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Abstract. In this paper the notion of relative probability measure of a
set E is considered with respect to a multi-dimensional observer of a set
X as a superset of E. Relative entropy of a multi-dimensional observer
for the partitions is defined and the properties of relative entropy is
extended to multi-dimensional observers. It is shown that the observer of
a set plays a role in uncertainty of a partition of it. Relative conditional
entropy is also considered and its main properties are proved. Moreover,
the relative entropy off a relative measure preserving map is studied as
well.
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1. Introduction

In this section, multi-dimensional observer and also the notions of rela-
tive probability measure of F with respect to multi-dimensional observer
1 are defined. The notion of multi-dimensional observer as an exten-
sion of one dimensional observer [11] has been introduced first in 2009
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[12]. The notion of one dimensional observer is very important in physics
and has been applied in information theory [5, 6]. A new concept of
topological entropy has been presented in [12] via multi-dimensional ob-
server. If X is a set, then a multi-dimensional observer of X is a mapping
pe X — H[O, 1] where I is an index set and H[O, 1]={¢g:1—100,1] | g
icl el

is a mapping }.

For example each information system can be considered as a multi-
dimensional observer. We recall that [9, 13] an information system is
a triple (X, I, F') where X, and I are non-empty finite sets, and F =
{fi | fi is a map on X, and i € I}. Since X is finite, then the im-
age of each f; is a finite set, so it can be correspond to a finite subset
of the interval [0,1] via a one to one mapping g;. Thus up to these
correspondences an information system (X, I, F) can be denoted by
a finite dimensional observer p : X — H[O, 1] defined by u(x) =

el

(91(f1(2)), 92(f2(x)), - 911 (fi7) (%)), where X and I are finite sets, and
reX.

Fuzzy information system is considered an information system by allow-
ing each f; to take it’s values in the interval [0, 1] [10]. Hence it is also
an example of a multi-dimensional observer.

It is known that many nature processes are modeled by stochastic (or
random) process on finite spaces. In fact a stochastic process [2, 3] on a
finite space X is a sequence S = (S,,), where (S,) is a random variable
on X with values in A = {a1,...,a4/} where n € I, and I is N or
No = N J{0} or Z. If we correspond the image of each S,, with a finite
subset of the interval [0,1] by a one to one map g, then a stochastic

process S = (S,) can be considered as a multi-dimensional observer

prX — H[O, 1] defined by p = (9,05 ), where I is N or Ng = N [J{0}
iel

or Z.

Therefore an information system, a fuzzy information system and a
stochastic process are examples of multi-dimensional observers. The
reader must pay attention to this point that the index set I in the
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definition of a multi-dimensional observer can be an uncountable set.

Let X be a set and f : X — X is a mapping. We denote f! = f, f?2 =
fof,. .., f"t= fo..of,soweassumethat { f* : nisanatural number}
is a semi-dynamical system on X. This dynamics on the set X creates
a new kind of measurement from an observer viewpoint which is men-
tioned in the next definition.

Definition 1.1. If E is a subset of X, then the relative probability mea-
sure of E with respect to a multi-dimensional observer p is the mapping
mﬁ(E) X — H[O, 1] defined by:

el
mh(E)(z) = limsup, . LS00 xp(fi(@)u(fi(x), where xp is the
characteristic function of E.

Thus, the image of x € X given by n‘iﬁ is the function g : X — [0, 1]. Rel-
ative probability measure is an extension of probability measure. To
show this: we assume that (X, B,m) is a probability space, and f :
(X,B,m) — (X, B,m) is an ergodic map. If FE is a member of the o-
algebra B, and if the one dimensional observer p : X — [0,1] is the
characteristic function of X, then Birkhoff ergodic theorem [14] implies
that

n—1
T?L[:(E)(CL‘) = limsup % ZXE(fZ(:E))XX(fl(x)) =m(E)a.e., forallz € X.
e =0

Thus in the crisp case the relative probability measure of measurable
sets is equal to the probability measure of them, almost everywhere.

