Journal of Mathematical Extension Vol. 13, No. 4, (2019), 117-130

ISSN: 1735-8299

URL: http://www.ijmex.com

The Modified Three Step Iteration Process For G-Nonexpansive Mappings in Banach Spaces Involving a Graph

E. Yolacan

Republic of Turkey Ministry of National Education

Abstract. The purpose of this writing is to present strong convergence theorems of the modified three step iteration process for G—nonexpansive mappings in Banach spaces with a graph. The results presented in this study extend and improve a number of results in the literature.

AMS Subject Classification: 47H09; 47H10 Keywords and Phrases: G-nonexpansive mappings, common fixed point, directed graph

1. Introduction and Preliminaries

Jachymski [1] introduced a new concept of G-contraction, and showed that it was a real generalization for Banach contraction principle in a metric space involving a directed graph. Thereafter, many papers have been published on graph. For more detail see [2]-[9] and references therein.

Let (X, d) be a metric space, Δ be a diagonal of X^2 , and G be a directed graph with no parallel edges such that the set V(G) of its vertices coincides with X and $\Delta \subseteq E(G)$, where E(G) is the set of the edges of the graph. That is, G is determined by (V(G), E(G)). Furthermore,

Received: March 2018; Accepted: January 2019

denote by G^{-1} the graph obtained from G by reversing the direction of the edges in G. Hence, $E\left(G^{-1}\right)=\left\{ (x,y)\in X^{2}:(y,x)\in E\left(G\right)\right\}$.

Aleomrainejat et al. [11] gave some iterative scheme results for G-contractive and G-nonexpansive mappings on graphs by connecting graph theory&fixed point theory. Alfuraid and Khamsi [12] described the notion of G-monotone nonexpansive multivalued mappings on a metric space endowed with a graph. After that, Tiammee et al. [13] presented Browder's convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert space involving a directed graph. Tripak [14] studied two step iterative process for G-nonexpansive mappings in Banach space endowed with a graph. Recently, Suparatulatorn et al. [15] established convergence theorems for a modified S-iteration process for G-nonexpansive mappings in Banach space with a directed graph. In the sequel Hunde et al. [16] gave weak and strong convergence of finite step iteration sequences to common fixed point for G-nonexpansive mappings in Banach space with a digraph.

Inspired and motivated by this facts, we define and study the convergence theorems of three steps iterative sequences for G-nonexpansive mappings in Banach spaces involving a graph. The results of this paper can be viewed as an improvement and extension of the corresponding results of [10], [15] and others. The scheme (1) is defined as follows:

$$x_{n+1} = (1 - \eta_{n1}) f_3 y_n + \eta_{n1} f_2 z_n,$$

$$y_n = (1 - \eta_{n2}) f_1 x_n + \eta_{n2} f_2 z_n,$$

$$z_n = (1 - \eta_{n3}) x_n + \eta_{n3} f_1 x_n, \quad n \in \mathbb{N},$$
(1)

where $\{\eta_{ni}\}$ are sequences in (0,1) for all $i \in \{1,2,3\}$.

For the beginning, some necessary definitions and lemma, which will be used in the sequel, are established here.

Definition 1.1. [15] A self map $f: K \to K$ is called to be G-nonexpansive if it satisfies the conditions:

- 1. f preserves edges of G, videlicet, $(x,y) \in E(G) \Rightarrow (fx,fy) \in E(G)$,
- 2. f non-increases weights of edges of G in the following way:

$$(x,y) \in E(G) \Rightarrow ||fx - fy|| \leq ||x - y||.$$

Definition 1.2. [15] Let $x_0 \in V(G)$ and Ξ a subset of V(G). We say that

- 1. Ξ is dominated by x_0 if $(x_0, x) \in E(G)$ for all $x \in \Xi$.
- 2. Ξ dominates x_0 if for each $x \in \Xi$, $(x_0, x) \in E(G)$.

Definition 1.3. [15] (Property SG) Let K be a nonempty subset of a normed space X and let G = (V(G), E(G)) be a directed graph such that V(G) = K. Then, K is said to have Property SG if for each sequence $\{x_n\}$ in K converging strongly to $x \in K$ and $(x_n, x_{n+1}) \in E(G)$, there is a subsequence $\{x_{n_l}\}$ of $\{x_n\}$ such that $(x_{n_l}, x) \in E(G)$ for all $l \in \mathbb{N}$.

