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Abstract. The purpose of this writing is to present strong convergence
theorems of the modified three step iteration process for G—nonexpansive
mappings in Banach spaces with a graph. The results presented in this
study extend and improve a number of results in the literature.
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1. Introduction and Preliminaries

Jachymski [1] introduced a new concept of G-contraction, and showed
that it was a real generalization for Banach contraction principle in
a metric space involving a directed graph. Thereafter, many papers
have been published on graph. For more detail see [2]-[9] and references
therein.

Let (X, d) be a metric space, A be a diagonal of X2, and G be a directed
graph with no parallel edges such that the set V (G) of its vertices co-
incides with X and A C E(G), where E (G) is the set of the edges of
the graph. That is, G is determined by (V (G), E (G)). Furthermore,
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denote by G~! the graph obtained from G by reversing the direction of
the edges in G. Hence, E (G™!) = {(z,y) € X?: (y,z) € E(G)}.

Aleomrainejat et al. [11] gave some iterative scheme results for G—
contractive and G—nonexpansive mappings on graphs by connecting
graph theory&fixed point theory. Alfuraid and Khamsi [12] described
the notion of G—monotone nonexpansive multivalued mappings on a
metric space endowed with a graph. After that, Tiammee et al. [13]
presented Browder’s convergence theorem and Halpern iteration pro-
cess for G—nonexpansive mappings in Hilbert space involving a directed
graph. Tripak [14] studied two step iterative process for G—nonexpansive
mappings in Banach space endowed with a graph. Recently, Suparatula-
torn et al. [15] established convergence theorems for a modified S—iterat-
ion process for G—nonexpansive mappings in Banach space with a di-
rected graph. In the sequel Hunde et al. [16] gave weak and strong con-
vergence of finite step iteration sequences to common fixed point for
(G—nonexpansive mappings in Banach space with a digraph.

Inspired and motivated by this facts, we define and study the conver-
gence theorems of three steps iterative sequences for G-nonexpansive
mappings in Banach spaces involving a graph. The results of this paper
can be viewed as an improvement and extension of the corresponding
results of [10], [15] and others. The scheme (1) is defined as follows:

Tnt1 = (1 —nn1) f3Yn + M1 fo2n,
Yn = (1 = mn2) frzn + mmafozn, (1)
Zp = (1 —nn3) xn + Mpafizn, neN,

where {n,;} are sequences in (0,1) for all i € {1,2,3}.
For the beginning, some necessary definitions and lemma, which will be
used in the sequel, are established here.
Definition 1.1. [15] A self map f : K — K is called to be G—nonexpansive
if it satisfies the conditions:
1. f preserves edges of G, videlicet, (z,y) € E(G) = (fz, fy) €
E(G),

2. f non-increases weights of edges of G in the following way:
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(z,y) € E(G) = ||fx — fyl <z —yll.

Definition 1.2. [15] Let xo € V (G) and = a subset of V (G). We say
that

1. 2 is dominated by o if (xo,z) € E (GQ) for all x € .

(1]

2. = dominates g if for each x € 2, (x¢,2) € E(G).

(1]

Definition 1.3. [15] (Property SG) Let K be a nonempty subset of a
normed space X and let G = (V (G), E (G)) be a directed graph such that
V(G) = K. Then, K is said to have Property SG if for each sequence
{zn} in K converging strongly to x € K and (zy,xn+1) € E(G), there
is a subsequence {xy,} of {xn} such that (xy,,z) € E(G) for alll € N.

Lemma 1.4. [17] Let ¢ > 1 and D > 0 be two fized real numbers.
Then a Banach space X is a uniformly convex if and only if there is a
continuous, strictly increasing and convez function g : [0,00) — [0, c0),
g (0) =0 such that

vz + @ =yl <yl + A =N yl* —wg (Mg (le—yl)  (2)

for all x,y € Bp and 7 € [0, 1], where Bp is the closed ball with center
zero and radius D, wy (7) =7 (1 —7)1++P (1 — 7).

The main purpose of this paper is to study the convergence of the mod-
ified three steps iterative sequence {z,} identified by (1), under con-
dition (C), semicompact conditions, respectively, for G-nonexpansive
mappings in Banach spaces endowed with a directed graph. The results
presented in this study extend and improve a number of results in the
literature.