The researchers show that relative probability measure has subadditivity
property, and if a sequence of intricate subsets of X tend to it, then their
relative probability measures tend to the relative probability measure of
X. An equivalence relation on partitions which preserve the relative
entropy of a multi-dimensional observer is found. Conditional entropy
from an observer viewpoint is considered in section four. If we denote
the relative entropy of a multi-dimensional observer of partition A given
Catx € X by ﬁg(A/C)(l’), then in section 4 we prove that:

(i) Hf(AVC/D)(x) = H|(A/D)(x) + Hf(C/AV D)(z).
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(i) If A C C then HJ(A)(z) < HL(C)(x).

(iii) If C C D then H}(A/C)(z) > HI(A/D)(x).

(iv) Hf(AVC/D)(x) < Hi(A/D)(x) + H](C/D)(x).

The researchers also consider independent finite partitions.

In section five relative entropy of a relative measure preserving map is
defined and the main properties of it are deduced. Some invetigations
concerning entropy of dynamical systems and the fuzzy case can be seen
in [7, 8].

2. Properties of Relative Probability Measure

In this section, the researchers provide a study of some properties of
relative probability measure and provide examples. Let p be a multi-
dimensional observer of X and let m,’i be the relative probability measure
created by p and a dynamics f : X — X. Moreover let A, B be two
subsets of X with AN B # (). Then for x € X we have:

(AU B)(@) = limsup ~SImdxaun(f(@) (' (2)) =

lim sup %E?;ol(XA(f"(w)) +x5(f'(2)))-u(f(2)) =

limsup(%Z?:_()lXA(fi(x)).,u(fi(x)) + =SB (f(@).u(f(2)) =

ACNE )+mf(B)(x)-

Assume that E,F are two subsets of X and £ C F then F = EF U
(F — E). Hence the above discussion implies that ﬁ@fj(F — E)(z) =
n‘i{i(F)(x) - ﬁi{i(E)(x), for all x € X. Now we define an order on the
values of relative probability measures. For this purpose we use the norm
of bounded functions. In fact if A : X — R is a bounded function then
it’s norm is defined by ||h|| = sup,cx |h(z)].

If E and F are two subsets of X and yu and n are two multi-dimensional
observers of X then we say that ﬁm,]:(E)( ) < f( F)(zx) if and only if

Ixe(@)p@)| < [Ixr@)n@)]-
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The stralghtforward calculations imply that relative probability mea-
sure mu() has the subadditivity property. Moreover if £ C F' then
mih(E)(x) < il (F)(z), for all z € X.

Theorem 2.1. If Ay C Ay C ... C X and A = U2, A, then for all
z € X limy, o0 1115 (An)(2) = Ml (A)(z).
Proof. If By = A; and B, = A, — A,—1(n > 2) thenU® B, =
U A, = Aand B, N By, =0, (n # m). Hence

lim mf(A,)(x) = lim ﬁi(u?lei)(x) = lim X7 ,m/(B;)(z)

= S2ymf(Bi)(w) > i), (A)(x).

Since A, C A then mil,(A,)(z) < mi(A)(x). Thus lim,, s 17 (A,)(z) =
mih(A)(z). O
Example 2.2. Suppose X = R\{0,1} and f : X — X is defined by

z— 1 IfE=[0,1NQand p: X — H[O,l] is defined by z — u(z)
el

where p(x) : I — [0, 1] is the map p(x)(i) = z+x+1 then
u(z) if w€(1,00)NQ
m(E)(x) = fu(z) if 2€(0,1)NQ
0 otherwise.

