2
n Sn(✓0

)) = D

�1/2
n E(Sn(✓0

)) = 0 and

Var(D�1/2
n Sn(✓0

)) = D

�1/2
n Var(Sn(✓0

))D�T/2
n = I. Also,

D

�1/2
n Sn(✓0

) =
D

�1/2
M

Pn
i=1

(Xi � EXi)p
n

, (12)

thus from the Central Limit Theorem, D�1/2
n Sn(✓0

) is asymptotically
standard normal as n ! 1. So (B5) holds.

It remains to verify (B3). Fix A > 0, n � 1 and choose � > 0. Keep
(, µ

1

, µ
2

, . . . , µd�1

) 2 Nn(A), from the definition of Nn(A),

�
min

(Gn) 
(✓ � ✓

0

)T

|✓ � ✓
0

| Gn
(✓ � ✓

0

)

|✓ � ✓
0

|  A2

|✓ � ✓
0

|2 ,

where �
min

(Gn) = inf |u|=1

uTGnu. On noting that �min(Gn) > 0, we
have

|✓ � ✓
0

|2  A2

n�
min

(G)
,

because it is clear that Gn = nG. So

|� 
0

| < Ap
n�

min

(G)
, (13)

and

|µi � µi0| <
Ap

n�
min

(G)
for i = 1, . . . , d� 1.
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So we have || < |
0

| + Ap
n�

min

(G)

and |µi| < |µi0| + Ap
n�

min

(G)

for

i = 1, . . . , d�1. Also, we need to add another assumption that |µd| > �,
where � > 0.

To verify assumption (B3), it is su�cient to show that

sup
✓2Nn(A)

k n�1

Fn(✓)�G

0

k
1

= sup
✓2Nn(A)

k n�1

Fn(✓)� n�1

Fn(✓0

) + n�1

Fn(✓0

)�G

0

k
1

 sup
✓2Nn(A)

k n�1

Fn(✓)� n�1

Fn(✓0

) k
1

+ k n�1

Fn(✓0

)�G

0

k
1

P�!0, as n ! 1.

where G

0

= n�1

Gn(✓0

). From the weak law of large numbers, we have

n�1

Fn(✓0

)
P�!G

0

as n goes to infinity. To show that k n�1

Fn(✓) �
n�1

Fn(✓0

) k
1

P�!0, based on (13), we consider three elements sepa-
rately. For the first element, we have

sup
✓2Nn(A)

����
�1

µd
eµT
i Xi,d +

1

µd0
eµT
i0Xi,d

����

= sup
✓2Nn(A)

����
eµi0

µd0
�
eµi

µd

����
T

|Xi,d|

= sup
✓2Nn(A)

����
µi0

µd0
� µi

µd

���� |Xd|

 sup
✓2Nn(A)

✓
|µi0|� |µi|

|µd|
+ |µi0|(

1

|µd0|
� 1

|µd|
)

◆
|Xd|

 o(
p
n)|Xd|.

We have |Xd|
P�!E|Xd|, from the weak law of large numbers when n !

1. Also E|Xd| is bounded, so the last equation goes to zero as n ! 1.
If we use the same technique for the second and third elements in Fn(✓),

which respectively are
���
⇣
µ2

d+µ2

i

µ3

d

⌘
Xd � 

0

⇣
µ2

d0+µ2

i0

µ3

d0

⌘
Xd

��� and
��� µ3

d
µiµjXd � 

0

µ3

d0
µi0µj0Xd

���, we can see that the sup of these on Nn(A)

tend to zero as n ! 1.
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We have now verified that all of the assumptions (B1)- (B5) hold for
the von Mises distribution. Consider ⌦ to be a subset of ⇥ and satisfy
assumption (A2) as below:
(A2) A subset ⌦ of ⇥ is said to satisfy (A2) if there is a closed cone
C
⌦

with vertex at ✓
0

such that C
⌦

\N = ⌦ \N , where N is a closed
nonempty neighborhood in Rd of ✓

0

.
or a weaker condition
(A20) A subset ⌦ of ⇥ is said to satisfy (A20) if ⌦ contains ✓

0

, and if the
intersection between ⌦ and a closed neighborhood N of ✓

0

is a closed
subset of Rd.