2. Main Results

From now onward, K express a nonempty subset of a Banach space X
with (V (G),E (G)) = G such that V (G) = K, convex of E(G) and
transitive of G.
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Proposition 2.1. Let K be a nonempty closed convex subset of a uni-
formly convex Banach space X and { f1, f2, f3} be three G—nonexpansive
mappings on K. Let g € F = F(f1) N F(f2) N F(f3) be such that
(x0,00) and (0y,x0) are in E(G) for arbitrary xy € K. Then, for a
sequence {x,} generated by xy endowed with iterative scheme identified
by (1), we possess (Xn,00), (0o, xn), (Tn,2n), (Zn,xn), (B0,2n), (2n,60),
(TnsYn)s YUnsxn)s B0sYn);s (Yn,00) and (xpn,xns1) are in E(G) for all
n € N.

Proof. Let (z9,60) € E (G). By edge-preserving of f1, we get (fi1xo,6p) €
E (G). Using the convexity of F (G), we have

(1 —n03) (w0, 00)+n03 (f170,00) = ((1 —103) To + No3f170,00) = (20,60) € E(G).

Owing to edge-preserving of f; and fo, we have (f1z0,6p), (f2z20,60) €
E (G) and from the convexity of E (G), we get

(1 =mno2) (f1zo,00)+noz (f220,00) = ((1 = no2) f1zo + 103 f220,00) = (y0,00) € E(G).

Due to the fact that fo and f3 are edge-preserving, we get (f220,60),
(f3y0,00) € E (G) and again by the convexity of E (G), we have

(1 =mn01) (f3y0,00)+n01 (f220,00) = ((1 — no2) f3y0 + Mo2f220,00) = (1,600) € E(G) .
Continuing this process, we hold (z1, 6y), (y1,60), (x2,00) € E (G). Now,
we assume that (z7,6p) € E(G) on the score of edge-preserving of fi,
we get (fix,00) € E(G), and therefore (2;,6p) € E (G) from the con-
vexity of E(G). As fi and fo are edge-preserving, we have (fiz;,6p),
(faz1,60) € E(G), so (yi,60) € E(G) from the convexity of E (G). On
account of the fact that fo and f3 are edge-preserving, we get (fa2z;,6p),
(fsy1,00) € E(G) and again by the convexity of F (G), we obtain
(x141,00) € E(G). By repeating this process for (z;11,00) € E(G),
we get (2141,00), (Y1+1,00) € F (G). Thereof, by induction, we deduce
that (2n,00), (2n,00), (Yn,60) are in E(G) for all n € N. By use of a
similar assertion, (6o, ), (6o, 2n), (0o,yn) € E (G) for all n € N under
the hypothesis that (0y, z¢) € E (G). Using the transitivity of G, we ob-
tain that (2, 2n), (2n, Zn), (Tn,Yn)s (Yn, zn) and (zy, Tnr1) are in E (GQ)
for all n € N. This completes the proof. [

Lemma 2.2. Let K be a monemptly closed convex subset of a uni-
formly convex Banach space X and { f1, f2, f3} be three G—nonexpansive
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mappings on K. If 0 < liminf,, .o n,; < limsup, .. nn; < 1 for
Jj = 1,2,3 and (x0,60) and (0o, x¢) are in E(G) for arbitrary xo € K
and Oy € F = F (f1) N F(f2) N F(f3), then for the sequence {x,} gen-
erated by (1), we possess

(1) |Tns1 — Oo|| < ||zn — bol|, for eachn € N, and therefore lim,, o0 ||2n, — Oo]|
exists;

(i) ||zn, — fixn| — 0 when n — oo fori=1,2,3.

Proof. (i) Let zyp € K and 6y € F. From Proposition 2.1, (z,,600),
(60, 7n); (Tns 2n), (20, Tn)s (Tns Yn), (Yn, Tn) and (Tn, Tni1) are in B (G)
for all n € N. Then, by (1) and G—nonexpansiveness of { f1, f2, f3}, we
get

(1 = nn3) n + M3 fran — b0

(1 = nn3) |zn — Ooll + 73 || frzn — Ol

(1 = nn3) [|2n — Ool| + 13 |20 — bo|

|27 — 6ol , (3)

[

IN I

and, by (1) and (3)

< (= m2) [ frzn — 0ol + 1n2 || f22n — 60|
< (1 _77n2) ||$n_90|| +77n2‘|zn_90||
< e — 6ol (4)

1Yn — ol

herewith, from (1), (3) and (4),

< (1= nm1) [| f3yn — 0ol + 1 || f22n — b0
< (1_77721)”3/11_60” + M1 ||Zn_90||
< lzn — 6ol - (5)

|zns+1 — Ool|

Thereby, lim,, . ||z, — o|| exists.