Lemma 1.4. [17] Let q > 1 and D > 0 be two fixed real numbers. Then a Banach space X is a uniformly convex if and only if there is a continuous, strictly increasing and convex function $g:[0,\infty) \to [0,\infty)$, g(0) = 0 such that

$$\|\gamma x + (1 - \gamma)y\|^q \le \gamma \|x\|^q + (1 - \gamma)\|y\|^q - \omega_q(\gamma)g(\|x - y\|)$$
 (2)

for all $x, y \in B_D$ and $\gamma \in [0, 1]$, where B_D is the closed ball with center zero and radius D, $\omega_q(\gamma) = \gamma (1 - \gamma)^q + \gamma^p (1 - \gamma)$.

The main purpose of this paper is to study the convergence of the modified three steps iterative sequence $\{x_n\}$ identified by (1), under condition (C), semicompact conditions, respectively, for G-nonexpansive mappings in Banach spaces endowed with a directed graph. The results presented in this study extend and improve a number of results in the literature.

2. Main Results

From now onward, K express a nonempty subset of a Banach space X with (V(G), E(G)) = G such that V(G) = K, convex of E(G) and transitive of G.

Proposition 2.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space X and $\{f_1, f_2, f_3\}$ be three G-nonexpansive mappings on K. Let $\theta_0 \in F = F(f_1) \cap F(f_2) \cap F(f_3)$ be such that (x_0, θ_0) and (θ_0, x_0) are in E(G) for arbitrary $x_0 \in K$. Then, for a sequence $\{x_n\}$ generated by x_0 endowed with iterative scheme identified by (1), we possess (x_n, θ_0) , (θ_0, x_n) , (x_n, z_n) , (z_n, x_n) , (θ_0, z_n) , (z_n, θ_0) , (x_n, y_n) , (y_n, x_n) , (θ_0, y_n) , (y_n, θ_0) and (x_n, x_{n+1}) are in E(G) for all $n \in \mathbb{N}$.

Proof. Let $(x_0, \theta_0) \in E(G)$. By edge-preserving of f_1 , we get $(f_1x_0, \theta_0) \in E(G)$. Using the convexity of E(G), we have

 $(1 - \eta_{03})(x_0, \theta_0) + \eta_{03}(f_1x_0, \theta_0) = ((1 - \eta_{03})x_0 + \eta_{03}f_1x_0, \theta_0) = (z_0, \theta_0) \in E(G).$

Owing to edge-preserving of f_1 and f_2 , we have (f_1x_0, θ_0) , $(f_2z_0, \theta_0) \in E(G)$ and from the convexity of E(G), we get

$$(1 - \eta_{02}) (f_1 x_0, \theta_0) + \eta_{02} (f_2 z_0, \theta_0) = ((1 - \eta_{02}) f_1 x_0 + \eta_{03} f_2 z_0, \theta_0) = (y_0, \theta_0) \in E(G).$$

Due to the fact that f_2 and f_3 are edge-preserving, we get (f_2z_0, θ_0) , $(f_3y_0, \theta_0) \in E(G)$ and again by the convexity of E(G), we have

 $\left(1-\eta_{01}\right)\left(f_{3}y_{0},\theta_{0}\right)+\eta_{01}\left(f_{2}z_{0},\theta_{0}\right)=\left(\left(1-\eta_{02}\right)f_{3}y_{0}+\eta_{02}f_{2}z_{0},\theta_{0}\right)=\left(x_{1},\theta_{0}\right)\in E\left(G\right).$

Continuing this process, we hold (z_1, θ_0) , (y_1, θ_0) , $(x_2, \theta_0) \in E(G)$. Now, we assume that $(x_l, \theta_0) \in E(G)$ on the score of edge-preserving of f_1 , we get $(f_1x_l, \theta_0) \in E(G)$, and therefore $(z_l, \theta_0) \in E(G)$ from the convexity of E(G). As f_1 and f_2 are edge-preserving, we have (f_1x_l, θ_0) , $(f_2z_l, \theta_0) \in E(G)$, so $(y_l, \theta_0) \in E(G)$ from the convexity of E(G). On account of the fact that f_2 and f_3 are edge-preserving, we get (f_2z_l, θ_0) , $(f_3y_l, \theta_0) \in E(G)$ and again by the convexity of E(G), we obtain $(x_{l+1}, \theta_0) \in E(G)$. By repeating this process for $(x_{l+1}, \theta_0) \in E(G)$, we get (z_{l+1}, θ_0) , $(y_{l+1}, \theta_0) \in E(G)$. Thereof, by induction, we deduce that (x_n, θ_0) , (z_n, θ_0) , (y_n, θ_0) are in E(G) for all $n \in \mathbb{N}$. By use of a similar assertion, (θ_0, x_n) , (θ_0, z_n) , $(\theta_0, y_n) \in E(G)$ for all $n \in \mathbb{N}$ under the hypothesis that $(\theta_0, x_0) \in E(G)$. Using the transitivity of G, we obtain that (x_n, z_n) , (z_n, x_n) , (x_n, y_n) , (y_n, x_n) and (x_n, x_{n+1}) are in E(G) for all $n \in \mathbb{N}$. This completes the proof. \square

Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space X and $\{f_1, f_2, f_3\}$ be three G-nonexpansive

mappings on K. If $0 < \liminf_{n \to \infty} \eta_{nj} \leq \limsup_{n \to \infty} \eta_{nj} < 1$ for j = 1, 2, 3 and (x_0, θ_0) and (θ_0, x_0) are in E(G) for arbitrary $x_0 \in K$ and $\theta_0 \in F = F(f_1) \cap F(f_2) \cap F(f_3)$, then for the sequence $\{x_n\}$ generated by (1), we possess

(i) $||x_{n+1} - \theta_0|| \le ||x_n - \theta_0||$, for each $n \in \mathbb{N}$, and therefore $\lim_{n \to \infty} ||x_n - \theta_0||$ exists;

(ii)
$$||x_n - f_i x_n|| \to 0$$
 when $n \to \infty$ for $i = 1, 2, 3$.

Proof. (i) Let $x_0 \in K$ and $\theta_0 \in F$. From Proposition 2.1, (x_n, θ_0) , (θ_0, x_n) , (x_n, z_n) , (z_n, x_n) , (x_n, y_n) , (y_n, x_n) and (x_n, x_{n+1}) are in E(G) for all $n \in \mathbb{N}$. Then, by (1) and G-nonexpansiveness of $\{f_1, f_2, f_3\}$, we get

$$||z_{n} - \theta_{0}|| = ||(1 - \eta_{n3}) x_{n} + \eta_{n3} f_{1} x_{n} - \theta_{0}||$$

$$\leq (1 - \eta_{n3}) ||x_{n} - \theta_{0}|| + \eta_{n3} ||f_{1} x_{n} - \theta_{0}||$$

$$\leq (1 - \eta_{n3}) ||x_{n} - \theta_{0}|| + \eta_{n3} ||x_{n} - \theta_{0}||$$

$$= ||x_{n} - \theta_{0}||,$$
(3)

and, by (1) and (3)

$$||y_{n} - \theta_{0}|| \leq (1 - \eta_{n2}) ||f_{1}x_{n} - \theta_{0}|| + \eta_{n2} ||f_{2}z_{n} - \theta_{0}||$$

$$\leq (1 - \eta_{n2}) ||x_{n} - \theta_{0}|| + \eta_{n2} ||z_{n} - \theta_{0}||$$

$$\leq ||x_{n} - \theta_{0}||, \qquad (4)$$

herewith, from (1), (3) and (4),

$$||x_{n+1} - \theta_0|| \leq (1 - \eta_{n1}) ||f_3 y_n - \theta_0|| + \eta_{n1} ||f_2 z_n - \theta_0||$$

$$\leq (1 - \eta_{n1}) ||y_n - \theta_0|| + \eta_{n1} ||z_n - \theta_0||$$

$$\leq ||x_n - \theta_0||.$$
(5)

Thereby, $\lim_{n\to\infty} ||x_n - \theta_0||$ exists.

(ii) By hypothesis (i), $\{x_n - \theta_0\}$ is bounded for $\theta_0 \in F$. Thereby, it follows from (3) and (4) that $\{z_n - \theta_0\}$ and $\{y_n - \theta_0\}$ are also bounded sequences. Owing to G-nonexpansiveness of $\{f_1, f_2, f_3\}$, we can demostrate the sequences $\{f_1x_n - \theta_0\}$, $\{f_2z_n - \theta_0\}$ and $\{f_3y_n - \theta_0\}$ are

all bounded. By (1) and Lemma 1.4, we have,

$$||z_{n} - \theta_{0}||^{2} = ||(1 - \eta_{n3}) x_{n} + \eta_{n3} f_{1} x_{n} - \theta_{0}||^{2}$$

$$\leq ||(1 - \eta_{n3}) (x_{n} - \theta_{0}) + \eta_{n3} (f_{1} x_{n} - \theta_{0})||^{2}$$

$$\leq (1 - \eta_{n3}) ||x_{n} - \theta_{0}||^{2} + \eta_{n3} ||f_{1} x_{n} - \theta_{0}||^{2}$$

$$- \eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1} x_{n}||)$$

$$\leq (1 - \eta_{n3}) ||x_{n} - \theta_{0}||^{2} + \eta_{n3} ||x_{n} - \theta_{0}||^{2}$$

$$- \eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1} x_{n}||)$$

$$\leq ||x_{n} - \theta_{0}||^{2} - \eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1} x_{n}||),$$
(6)