4 Hypothesis Testing

Our first aim is to test the simple hypothesis

(
H

0

:  = 
0

, µ
1

= µ
10

, . . . , µd�1

= µd�10

HA : Otherwise,
(14)

where 0 < µ
10

< 1 and 
0

> 0. So ✓
0

is in ⇥0, the interior of the
parameter space, ✓

0

2 ⇥0. To do this we find the distribution of the
deviance statistic in (2)

Here ⌦ and ⌧ are two fixed subsets of ⇥ which specify the subsets of
the parameter space corresponding to the null and alternative hypothe-
ses respectively.

They are required to satisfy the assumption (A2) with corresponding
C
⌦

and C⌧ .
For the hypotheses specified in (14), we have ⌦ = {(

0

, µ
10

, . . . , µd�10

)}
and ⌧ = {(, µ

1

, . . . , µd�1

) 2 (0,1)⇥ (0, 1)⇥ . . . ,⇥(0, 1)
� (

0

, µ
10

, . . . , µd�10

)}.
Let Tn = 1p

n
Id⇥d and define

eC
⌦n = {e✓ : e✓ = TnG

T/2
n (✓ � ✓

0

),✓ 2 C
⌦

} (15)

and similarly for eC⌧n . Then

eC
⌦n = {(0, 0, . . . , 0)} and eC⌧n = Rd. (16)
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Now we can check the following assumption, (A3), of Vu & Zhou (1997).
(A3) is satisfied if there exists a closed cone eC

⌦

with vertex at 0, not
depending on n, such that the sets eC

⌦n asymptotically coincide with eC
⌦

in the sense that as n ! 1,

sup
|�|=1

����� inf
✓2 eC

⌦n

|� � ✓|2 � inf
✓2 eC

⌦

|� � ✓|2
�����! 0.

On noting that eC
⌦n and eC⌧n as defined in (16) are not dependent on n,

we can take

eC
⌦

= {(0, 0, . . . , 0)} and eC⌧ = Rd. (17)

Then (A3) holds.

Lemma 4.1. The asymptotic distribution of dn for (14) is a chi square

distribution with d degrees of freedom.

Proof. Based on Theorem 2.2 in Vu & Zhou (1997), because Ln and its
first and second derivatives exist and are continuous functions on ✓a\N ,
(A3) holds and also (B1) - (B5) hold. So the asymptotic distribution of
dn exists and is the same as the distribution of

inf
✓2 eC

⌦

||N� ✓||2 � inf
✓2 eC⌧

||N� ✓||2, (18)

where N = (N
1

, N
2

, . . . , Nd)T is a random vector which has a multivari-
ate normal distribution with mean zero and identity matrix I and ✓ is
a d - dimensional vector.
Based on (17), we have

inf
✓2 eC

⌦

||N� ✓||2 = N2

1

+N2

2

+ . . .+N2

d .

While the second inf is over C⌧ = Rd, so it equals zero. Therefore we
can conclude that the distribution of dn is the same as the asymptotic
distribution of N2

1

+ N2

2

+ . . . + N2

d , the sum of d standard Normal
variables, that is a chi square with d degrees of freedom. ⇤
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Lemma 4.2. dn for the hypothesis test

(
H

0

: µ = µ
0

HA : µ 6= µ
0

,
(19)

has a chi square distribution with d� 1 degrees of freedom.

Proof. In this simple hypothesis, ⌦ is (0,1)⇥ {µ
0

}, N is a neighbor-
hood around ⇥µ

0

in R, C
⌦

becomes xd�axis, and eC
⌦

is R. Therefore,
the distance of N = (N

1

, N
2

, . . . , Nd)T from eC
⌦

isq
N2

1

+N2

2

+ . . .+N2

d�1

. For the alternative hypothesis, ⌧ is (0,1) ⇥
{{(�1,+1) ⇥ (�1,+1) ⇥ . . . ⇥ (�1,+1)} � µ

0

}, the centre of C⌧ is at
,µ, and N is a ball around ,µ. Therefore, eC⌧ is Rd. The distance of
N = (N

1

, N
2

, . . . , Nd), which is in Rd, from Rd is zero. Thus

inf
✓2 eC

⌦

||N� ✓||2 � inf
✓2 eC⌧

||N� ✓||2 = N2

1

+N2

2

+ . . .+N2

d�1

,

which has a chi square distribution with d� 1 degrees of freedom. ⇤

Lemma 4.3. For the hypothesis test

(
H

0

:  = 
0

HA :  6= 
0

,
(20)

dn has a chi square distribution with one degree of freedom.