(ii) By hypothesis (i), {x, — 0y} is bounded for 6y € F. Thereby, it fol-
lows from (3) and (4) that {z, — 6o} and {y, — 6o} are also bounded
sequences. Owing to G—nonexpansiveness of {fi, fa2, f3}, we can de-
mostrate the sequences {fix, — 0o}, {fezn — 6o} and {fsy, — 6y} are
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all bounded. By (1) and Lemma 1.4, we have,

11 = 7n3) (2 — b0) + 11ns (frn — 60)]*

frzal))

fren|)

nn3) g1 (len — frza|]),

lzn = 60lI> = |(1 = Nn3) Tn + N3 frn — 6o

<

< (1= 1m3) |0 = B0l + 1ns || frzn — 6o
=13 (1 = 1m3) g1 ([|zn —

< (1= mn3) @0 — b0l + 13 |20 — b0l
=13 (1 = mn3) g1 ([lzn —

<z — 90H2 — s (1 —

and, by (6)
l[yn — 6ol|®

(1 = Nn2) fizen + a2 fazn — b0l

< (L=mn2) [ frzn = 01> + 1n2 || f22n — 0]
—nn2 (1 = 1n2) g2 ([ frzn — f2znl])
< (1 —=mn2) &0 — 00l + 12 |20 — 6ol
—1n2 (1 = mn2) g2 (| frzn — f22n)
< (1= nn2) [&n — 60
+1n2 {||37n - 00H2 — Mn3 (1 — Tn3) 91 (Hxn - flan)}
—1n2 (1 = nn2) g2 (|| frzn — f2za]]
<

)
)

0 = 00ll* = ttm2mns (1= 1ns) g1 (len — frzal)
)

—Nn2 (1 = nn2) g2 (| fizn — fozall),

similarly, from (6) and (7), we have

N

N

/N

N

Hxn+1 - 00H2
H(l - nnl) f3yn + nnlfQZn - 90H2

(1 = nn1) | f3yn — 00l|® + nnt || f22n — 00|

—Nn1 (1 = 1n1) g3 (|| fayn — faznl|)

(1= 1n1) llyn — O0ll* + 71 |20 — 60|

—Nn1 (1= mn1) g3 (|| fayn — faznl|)

(1- 7]n1) { Hxn - 90H2 — Mn27n3 (1 - nnS)gl (Hxn - flfan)

—Nn2 (1 — Nn2) g2

(lfrzn — f2znll)

01 {{lzn = 001> = 1ns (1 = 1ns) g1 (lzn — frzall)}

)
—Nn1 (1= 1) g3 (| fayn — f2ZnH)
(

lzn = 00ll* = 1hm1mns (1 = 1ns) g1 (len — frzal)

—Nn2 (1 = 7n1) (1 = 7n2) g2 (| 120 —
—Nn1 (1 = nn1) g3 (| f3yn — fozall) -

foznl])

}

(6)



THE MODIFIED THREE STEP ITERATION PROCESS... 123

It follows from (8) that

M1 (1 = 1) g3 (| f3yn — f2znl) (9)
< l#n = 60ll* = l@ns1 — 6ol

M2 (1= 1m1) (1 = mn2) g2 ([ frzn — foznl)) (10)
< lan = 0ol” = llns1 — 60|,

Mn1nns (1 = nn3) g1 ([[2n — frzal)) (11)

< zn = 00))* = |zngr — ol

If 0 < liminf, .o 1p; <limsup, . 7n; < 1for j =1,2,3, there exist a
positive integer ng and x € (0,1) such that 0 < k < ny; for j = 1,3 for
all n > ng. This implies by (9) that

k(1= ) g3 (Il fsyn — foznll) < llwn — b0/~ zar1 — 6ol|* for all n > no.
(12)
By (12) for m > no,

S g5 (1 fsvn — fozull) < @(Z {||xn—eo|2—||xn+1—eo||2}>

n=ng n=ng

1

2
m“xno Ooll” -

~X

Then 37,7, 93 ([ f3yn — foznl]) < 00, and so limp oo g3 (|[f3yn — f22nl])
= (. By virtue of the fact that g3 is strictly increasing and continuous

via g3 (0) = 0, we get
| f3yn — fozn|| — 0 when n — oc. (13)

From an analogue manner, allied with (10) and (11), it could be demon-
strated that

| fizn — fozn|| — 0 when n — oo, (14)

lxn — fizn] — O when n — oc. (15)