3. Relative Entropy of a Multi-Dimensional Ob-
server for Partitions

In this section, the notion of relative entropy of a multi-dimensional ob-
server for partition A is defined and an example is provided. A partition
of X is a disjoin collection of elements of P(X) that its union is X,
whenever P(X) is a power set of X [11]. If £ is a finite partition of X,
then the collection of elements of P(X) which are unions of elements
of € is a finite subset of P(X). We denote it by A(£) [11]. Conversely,
if C is a finite subset of P(X), then the non-empty sets of the form
By N ---N By, whenever B; = Cj or X — C; for all C; belong to C,
form a finite partition of X. We denote it by £(C). Suppose £ and 7
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are two finite partitions of X. We write & < 7 to mean that each ele-
ment of £ is a union of elements of n [11]. Let A = {A;,..., A,}, and
C = {C1,...,C,} be two finite partitions of X. Then their join is the
partition: AVC = {4, NC; : 1 <i < n,1 <j <k} [11]. A map
T : X — X is measure-preserving if Tﬁi(T_lE)(ZE) = n‘i{i(E)(x)for all
x € X [11]. The map T can be called as a discrete dynamical system.

Let C,D be two subsets of P(X) we write C C,]i D if for every C €C
there exists D € D with 1i},(DAC)(z) = 0.

Definition 3.1. Let A be a finite subset of P(X) with £(A) = {Aq, ..., Ay }. Then
the relative entropy of a multi-dimensional observer of A is the number
H(A) () = = 0 7if(Ai) () log [l (A ()|

H}(A)(z) is a multi-dimensional measure of the uncertainty removed
by performing the experiment with outcome {Ay, ..., 4,,} when a multi-
dimensional observer pointed to . We assume 0log0 = 0.

If A={X} then {(A)={X,0}. Thus
HJ(X)(x) = =i} (0)(x) log || (], (0) () | =775, (X) () log || (7, (X) ()
= i}, (X) () log || (7], (X) (2)) |

and if Hﬁ’z,{(X)(x)H = 1 then ﬁ,{(X) = 0. Here A represents the out-
come of a certain experiment so there is no uncertainty about the out-
come. Therefore the uncertainty of the observer is zero.

Example 3.2. Let (X, I, F) be a fuzzy information system, where X =
{x1,...x5} and I = I44e U Inforatity [10], such that

Iage = Iag = {Young(di), Middle(ds), Between20and25(ds3), About50(dy)}
Intoratity = Ino = {Good(ds), Averge(ds), Verygood(dy), Outstanding(ds) }.
Let H(I(A_q)j) = {Hij|Hij pg — [07 1],i =1, ,5} and

H(I(Mo)j) = {Hij|Hij Ay — [O, 1],’i =1, ...,5}, where j € {1,...,m}.
Moreover let F' = {h1,...,hy}, where h; : X — II(I) = II(1a4) U
(H(IMO)) is defined by h](ﬂil) = (Hij(dl),H,-j(dg), ceey Hlj(dg))

(IL;;(dy)) means that: the possibility of dy in hj(z;) is equal to IL;;(dg).
The non-zero values of II;;(dy) are determined in table 1. We define an
observer p : X — Tl;c/[0, 1] by

p(zs) = (max{Il;;(dy)| k =1,...,4}, max{Il;;(dy)| k =5, ...,8})
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and we define f : X — X by f(zy) = v2-,, where < a >5 is the
remaining a to 5. If we assume F = {z1,22} then

] (B) () = imsup ~ Sy (f ()l ()

1
= limsup —(u(z2) + (n = 2)p(z1)) = p(a1)
= (max{0.84,), ()}, max{0.8(45), 0-4(a5)}) = (L(ay)>0-8(ds))-
Let A = {{z1, 22}, {z3}, {24}, {z5}}. Then

HJ(A)(w2) = =Y 11if(Ai) (w2) log [[iv) (As) (o) || =

=1
—1f (A1) (x2) log [|711], (A1) (wa) || — 17 (As2) (22) log ||, (A2) (z2)]| — ...
—1if (As)(22) log |11, (A5 ) (z2)]| =

—p(x2) log ||pu(z2)]l = —(0.7(4,), 0.6(4;)) log(0.7) = (0.25(g,), 0.22(4,) ).