and, by (6)

$$||y_{n} - \theta_{0}||^{2}$$

$$= ||(1 - \eta_{n2}) f_{1}x_{n} + \eta_{n2}f_{2}z_{n} - \theta_{0}||^{2}$$

$$\leq (1 - \eta_{n2}) ||f_{1}x_{n} - \theta_{0}||^{2} + \eta_{n2} ||f_{2}z_{n} - \theta_{0}||^{2}$$

$$- \eta_{n2} (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||)$$

$$\leq (1 - \eta_{n2}) ||x_{n} - \theta_{0}||^{2} + \eta_{n2} ||z_{n} - \theta_{0}||^{2}$$

$$- \eta_{n2} (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||)$$

$$\leq (1 - \eta_{n2}) ||x_{n} - \theta_{0}||^{2}$$

$$+ \eta_{n2} \{||x_{n} - \theta_{0}||^{2} - \eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1}x_{n}||)\}$$

$$- \eta_{n2} (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||)$$

$$\leq ||x_{n} - \theta_{0}||^{2} - \eta_{n2}\eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1}x_{n}||)$$

$$- \eta_{n2} (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||),$$

$$(7)$$

similarly, from (6) and (7), we have

$$||x_{n+1} - \theta_{0}||^{2}$$

$$= ||(1 - \eta_{n1}) f_{3}y_{n} + \eta_{n1} f_{2}z_{n} - \theta_{0}||^{2}$$

$$\leq (1 - \eta_{n1}) ||f_{3}y_{n} - \theta_{0}||^{2} + \eta_{n1} ||f_{2}z_{n} - \theta_{0}||^{2}$$

$$- \eta_{n1} (1 - \eta_{n1}) g_{3} (||f_{3}y_{n} - f_{2}z_{n}||)$$

$$\leq (1 - \eta_{n1}) ||y_{n} - \theta_{0}||^{2} + \eta_{n1} ||z_{n} - \theta_{0}||^{2}$$

$$- \eta_{n1} (1 - \eta_{n1}) g_{3} (||f_{3}y_{n} - f_{2}z_{n}||)$$

$$\leq (1 - \eta_{n1}) \left\{ ||x_{n} - \theta_{0}||^{2} - \eta_{n2}\eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1}x_{n}||) \right\}$$

$$- \eta_{n2} (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||)$$

$$+ \eta_{n1} \{||x_{n} - \theta_{0}||^{2} - \eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1}x_{n}||)\}$$

$$- \eta_{n1} (1 - \eta_{n1}) g_{3} (||f_{3}y_{n} - f_{2}z_{n}||)$$

$$\leq ||x_{n} - \theta_{0}||^{2} - \eta_{n1}\eta_{n3} (1 - \eta_{n3}) g_{1} (||x_{n} - f_{1}x_{n}||)$$

$$- \eta_{n2} (1 - \eta_{n1}) (1 - \eta_{n2}) g_{2} (||f_{1}x_{n} - f_{2}z_{n}||)$$

$$- \eta_{n1} (1 - \eta_{n1}) g_{3} (||f_{3}y_{n} - f_{2}z_{n}||).$$
(8)

It follows from (8) that

$$\eta_{n1} (1 - \eta_{n1}) g_3 (\|f_3 y_n - f_2 z_n\|)$$

$$\leq \|x_n - \theta_0\|^2 - \|x_{n+1} - \theta_0\|^2,$$

$$\eta_{n2} (1 - \eta_{n1}) (1 - \eta_{n2}) g_2 (\|f_1 x_n - f_2 z_n\|)$$

$$\leq \|x_n - \theta_0\|^2 - \|x_{n+1} - \theta_0\|^2,$$

$$\eta_{n1} \eta_{n3} (1 - \eta_{n3}) g_1 (\|x_n - f_1 x_n\|)$$

$$\leq \|x_n - \theta_0\|^2 - \|x_{n+1} - \theta_0\|^2.$$
(11)

If $0 < \liminf_{n \to \infty} \eta_{nj} \le \limsup_{n \to \infty} \eta_{nj} < 1$ for j = 1, 2, 3, there exist a positive integer n_0 and $\kappa \in (0, 1)$ such that $0 < \kappa < \eta_{nj}$ for $j = \overline{1, 3}$ for all $n \ge n_0$. This implies by (9) that

$$\kappa (1 - \kappa) g_3 (\|f_3 y_n - f_2 z_n\|) \le \|x_n - \theta_0\|^2 - \|x_{n+1} - \theta_0\|^2 \quad \text{for all } n \ge n_0.$$
(12)