It follows from (1) that

H(l - 77n3) Tn + M3 f1en — $nH
< ||f1xn - an
— 0 when n — oo. (by (15)) (16)

(B
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From (14) and (15), we have

| fozn —znll < || fizn — fozul + |20 — frz,]]

— 0 when n — oc. (17)
It follows from (1) that
lyn —znll = [[(1 = mn2) frzn + n2fozn — T4
< (L =m2) [ fizn — znll + 02 | f220 — 20|
— 0 when n — oo. (by (15) and (17)) (18)

Using (16) and (17), we get

[f2zn = znll - < Ilf2zn — 2all + 20 — 2l

— 0 when n — oo. (19)
By (14) and (19), we have

| fizn — zall < |fizn — fozull + | fozn — 2all

— 0 when n — oo. (20)
It follows from (1) that
lyn — znll = [I[(L = mnm2) fizn + mnafozn — 2|
< (L =mm2) [frzn — zall + 102 | f22n — 24|
— 0 when n — oo. (by (19) and (20)) (21)

Because of that fy is G—nonexpansive mappings, it follows from (16),
(19) and (21) that

|20 — foynll < M0 — 20l + ll2n — fozull + | f22n — founl|
< lzn = zall + 120 = fozall + |20 — yull
— 0 when n — oo. (22)

Again, by G—nonexpansive mappings of fa, it follows from (18) and (22)
that
[2n = foxnll < N0 = fonl + (| f2yn — fozal|
<

Hxn - f?ynH + Hyn - xn”
— 0 when n — oc. (23)
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As fy is G—nonexpansive mappings, it follows from (13), (16) and (23)
that

< lon = fownll + [f22n — foznll + ([ f220 = foynl
< ”$n_f2$n||+Hxn_an+||f22n_f3ynH

— 0 when n — oo. (24)

[z — faynll

On account of the fact that f3 is G—nonexpansive mappings, by (18)
and (24), we have

< Hxn_f&yn”+Hf3yn_f3$n”
< Hxn_fiiynn"i'uyn_xn”
— 0 when n — oo. (25)

20 = faznll

This completes the proof. [

Theorem 2.3. Let K be a nonempty closed convex subset of a uniformly
convex Banach space X and {f1, f2, f3} be three G—nonezpansive map-
pings on K. Suppose that 0 < liminf, .o 7,; < limsup, 7 < 1
for 3 =1,2,3 and {z,} is a sequence generated by (1). If there is a
nondecreasing function g : Rt — R™ with g(0) = 0 and g (a) > 0 for
all a > 0 such that for all x € K, maxi<,3 {||z — fuzl|} = g(d(z, F))
(condition (C)), F = F (fi1) N F (f2) N F (f3) is dominated by xo and
F=F(fi)NF(f2)NF(f3) dominates xg, then {x,} converges strongly
to a common fized point of {f1, f2, f3}.

Proof. By (3), (23) and (25), ||z — fuz|| — 0 when n — oo for 1 < p <
3. Since max1 <3 {||Tn — fuznll} = g (d(2n, F)), we have g (d (xy, F)) —
0 as n — oo which implies lim, o d (z,, F) = 0 by definition of the
function g. We shall show that {x,} is a Cauchy sequence. By virtue of
lim,, o0 d (2, F') = 0, for given € > 0, there exists ng in N such that
5 > d(xp, F) for all n > ng. Hence, we get § > d(xy,, F'). This means
that there exists 0* € F' such that § > |z,, — 6*||. Next, for m,n > no,

[Zntm = @nll < [[@ngm — 07 + [0 — znll < 2[lan, — 07,
taking the infimum in the above inequalities for all 8* € F', we obtain

[Zn4m — Zall < 2d (2n,, F) <e.
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This implies that {z,} is a Cauchy sequence. Hereby, owing to the
completeness of X, there exists a # € K such that lim, .z, = 6,
and so limy,_o d (z,, F) = 0 yields that d (0, F) = 0, viz § € F. This
completes the proof. [

A mapping f : K — K is called semicompact if for a sequence {z,} in
K with ||z, — fz,| — 0 as n — oo, there exists a subsequence {z,, } of
{xy} such that z,, — 0¥ € K.