Table 1: Fuzzy information system

X AGE(AG) Morality(MO)
71| 08(an), L(20,25) ww04ww
T2 0-7(d1)7 O.Q(dg) (d ), 0. 5(d5)
T3 0-7(d2)7 0-2(d4) (d7)

4 0-7(as) 0-9(ds) 0-4(as)
L5 L(da) 0-9(ds)

Example 3.3. Suppose (X, I, F) is an information system about the
grade marks of some students where X = {x1,...,x5} is a set of students
in a college,

MA (mathematics), Ch(chemistry) and PH(physics),
I ={d} | dFisthe mark of x; in the collegek}.

The values of d¥ are shown in table (2) [10]. The researchers define a
finite dimensional observer p : X — I3[0, 1] by

)

dMA Pt ght
1 1 1
100’ 100’ 100

plai) = (
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and assume that f: X — X is the identity function. If £ = {z1, 22}
then

n—1
), (E)(21) = limsup — ! ZXE Fi(an)u(fi (1)) = pla1) = (0.85,0.9,0.75).
n—oo 500

For j =1,...,5 we have

1 n—1 '
(X (5) = Tmsup 3 xx (£ (@) u(f (@) =
=0
n—1
llﬂsolép Z,u (fY( (x)) = pu(xy)

Let A= {{z1}, {x2},{z3},{za}, {x5}}. Then

5
TH(A) (1) = = > il (Ai) (1) log |73, (Ai) (1) ]| =

i=1

—iif (Ar) (1) log ||, (Ar) (a) || =
—p(z1)log ||pu(x1)]| = —p(z1)1og(0.9) = 0.11u(x1) = (0.09,0.1,0.08).

Also we have

.

5
A (A Z )(24) log ||/ (A;) (z4) || =

— 1), (As)(24) log |73, (Ag) (z4) || =
—p(zq) log || p(zs)]| = —p(x4)10g(0.86) = 0.15u(z4) = (0.13,0.13,0.08).
If we compare E’,’f (A)(x1) and Ijllf(A) (z4), then we see that the relative
entropy of A when observer is pointed to x4 is more than the case in
which observer is pointed to x1. Thus the student x; is more rulable
than z4.
Let A be a finite partition of P(X). Since T?L,]:(AZ)(I') < T?Lﬁ(X)(x) then

7 (A) (@) I] < (X)) (@)]].
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Table 2: Fuzzy information system of success in lessons.

X | MA | CH | PH
1| 8 | 90 | 75
2 | 86 | 90 | 75
z3 | 90 | 87 | 100
Tqa | 86 | 86 | 50
x5 | 87 | 85 | 25

Hence log ||}, (A;)(2)]| < log [lmf,(X)(x)].
Thus

17, (A7) () log |17, (A7) () | < 7, (A7) () log |17, (X) ()]

< 7if,(X) () log ||, (X) ().
Hence ﬁi(.A)(l’) > ﬁ;{(X)(:L‘)

One can easily prove that if T': X — X is a relative probability measure-
preserving map then H,{(T‘lA)(x) = H}:(A)(:U), for all z € X.

Theorem 3.4. If A Zfi C then ﬁ,f(A)(x) = ﬁﬂ:(C)(a:) forall z € X.

Proof. Since A :{L C, then for all A € A, there exists C' € C such that
M (AAC) (z) = 0 for all z € X.

We have A = (AN C)U(A — C). Thus
AUC—4) = (ANC)UC—A)U(A-C) = (ANC) U(AAC) . There-
= £<Amc>< ). Hence mﬁ(A)(x) =

)

A)
fore 1l (A)(z) + mi(C — )( )
rﬁf(AﬂC’)( ), because 0 < (C A)(z) < m“(AAC')( T) =
If we change A with C, then mf(C)(ar:) (AﬂC)( ).