By (12) for $m \geqslant n_0$,

$$\sum_{n=n_0}^{m} g_3(\|f_3 y_n - f_2 z_n\|) \leqslant \frac{1}{\kappa (1-\kappa)} \left(\sum_{n=n_0}^{m} \left\{ \|x_n - \theta_0\|^2 - \|x_{n+1} - \theta_0\|^2 \right\} \right)$$
$$\leqslant \frac{1}{\kappa (1-\kappa)} \|x_{n_0} - \theta_0\|^2.$$

Then $\sum_{n=n_0}^{\infty} g_3(\|f_3y_n - f_2z_n\|) < \infty$, and so $\lim_{n\to\infty} g_3(\|f_3y_n - f_2z_n\|)$ = 0. By virtue of the fact that g_3 is strictly increasing and continuous via $g_3(0) = 0$, we get

$$||f_3y_n - f_2z_n|| \to 0 \text{ when } n \to \infty.$$
 (13)

From an analogue manner, allied with (10) and (11), it could be demonstrated that

$$||f_1x_n - f_2z_n|| \rightarrow 0 \text{ when } n \rightarrow \infty,$$
 (14)

$$||x_n - f_1 x_n|| \to 0 \text{ when } n \to \infty.$$
 (15)

It follows from (1) that

$$||z_n - x_n|| = ||(1 - \eta_{n3}) x_n + \eta_{n3} f_1 x_n - x_n||$$

 $\leq ||f_1 x_n - x_n||$
 $\to 0 \text{ when } n \to \infty. \text{ (by (15))}$ (16)

From (14) and (15), we have

$$||f_2 z_n - x_n|| \le ||f_1 x_n - f_2 z_n|| + ||x_n - f_1 x_n||$$

 $\to 0 \text{ when } n \to \infty.$ (17)

It follows from (1) that

$$||y_{n} - x_{n}|| = ||(1 - \eta_{n2}) f_{1}x_{n} + \eta_{n2}f_{2}z_{n} - x_{n}||$$

$$\leq (1 - \eta_{n2}) ||f_{1}x_{n} - x_{n}|| + \eta_{n2} ||f_{2}z_{n} - x_{n}||$$

$$\to 0 \text{ when } n \to \infty. \text{ (by (15) and (17))}$$
(18)

Using (16) and (17), we get

$$||f_2 z_n - z_n|| \leqslant ||f_2 z_n - x_n|| + ||z_n - x_n||$$

$$\to 0 \text{ when } n \to \infty.$$

$$(19)$$

By (14) and (19), we have

$$||f_1x_n - z_n|| \le ||f_1x_n - f_2z_n|| + ||f_2z_n - z_n||$$

 $\to 0 \text{ when } n \to \infty.$ (20)

It follows from (1) that

$$||y_{n} - z_{n}|| = ||(1 - \eta_{n2}) f_{1}x_{n} + \eta_{n2}f_{2}z_{n} - z_{n}||$$

$$\leq (1 - \eta_{n2}) ||f_{1}x_{n} - z_{n}|| + \eta_{n2} ||f_{2}z_{n} - z_{n}||$$

$$\to 0 \text{ when } n \to \infty. \text{ (by (19) and (20))}$$
(21)

Because of that f_2 is G-nonexpansive mappings, it follows from (16), (19) and (21) that

$$||x_{n} - f_{2}y_{n}|| \leq ||x_{n} - z_{n}|| + ||z_{n} - f_{2}z_{n}|| + ||f_{2}z_{n} - f_{2}y_{n}||$$

$$\leq ||x_{n} - z_{n}|| + ||z_{n} - f_{2}z_{n}|| + ||z_{n} - y_{n}||$$

$$\to 0 \text{ when } n \to \infty.$$
(22)

Again, by G-nonexpansive mappings of f_2 , it follows from (18) and (22) that

$$||x_{n} - f_{2}x_{n}|| \leq ||x_{n} - f_{2}y_{n}|| + ||f_{2}y_{n} - f_{2}x_{n}||$$

$$\leq ||x_{n} - f_{2}y_{n}|| + ||y_{n} - x_{n}||$$

$$\to 0 \text{ when } n \to \infty.$$
(23)

As f_2 is G-nonexpansive mappings, it follows from (13), (16) and (23) that

$$||x_{n} - f_{3}y_{n}|| \leq ||x_{n} - f_{2}x_{n}|| + ||f_{2}x_{n} - f_{2}z_{n}|| + ||f_{2}z_{n} - f_{3}y_{n}||$$

$$\leq ||x_{n} - f_{2}x_{n}|| + ||x_{n} - z_{n}|| + ||f_{2}z_{n} - f_{3}y_{n}||$$

$$\to 0 \text{ when } n \to \infty.$$
 (24)