Theorem 2.4. Let K be a nonempty closed convex subset of a uniformly
convex Banach space X and {f1, f2, f3} be three G—nonexpansive map-
pings on K. Suppose that 0 < liminf, .o 7n; < limsup, o Mnj < 1
for j =1,2,3, K has property SG and {x,} is a sequence generated by
(1). Assume that one of f1, fo, f3 is semicompact (without loss of gen-
erality, we assume fi is semicompact) , F'= F (f1) N F (fo) N F (f3) is
dominated by xy and F = F (f1) N F (f2) N F(f3) dominates xg, then
{xn} converges strongly to a common fized point of { f1, fo, f3} .

Proof. In connection with semi-compactness of fi, by the fact that
|z — fizn]| — 0 when n — oo and {z,} is bounded, there exists a
¥ € K and a subsequence {zy, } of {z,,} such that limj_, z,, = . Now
by the hypothesis of the theorem, we attain (z,,,9) € E(G). In the
present case, we find

9= £u0]l = Jim [z, — it | = 0 for 1< <3

This shows that ¢ € F. Due to the fact that ||z, — 9| — 0 as n —
exists, we also have

lim ||z, —¥| = lim |z,, — 9| =0,
n—oo k—o0

which means that {x,} converges to ¢ € F. Herewith, {z,} converges
strongly to a common fixed point of {f1, f2, f3}. This completes the
proof. [
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Remark 2.5. (i) If n,1 = 0 for all n > 1, then Theorem 2.3 and
2.4 extend and improve the results of Suparatulatorn et al. [15, Theorem

2 and 3J.

(ii) If we take fi1 = fo = f3 = f, then the results of this study are
improvement and extension of the corresponding results of Abbas and
Nazir [10].

(733) If 1 = nn2 = 0 for all n > 1, then we get the strong convergence
theorems of Mann iteration process for G—nonexpansive mappings in
the framework of Banach space with graph.

Now, we give the numerical example to support our main theorem in
a dimensional space of real numbers. In this example illustrates the
efficiency of approximation of common fixed points for G—nonexpansive
mappings in Banach spaces with a graph.

Example 2.6. Let X = R be endowed with standard norm ||.|| = |.],

K =[1,3] and (V (G),E(G)) = G such that V (G) = K and (x,y) €

E(G)iff 1 < z,y < 1.90 or z = y. Define three mappings { fi, fo, f3} :
2(xz—1)

K— Kby fiz=sin(x—1)+1, for =3 11, fyz = 53D for any
z € K. Let

n n n+1
— —— _ —— f 21-
Tn+ 2 nt11 "™ T enys "

It is easy to see that fi, fo, f3 are G—nonexpansive mappings. It is also
clear that F' = F (f1) N F (f2) N F (f3) = {1}.

Tin1 y Th2 =

1

2
34

4
5

Figure 1. Plot showing fixed point of f; (green line), fo (yellow line),
f3 (blue line)



128 E. YOLACAN

3. Conclusion

Our theorems improve the common fixed point theorems for G—nonexpansive
mappings in Abbas and Nazir [10] and Suparatulatorn et al. [15]. Within
the future scope of the idea, reader may prove the convergence theorems
of the following iterative processes to a common fixed point of asymp-
totically nonexpansive mappings (or totally asymptotically nonexpan-
sive mappings, shortly TAN ), identified on a nonempty closed convex
subset of a Banach space.

1. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X. Let 11,15 : K — K be asymptotically nonexpansive
mappings (or TAN ), f3 : K — K be I—asymptotically nonexpansive
mappings (or I—TAN ). Then for three given sequences {n,;} are se-
quences in [0, 1] for all ¢ € {1,2,3} and zo € K, {z,} is defined by

Tnp+1 = (1 - nnl) f?tlyn + nnlfgzna
Yn = (1 _77n2) 'y + nnaly zn, (26)
zn = (1 = nn3) @p + Mu3lian, n € N.
2. Let K be a nonempty closed convex subset of a real normed linear
space X with retraction P. Let fi, fo,fs : K — X be three nonself
asymptotically nonexpansive mappings with reference to P:

Tn+1 = Tnl (PfS)n Yn, + Mn2 (PfQ)n Zn + Mn3on
Yn = 11 (Pf1)" @n + T2 (Pf2)" 2n + Mnzwn (27)
Zn = ﬁr\:lxn + Mn2 (Pfl)n Ty + Mn3ln, N E N?

where {nnl} ) {TMQ} ) {nn?)} ) {77/771} ) {77/71\2} ) {77/7’1’)} ) {7/7;’;1} ) {7/7;;2} ) {%} are

sequences in [0, 1] satisfying

77n1+77n2+77n3:%+@+%:%+%+%:17
and {v,},{wn},{on} are bounded sequences in K.
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