Thus for all A € A there exists C' € C such that mu(A)(a:) = m,’i(C)(az)
Hence A} (A)(z) = H}(C)(z). O

4. Relative Conditional Entropy of a Multi-
Dimensional Observer

In this section, the researchers define the concept relative conditional
entropy of a multi-dimensional observer for partitions 4, B and provide
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the proof of some ergodic properties of the suggested measures.

We know the conditional probability play an important role in stochas-
tic processes, so in this section it is considered from the viewpoint of
an observer. Suppose A,C are subsets of P(X) with k£ and p members
respectively.

Definition 4.1. We define the relative entropy of a multi-dimensional

observer of A given C(called relative conditional entropy) by:

Hj(A/C)(z) =

p k
=D > [ (ANC;) () log [|mvf,(ANCy) () || =], (AN Cy) () log [|msf,(C;) () ]

j=14i=1

In the case C = {0, X} we have
H(A/C)(x) =

k
= [, (Ain0) () log ||, (Ain®) () | 17, (Ain®) () Log |77, (0) () ]+

=1
[, (A 0 X) () log |litf, (A; 1 X) () || — 1, (A 0 X) () Log ||aith, (X) () ]
k

:—Z[mjj(A)( z) log [|17if,(A43) (x)[| — 77}, (A7) () log ||172],(X) () 1]

k
Zmﬁ z) log ||t} (X)(2)|| = H} (A)(z) — H] (X)().

In the crisp case we have HT?L“(X)(CC) || = 1. Hence in this case ﬁ{f (A/C)(x)
= Hj(A)(2). T £(A) = {Ai}, €(C) = {Cy}, &(D) = {Dy} are finite par-
titions of X, then {A;NC;} for all and {D,NC}} are partitions of X. If
A =} D thenANnC =/, DN C. Thus for given A; N C; € ANC the exists
Dy N Cyp, € DNC such that Tﬁ,]:(AZ NCj)(z) = T?L,]:(Dk N Cyy)(x). Hence

HI(A/C)(2) =

—Z (AiNCy) () log 1), (A:nCy) () | =], (AinCy) () log |17t (C5) ()]
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=—Z (DkNCj) () log |77, (DxNC;) ()| =], (DkNC; ) () log ||, (Cj) ()]

= HJ(D/C)(x).
Also in relative conditional entropy we have H} (A/C)(x) = Hf (A/D)(x).
Theorem 4.2. Suppose that A,C, D are finite partitions of X. Then
Hil(Av C/D)(z) = H},(A/D)(z) + HL(C/AV D)(x).
Proof. Let £(A) = {4}, £(€) = {C;}, &(D) = {Dy}. Then
HI(AvC/D)(z) =
(A 1 €5 1 D) () log [ (A: 1.5 0 D) )|
4,5,k
—iitf,(Ai N C; N Dy)(«) log ||, (Dy) ()]

= — > [},(4; N C; N Dy)() log |liitf,(A; N Dy)(2) |
1,5,k

—m,(Ai N Cj N Dy) () log ||, (D) ()]

— > Ml (A N Cy N Dy)(x) log ||, (A 0 C; N Dy) ()|
2,5,k

—i,(A; N G N Dy)(x) log ||, (Ai N Dy)(x)]]

:_Z (Ai N Di)() log |17, (Ai N Dy) ()|

—mf,(A; N D) (x) log ||if,(Dy) (x) ] + Hi(C/ AV D)(x)
= HI(A/D)(z) + H}(C/AVD)(z). O

The previous theorem implies if A, C are finite partitions of X then

Hf(AVC)(x) = H(A)(x) + H(C/A)(=).