On account of the fact that f_3 is G-nonexpansive mappings, by (18) and (24), we have

$$||x_{n} - f_{3}x_{n}|| \leq ||x_{n} - f_{3}y_{n}|| + ||f_{3}y_{n} - f_{3}x_{n}||$$

$$\leq ||x_{n} - f_{3}y_{n}|| + ||y_{n} - x_{n}||$$

$$\to 0 \text{ when } n \to \infty.$$
(25)

This completes the proof. \Box

Theorem 2.3. Let K be a nonempty closed convex subset of a uniformly convex Banach space X and $\{f_1, f_2, f_3\}$ be three G-nonexpansive mappings on K. Suppose that $0 < \liminf_{n \to \infty} \eta_{nj} \leq \limsup_{n \to \infty} \eta_{nj} < 1$ for j = 1, 2, 3 and $\{x_n\}$ is a sequence generated by (1). If there is a nondecreasing function $g: R^+ \to R^+$ with g(0) = 0 and g(a) > 0 for all a > 0 such that for all $x \in K$, $\max_{1 \leq \mu \leq 3} \{\|x - f_{\mu}x\|\} \geq g(d(x, F))$ (condition (C)), $F = F(f_1) \cap F(f_2) \cap F(f_3)$ is dominated by x_0 and $F = F(f_1) \cap F(f_2) \cap F(f_3)$ dominates x_0 , then $\{x_n\}$ converges strongly to a common fixed point of $\{f_1, f_2, f_3\}$.

Proof. By (3), (23) and (25), $||x - f_{\mu}x|| \to 0$ when $n \to \infty$ for $1 \leqslant \mu \leqslant 3$. Since $\max_{1 \leqslant \mu \leqslant 3} \{||x_n - f_{\mu}x_n||\} \geqslant g\left(d\left(x_n, F\right)\right)$, we have $g\left(d\left(x_n, F\right)\right) \to 0$ as $n \to \infty$ which implies $\lim_{n \to \infty} d\left(x_n, F\right) = 0$ by definition of the function g. We shall show that $\{x_n\}$ is a Cauchy sequence. By virtue of $\lim_{n \to \infty} d\left(x_n, F\right) = 0$, for given $\varepsilon > 0$, there exists n_0 in N such that $\frac{\varepsilon}{2} > d\left(x_n, F\right)$ for all $n \geqslant n_0$. Hence, we get $\frac{\varepsilon}{2} > d\left(x_{n_0}, F\right)$. This means that there exists $\theta^* \in F$ such that $\frac{\varepsilon}{2} > ||x_{n_0} - \theta^*||$. Next, for $m, n \geqslant n_0$,

$$||x_{n+m} - x_n|| \le ||x_{n+m} - \theta^*|| + ||\theta^* - x_n|| \le 2 ||x_{n_0} - \theta^*||,$$

taking the infimum in the above inequalities for all $\theta^* \in F$, we obtain

$$||x_{n+m} - x_n|| \leq 2d(x_{n_0}, F) < \varepsilon.$$

This implies that $\{x_n\}$ is a Cauchy sequence. Hereby, owing to the completeness of X, there exists a $\theta \in K$ such that $\lim_{n\to\infty} x_n = \theta$, and so $\lim_{n\to\infty} d(x_n, F) = 0$ yields that $d(\theta, F) = 0$, viz $\theta \in F$. This completes the proof. \square

A mapping $f: K \to K$ is called *semicompact* if for a sequence $\{x_n\}$ in K with $||x_n - fx_n|| \to 0$ as $n \to \infty$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to \vartheta \in K$.

Theorem 2.4. Let K be a nonempty closed convex subset of a uniformly convex Banach space X and $\{f_1, f_2, f_3\}$ be three G-nonexpansive mappings on K. Suppose that $0 < \liminf_{n \to \infty} \eta_{nj} \leq \limsup_{n \to \infty} \eta_{nj} < 1$ for j = 1, 2, 3, K has property SG and $\{x_n\}$ is a sequence generated by (1). Assume that one of f_1, f_2, f_3 is semicompact (without loss of generality, we assume f_1 is semicompact), $F = F(f_1) \cap F(f_2) \cap F(f_3)$ is dominated by x_0 and $F = F(f_1) \cap F(f_2) \cap F(f_3)$ dominates x_0 , then $\{x_n\}$ converges strongly to a common fixed point of $\{f_1, f_2, f_3\}$.