Proof. ⌦ = 
0

⇥(�1,+1)⇥ . . .⇥(�1,+1), N is a neighborhood around

0

, C
⌦

is a hyperplane which goes through 
0

, and finally eC
⌦

becomes
(x

2

, x
3

, . . . , xd) hyperplane. As a result inf✓2 eC
⌦

||N � ✓|| = N2

1

, ⌧ =
{[0,1)�

0

}⇥ (�1,+1)⇥ . . .⇥ (�1,+1), N is a ball centred at (
0

, µ),
µ 2 (�1,+1) ⇥ . . . ⇥ (�1,+1), C⌧ is a d dimensional plane in Rd, and
eC⌧ is Rd centred at 0d. We have

inf
✓2 eC

⌦

||N� ✓||� inf
✓2 eC⌧

||N� ✓|| = N2

1

� 0 = N2

1

(21)

and has a chi square distribution with one degree of freedom. ⇤
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Figure 1: Histograms and Quantile plots of dn for di↵erent tests in
Table 1; Right is for n = 100 and Left is when n = 1000; Each row in
this Figure coincides with the number of row in the Table 1



Nonsingularity and the von Mises Fisher Distribution 15

Table 1: Simulation result for the hypothesis tests of the parameters of
a von Mises Fisher distribution in di↵erent dimensions; the number in
the columns of Figure reflects, relatively, the number of row and column
in Figure 1

Row Dimension n r H0 Dis. of dn Est. df Figure

1 2 100 100  = 10 �2(1) 1.28 1,1
2 100 1000  = 10 �2(1) 1.19 1,2

2 2 100 100  = 10, µ1 = 0.5 �2(2) 2.51 2,1
2 100 1000  = 10, µ1 = 0.5 �2(2) 2.49 2,2

3 2 100 100 µ1 = 0.5 �2(1) 1.17 3,1
2 100 1000 µ1 = 0.5 �2(1) 1.11 3,2

4 3 100 100  = 10 �2(1) 1.04 4,1
3 100 1000  = 10 �2(1) 1.18 4,2

5 3 100 100  = 10, µ1 = 0.5 �2(2) 2.68 5,1
3 100 1000  = 10, µ1 = 0.5 �2(2) 2.43 5,2

6 3 100 100  = 10, µ1 = 0.5, µ2 = 0.1 �2(3) 4.61 6,1
3 100 1000  = 10, µ1 = 0.5, µ2 = 0.1 �2(3) 4.09 6,2

7 10 100 100  = 10 �2(1) 1.10 7,1
10 100 1000  = 10 �2(1) 1.27 7,2

8 10 100 100 µ1 = µ2 = µ3 = 0 �2(3) 3.49 8,1
10 100 1000 µ1 = µ2 = µ3 = 0 �2(3) 3.38 8,2

9 10 100 100 µ1 = µ2 = µ3 �2(2) 2.27 9,1
10 100 1000 µ1 = µ2 = µ3 �2(2) 2.10 9,2

5 Simulation results

Row one in Table 1 and Figure 1 show the results of simulations from
a 2 dimensional von Mises Fisher distribution when we test  = 10 and
calculate dn for this test. In order to do this, we simulate n = 100 data
from a 2-dimensional von Mises distribution with  = 10 and calculate
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the value of dn for the test

(
H

0

:  = 10

HA :  6= 10

based on the formula of dn in (2). Table 1 shows these results, while
considering two di↵erent replications of r = 100 and r = 1000 to calcu-
late dn. The program is written in Mathematica and “Est. df” in Table
1 is the estimated degree of freedom in a chi square distribution and is
the mean of the data.

The column H
0

in Table 1 describes the null hypothesis which we
test. The alternative hypotheses are in the form of non-equalities for the
rows 1 to 7 and for the columns 8 and 9 the alternatives are “at least one
equality is not satisfied”. The distribution of dn is chi square with the
degrees of freedom calculated based on the methodology in Lemmas 4.1
to 4.3. There are totally 18 figures in 1 that are in 9 rows and 2 columns.
The number of rows and columns are written in the last column of Table
1. For example, the number 1,2 shows the figure which is in the first
row and second column of Figure 1.
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