Theorem 4.3. If A,C are finite partitions of X, and A C C then
A (A)(z) < BLC)(x).
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Proof. Let {(A) = {4;}, £(C) = {C;}. Then £(A) < £(C). For given
C; € C there exists A; E A such that C} C A;. Hence rT’L{L(CJ)(x) <
if(Ai) (). Thus log |7/, (C5) (x) || < log |7(A;)(x)|. Hence

—ii) (Ai) () log ||, (Cy) () || = =i (As) () log [l (As) ().

Therefore
—Zm z) log || (Ay) (z)] < — Zm x) log || (C;) ()]].

Thus

Zm z) log ||}, (Cj) (2)]| =

—i1,(X) () log |1t} (Cj) (x) || =

—11,(U;C5) () log ||itf,(Cj) ()| =
- Zm z) log [|171},(C;)

(@) = H(C)(x). O

If A, C, D are finite partitions of X and A C C then £(A) < £(C). Since
AV C =C then

HI(C/D)(x) = Hi(AVC/D)(z) =
HI(A/D)(x) + Hf(C/AVD)(z) = HI (A/D)(x).

Theorem 4.4. If A, C, D are finite partitions of X and C C D then
Hj\(A/C)(z) > H](A/D)(x).
Proof. We first assume mij( Cj)(xz) # 0 and m ( t)(z) # 0 for all
x € X. Let 4, j, be given and let ¢ : [0, 00] — R be defined by
_ 0 textif x =0,
d)(‘r)_{ xlogx if x#0
then theorem 4.2 of [14] implies

I ( Dmc )(@)|| _ |Imf(A;i N Dy) ()]
O S AT TR T
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7 (Dy, 0 Cy) ()], |lh(A; 0 Dy)(2)|
; I174(C5) ()] i 7 (D) (@)

Thus
73 (As 0 Cy) ()|

<
I17(C5) ()] )

¢

3 (D) @], Ntk (A 0 Dy)(@)]]
= ImlCH@) (D) ()]
Thus
NCH@ TN CH@)]
[ I73(C5) () |

3 |7 (Di) @) 1754 (A: 0 D) @) 7 (A 0 D) (@) |
= IALCH @) (D) @) 74 (Dy) ()]

> lih(Ain Cj)(w)|| log
ij

- m
D lif(Ai 0 Cj)(@) ] log ==

md (A; N D) ()] lo
24 D @llee = o

Therefore

(AN G (@) _
I (C) (@)

> il (Ai 0 Cj)(x) log

1,

> lif(Ai 0 Cj)(w)|| log

2

3 it (A 1 Dy () log T
1.k
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- f
T4 2 D))o IR 0 D@
S llasn Dwlios = 2T

Thus

> I (ANCy) (@) log [, (A:NCy) ()| - (AN Cy) () log [l (C) () 1] <
i,j

> [if (AinDy) () log ||, (AinDy) () |~ (AN Dy) () log |17, (Dy) () ]
ik

Hence

—H{(A/C)(z) < —H[(A/D) ).

Thus . B
HJ(A/C)(z) = HJ(A/D)(x).

If n‘i,]:(Dk)(x) = 0 for some k then

HJ(A/C)(x) > H](A/D)(x) = 0.

3=
==
==
k‘/‘\
S—
G
&
S
2o
2y
S
[0}
o
=
le)
<o
—t+
=
D
]
ot
=
le)
-
D
@
v
[0}
—t+
wn
)
el
m
v
w
o
(@)
=
o+
=
Qo
-+

HI(A/C)(x) =0 > HJ(A/D)(z) =0. O

—

In a special case if we take C = {{), X}, then ﬁl{(fl)(:n) - Hg(X)(:E) >
Hj(A/D)(x). Thus Hj(A)(x) > Hi(A/D)(x).

Theorem 4.5. If A, C, D are finite partitions of X then

Hjl(AV C/D)(z) < Hji(A/D)(z) + HL(C/D)(x).