Proof. In connection with semi-compactness of f_1 , by the fact that $||x_n - f_1x_n|| \to 0$ when $n \to \infty$ and $\{x_n\}$ is bounded, there exists a $\vartheta \in K$ and a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{k\to\infty} x_{n_k} = \vartheta$. Now by the hypothesis of the theorem, we attain $(x_{n_k}, \vartheta) \in E(G)$. In the present case, we find

$$\|\vartheta - f_{\mu}\vartheta\| = \lim_{k \to \infty} \|x_{n_k} - f_{\mu}x_{n_k}\| = 0 \text{ for } 1 \leqslant \mu \leqslant 3.$$

This shows that $\vartheta \in F$. Due to the fact that $||x_n - \vartheta|| \to 0$ as $n \to \infty$ exists, we also have

$$\lim_{n \to \infty} ||x_n - \vartheta|| = \lim_{k \to \infty} ||x_{n_k} - \vartheta|| = 0,$$

which means that $\{x_n\}$ converges to $\vartheta \in F$. Herewith, $\{x_n\}$ converges strongly to a common fixed point of $\{f_1, f_2, f_3\}$. This completes the proof. \square

Remark 2.5. (i) If $\eta_{n1} \equiv 0$ for all $n \geqslant 1$, then Theorem 2.3 and 2.4 extend and improve the results of Suparatulatorn et al. [15, Theorem 2 and 3].

- (ii) If we take $f_1 = f_2 = f_3 = f$, then the results of this study are improvement and extension of the corresponding results of Abbas and Nazir [10].
- (iii) If $\eta_{n1} = \eta_{n2} \equiv 0$ for all $n \geqslant 1$, then we get the strong convergence theorems of Mann iteration process for G-nonexpansive mappings in the framework of Banach space with graph.

Now, we give the numerical example to support our main theorem in a dimensional space of real numbers. In this example illustrates the efficiency of approximation of common fixed points for G-nonexpansive mappings in Banach spaces with a graph.

Example 2.6. Let $X = \mathbb{R}$ be endowed with standard norm $\|.\| = |.|$, K = [1,3] and (V(G), E(G)) = G such that V(G) = K and $(x,y) \in E(G)$ iff $1 \le x, y \le 1.90$ or x = y. Define three mappings $\{f_1, f_2, f_3\}$: $K \to K$ by $f_1x = \sin(x-1) + 1$, $f_2x = 3^{\frac{2(x-1)}{41}}$, $f_3x = 5^{\frac{1}{20}(x-1)}$ for any $x \in K$. Let

$$\eta_{n1} = \frac{n}{7n+2}, \ \eta_{n2} = \frac{n}{3n+11}, \ \eta_{n3} = \frac{n+1}{6n+5} \text{ for } n \geqslant 1.$$

It is easy to see that f_1, f_2, f_3 are G-nonexpansive mappings. It is also clear that $F = F(f_1) \cap F(f_2) \cap F(f_3) = \{1\}.$

Figure 1. Plot showing fixed point of f_1 (green line), f_2 (yellow line), f_3 (blue line)

3. Conclusion

Our theorems improve the common fixed point theorems for G—nonexpansive mappings in Abbas and Nazir [10] and Suparatulatorn et al. [15]. Within the future scope of the idea, reader may prove the convergence theorems of the following iterative processes to a common fixed point of asymptotically nonexpansive mappings (or totally asymptotically nonexpansive mappings, shortly TAN), identified on a nonempty closed convex subset of a Banach space.

1. Let K be a nonempty closed convex subset of a uniformly convex Banach space X. Let $I_1, I_2 : K \to K$ be asymptotically nonexpansive mappings (or TAN), $f_3 : K \to K$ be I-asymptotically nonexpansive mappings (or I-TAN). Then for three given sequences $\{\eta_{ni}\}$ are sequences in [0,1] for all $i \in \{1,2,3\}$ and $x_0 \in K$, $\{x_n\}$ is defined by

$$x_{n+1} = (1 - \eta_{n1}) f_3^n y_n + \eta_{n1} I_2^n z_n,$$

$$y_n = (1 - \eta_{n2}) I_1^n x_n + \eta_{n2} I_2^n z_n,$$

$$z_n = (1 - \eta_{n3}) x_n + \eta_{n3} I_1^n x_n, \quad n \in \mathbb{N}.$$
(26)

2. Let K be a nonempty closed convex subset of a real normed linear space X with retraction P. Let $f_1, f_2, f_3 : K \to X$ be three nonself asymptotically nonexpansive mappings with reference to P:

$$x_{n+1} = \eta_{n1} (Pf_3)^n y_n + \eta_{n2} (Pf_2)^n z_n + \eta_{n3} \sigma_n$$

$$y_n = \widehat{\eta_{n1}} (Pf_1)^n x_n + \widehat{\eta_{n2}} (Pf_2)^n z_n + \widehat{\eta_{n3}} \omega_n$$

$$z_n = \widehat{\eta_{n1}} x_n + \widehat{\eta_{n2}} (Pf_1)^n x_n + \widehat{\eta_{n3}} \nu_n, \quad n \in \mathbb{N},$$
(27)

where $\{\eta_{n1}\}$, $\{\eta_{n2}\}$, $\{\eta_{n3}\}$, $\{\widehat{\eta_{n1}}\}$, $\{\widehat{\eta_{n2}}\}$, $\{\widehat{\eta_{n3}}\}$, $\{\widetilde{\eta_{n1}}\}$, $\{\widetilde{\eta_{n2}}\}$, $\{\widetilde{\eta_{n3}}\}$ are sequences in [0,1] satisfying

$$\eta_{n1} + \eta_{n2} + \eta_{n3} = \widehat{\eta_{n1}} + \widehat{\eta_{n2}} + \widehat{\eta_{n3}} = \widetilde{\eta_{n1}} + \widetilde{\eta_{n2}} + \widetilde{\eta_{n3}} = 1,$$

and $\{\nu_n\}, \{\omega_n\}, \{\sigma_n\}$ are bounded sequences in K.

Acknowledgements

The author is grateful to the referees for their useful suggestions and valuable comments. The author also declares that she has no competing interests.

References

- [1] J. Jachymski, The contraction principle for mappings on a metric space with a graph, *Proc. Amer. Math. Soc.*, 136 (2008), 1359-1373.
- [2] I. Beg, A. R. Butt, and S. Radojević, The contraction principle for set valued mappings on a metric space with a graph, *Comput. Math. Appl.*, 60 (2010), 1214-1219.
- [3] F. Bojor, Fixed point theorems for Reich type contractions on metric space with a graph, *Nonlinear Anal.*, 75 (9) (2012), 3895-3901.
- [4] M. R. Alfuraid, The contraction principle for multivalued mappings on a modular metric space with a graph, *Can. Math. Bull.*, 29 (2015). doi:10.4153/CMB-2015-029-x.
- [5] M. R. Alfuraid, Remark on monotone multivalued mappings on a metric space with a graph, J. Inequality. Appl., 202 (2015). doi.101186/s13660-015-0712-6.
- [6] M. Kir, E. Yolacan, and H. Kiziltunc, Coupled fixed point theorems in complete metric spaces endowed with a directed graph and application, *Open Math.*, 15 (2017), 734–744. doi: 10.1515/math-2017-0062.
- [7] E. Yolacan, A brief note concerning non-self contractions in Banach Space endowed with a Graph, *General Lett. Math.*, 3 (1) (2017), 25-30.
- [8] E. Yolacan, H. Kızıltunc, and M. Kır, Coincidence point theorems for φ ψ –contraction mappings in metric spaces involving a graph, *Carpathian Mathematical Publications*, 8 (2) (2016). doi: 10.15330/cmp.8.2.251-262.
- [9] M.Oztürk and E. Girgin, Some fixed point theorems and common fixed point theorems in metric space involving a graph, Bangmod Int. J. Math. & Comp. Sci., 1 (1) (2015), 172-182.
- [10] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, *Mathematic Vesnik.*, 66 (2) (2014), 223–234.
- [11] S. M. A. Aleomrainejat, S. Rezapour, and N. Shahzad, Some fixed point result on a metric space with a graph, *Topol. Appl.*, 159 (2012), 659-663.
- [12] M. R. Alfuraid and M. A. Khamsi, Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph, Fixed Point Theory Appl., (2015). doi: 10.1186/s13663-015-0294-5.

- [13] J. Tiammee, A. Kaewkhao, and S. Suantai, On Browder's convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed Point Theory Appl., (2015). doi: 10.1186/s13663-015-0436-9.
- [14] O. Tripak, Common fixed points of G-nonexpansive mappings on Banach spaces with a graph, Fixed Point Theory Appl., (2016). doi: 10.1186/s13663-016-0578-4.
- [15] R. Suparatulatorn, W. Cholamjiak, and S. Suantai, A modified S-iteration process for G-nonexpansive mappings in Banach spaces with a graph, *Numer. Algor.*, 77 (2018), 479-490. doi: 10.1007/s11075-017-0324-y.
- [16] T. W. Hunde, M. G. Sangago, and H. Zegeye, Approximation of a common fixed point of a family of G-nonexpansive mappings in Banach spaces with a graph, Int. J. Adv. Math., 6 (2017), 137-152.
- [17] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.

Esra Yolacan

Republic of Turkey Ministry of National Education Tokat, Turkey

E-mail: yolacanesra@gmail.com