Proof. Since AV D DO D then Hf(C/.A\/ D)(x) < ﬂ:(C/D)( ). Hence

HJ[(AvC/D)(x) = Hj(A/D)(«)+H](C/AVD)(z) < H](A/D)(x)+H](C/D)(x). O

If we take D = {(), X} then the above theorem 1mphes It_i,{(A\/C)( ) —
Hf<X>< ) < Hil(A)(= > Hf<X>< >+Hf<c>< z) — Hj(X) ().

Thus H, (AVC)< ) < Hil(A)(z) + H(C)( )—Hff(X)(w).
Therefore Hf(AV C)(x) < Hf (A)(x) + H}(C)(x).
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Let A, and C be finite subsets of P(X ) and A C C. Then for glven A; €
A, there exists C; € C such that mM(A AC; )( ) = 0. Hence mM(Al N
C))(x) = ml(Cy)(z) or mi(A; N C;)(z) = 0. Thus H}(A/C)(z) = 0.

If A, and C are finite partitions of P(X) then we say A and C are
independent if ||/, (A N C)(z)|| = |73 (A)(2)]||.||m4(C) ()], where A €
A, CeC,and x € X.

Theorem 4.6. Assume A,C are finite partitions of (X, T?Lfi) and T?L[:(X)(x)
= []1 for all x € X, then Hf:(A/C)(m) = H;{(A)(a:) if and only if A
and C are independent.

Proof. If A and C are independent then it is clear that ﬁf:(A/C)(:U) =
Hj (A). Conversely: Let H(A/C)(z) = H] (A)(z) for all z € X, and let
¢ be the function which is defined in the proof of theorem 4.3.Then

B(Xj 17k (C5) @) . WKZ Ik (C)) (@)l T

Hence (35_, [[h(4i N Cy)(@)Il) log(25, It (As 0 Cj)()]))

my, (A;NC; NC;
< I @) fﬁfﬂ)()g””'log“ RUALCIY,

Thus
i A¢) ()] log i (Ag) () | < 25y I (AinC) ()] log W
Hence i (47)(2)] 08 (4] 2)] > ~ Ty I3 (Ai0C;) o) ok (Ain

Cy)(@)] — [Ah(Ai 1 Cy) ()| log [ ( 7)(@)Il)
The equality occures only when HmN(A N Cj) )|/ ( i)z

)
notdependtoj,l;e k(A 0 Cy) (@) /1 (C)(@)]| = ai or [l
Cj)(@)l| = az.|[7(C;)(x)||. Thus
IS, i (ANC)) (@)l = ai. Y, H 1.(C)(@)|l. Therefore a; = [[1if,(A;) ()]
Hence ||73,(A; N C;) (@) = |if(A:) ()| (C;) ()] for all i,5. O

does
(A; N

=~

5. Relative Entropy of a Multi-Dimensional
Observer of a Measure Preserving Transfor-
mation

In this section the notion of entropy is extended. [1, 4] The researchers
assume that T : X — X is a relative measure-preserving transformation
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(relative dynamical system), and Uy is the set of all finite partitions of
X. For A € U the function h},(T, A)(z) = limy—co — 2 H (VI T A) (z)
is called the relative entropy of T" with respect to A and p.

h{i(T)(x) = SUpP 414, hfi(T, A)(z) is called the relative entropy of T" at X.

Theorem 5.1. If T : X — X is a relative dynamical system and A € Uy
then limy, o0 (% )Hf(\/f DIT CA)(z) exists.

Proof. Let ap = sup[]{i(\/?z_ol T~ A)(x)] =0 then
an+p = sup[HjL (Vi ™ T77A)(2)] < su [1;—[5(\/ T~ A)(@)]
+sup[Hj (ViZF ™ T A) (@)] = an +suplHA (V2 T A) ()] = an +ap.

Thus lim “7:‘ exists. O

—»

Theorem 5.2. If A € U then H LV T A)(2) <
Proof. By induction we have f:( PITTA) (7)) =

S HI(A) VI T A) (@),

mm@ﬂﬁrmm» (A Vi T A @), |
Thus nHj (V2 T~ A)(x) =n [f<?&TZAx>+H<AA@ﬂTﬂAxm1<
m+lﬁﬂ(?&TlAM>

Therefore - H} (Vi T~ A)(z) < LHJ (VI T)(z). O

‘A)

For A,C € Uy we have LH](v T A) () < Ly VAT A) (2) =

Ly Hf(A)(w) = HL(A)(x) and so hl(T, A)(z) < Hj(A)(x).

MWMWQQ)MHWWMWWW>
Hf( AT A) () + H (VIS TTIC) (), then

1H (v;‘ OIT HAVC))(x )g LAl dr=iA) (@) + LA (vt TiC) (2).

Hence 1y (T, AV C)(z) < (T A)(z )+hf(T C)().

Suppose A Cf C then for n > 1 we have V' OlT_ZA <) Vi OIT_ZC Thus

AT A) (@) < BV TC) (). Honce LHL (VI T A)(x) <

LH] (Vi T7IC) (@) so BT, A) (@) < Bl(T,C)(x).

Theorem 5.3. If A,C € Uy then Ii},(T, A)(z) < hil(T,C)(x)+H](A/C)(x).

Proof. H (Vi T7'A)(x) < HL((ViZ) T7A) v (ViZy) T7C))(x)

= Hi (V2 T7C)(x) + Hi(ViZ) T7'A)/(ViZg T7C))(x).

Since HJ (Vi) T~ A)/(Vizy T7C))(w) < Y10y HL(TA)/ (V2 T7C)) (=)
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< i) HA(T=A/TC)(w) = nHj(A/C)(x) then
ALV T A) @) < BLOVIL T°C) () + nTL(A/C) (a).
Therefore +H/ (Vi T7'A) () < LHL(ViZ) T7C)(x) + Hil(A/C)().
Hence
hi(T, A)(x) < BL(T,C)(x) + Hf(A/C)(z). O
Theorem 5.4. If A € Uy, then hi(T, A)(x) = hl(T,VE_ T~ A)(x),
where x € X and k > 1
Proof. We have hif,(T, VE_ T~ A)(x) = limy—oc 2 HL (V10 TV T71A)) (2)
— litmnco %Ffzf(vf*& "7 A) () |
bebnd) (AT T A) (@) = h(T, A) (). O
In the above theorem if we assume T is invertible, then for k£ > 1 we
have hl,(T, A)(z) = ki, (T,VE__, T' A)(x).

Theorem 5.5. If k > 0, and z € X then

(i) Pi(T*) (@) = khjy(T) (x )-
) hf(Tk () = ]k\hf( (x) when T is invertible.

= limy, 00 ( k+n T

Proof. (i) We have

RL(TF 2T A) (2 )_nmnm LA\ T (V) T A)) ()

= limp oo THAE (V120 ViZg T7H71A) (1) = limy, oo £ HL (V125 T A) (2)
= ki (T, A)(z). Thus

KR(T) () = ksup acy, (W (T, A) () = sup acy, (RPL(T, A) ()

= sup qeyy, MTF, V) T A)(2) < sup acy, B(TF,C)(w) = hh(T)(x).
We also have hf,(T", A)( ) < RL(TF KT A) () = kRi(T, A) ().
Thus h(T¥)(x) < kRL(T) ().

(ii) This part follows part (i) and this fact which 2, (T WTH(2) = Eﬁ(T)(m) O

As a result of the previous theorem one can construct relative measure
preserving maps with entropies larger than any positive real number.
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Conclusions

In this paper the researchers considered the multi-dimensional observer

as a model for realistic phenomena. Relative probability measures, rel-

ative entropy of partitions, relative conditional entropy, and relative
entropy of a relative measure preserving map via multi-dimensional ob-
servers were studied and examples were provided.
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