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Noncompactness and Application to Volterra

1.

To understand the work in the underlying area, we start with listing
some notations and preliminaries that we shall need to express our re-
sults.
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Introduction and preliminaries

Throughout the paper,

R = the set of real numbers,

N = the set of natural numbers,
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R*T = [0, +00) and N* = NU {0}.

Let (E,|.||) be a real Banach space with zero element 6. Let B(x,r)
denote the closed ball centered at x with radius . The symbol B, stands
for the ball B(6,r). For X, a nonempty subset of E, we denote by X and
ConvX the closure and the convex closure of X, respectively. Moreover,
let us denote by 9 g the family of nonempty bounded subsets of E and
by Mg its subfamily consisting of all relatively compact sets.

We use the following definition of the measure of noncompactness (MNC)

given in [10].

Definition 1.1. A mapping p : Mg — RT is said to be a MNC in E if

it satisfies the following conditions:

(1°)  The family kery = {X € Mg : u(X) = 0} is nonempty and
keru C Ng,

(2°) (Monotonicity) X CY = u(X) < u(Y),

(3°)  (Invariance under closure) u(X) = u(X),

(4°)  (invariance under passage to the convex hull) u(ConvX) = u(X),

(5°)  (convexity) p(AX +(1=XN)Y) < Au(X)+(1=XN)u(Y) for X € [0,1],

(6°) (Cantor’s generalized intersection property) If (X,) is a decreas-
ing sequence of nonempty, closed sets in Mg such that Xp+1 C Xy
(m = 1,2,...) and if limy,_—o pu(Xn) = 0, then the set Xoo =
ﬂ;ozl X, is non-empty and compact.

The family kerpu defined in axiom (1°)is called the kernel of the MNC p.

One of the properties of the MNC is X, € keru. Indeed, from the
inequality u(Xoo) < p(Xy) forn =1,2,3,..., we infer that u(X) = 0.
In 1930, Kuratowski [18] opened up a new direction of research with the

introduction of a measure of noncompactness, denoted by «

The Kuratowski MNC is the map o : Mg — RT with

a(Q) = inf{e >0:QC | J Sk Sk C B, diam(Sy) < e(k € N)}. (1)
k=1
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In 1955, Darbo [11] used the notion of Kuratowski measure of non-
compactness « to prove fixed point theorem and generalized topological
Schauder fixed point theorem [10] and classical Banach fixed point the-
orem [6].

Theorem 1.2. [10] Let X be a closed, conver subset of a Banach space
E. Then every compact, continuous map 7 : X — X has at least one
fized point.

Theorem 1.3. [11] Let X be a nonempty, bounded, closed and convex
subset of a Banach space E, p be the Kuratowski MNC on E. Let T :
Q — Q be a continuous and p-set contraction operator, that is, there
exists a constant k € [0,1) with

(TM) < kp(M)

for any nonempty subset M of X. Then T has a fized point.

Following this result, many authors proved several Darbo-type fixed
point and coupled theorems by using different types of control func-
tions. Here we mention the paper discussed in ([1, 23]).

With the above discussion in mind, we establish some results of Darbo’s
type which generalizes and include work mentioned in [3, 4, 5, 9, 11, 12,
13, 17] as well (see Remark 2.4). In the final section, we apply the ob-
tained result to solve the Volterra integral equations in Banach algebras
and justify with an example.

2. Fixed Point Theorems

We start the section with the following notion:

Definition 2.1. [25] Let § be the family of all functions F : Rt — R
with the following properties:

(F1) F is continuous and strictly increasing;

(Fy) for each sequence {t,} C R, lim, o0 t, = 0 if and only if
lim,, o0 F'(t,) = —o0.
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(F3) There exists k € (0,1) such that lim ofF (a) = 0.

a—0t

The first main result is:

Theorem 2.2. Let X be a nonempty, bounded, closed, and convex subset
of a Banach space E, and T : X — X is continuous operator. If there

exist >0, F € § and a continuous and strictly increasing mapping ¢ :
R* — R* such that

W(TM)>0=7+F(u(TM)+o(u(TM))) < F(u(M) + o(p(M))),

(2)
for all M C X, where i is an arbitrary MNC. Then T has at least one
fixed point in X.

Proof. Starting with the assumption Xy = X', we define a sequence {X), }
such that X,11 = Conv(T X},), for n € N*. If p(Xy,) + ¢p(pu(Xn,)) = 0,
that is, u(AX,,) = 0 for some natural number ng € N, then X,,, is compact
and since 7 (X,,) € Conv(T X p,) = Xpg+1 € Xy,. Thus we conclude the
result from Theorem 1.2, hence we assume that u(X;,) + @(u(X,)) > 0,
for all n € N*. From (4), and (4°) of Definition 1.1, we have

F(u(Xns1) + o(p(Xn41)) = F(u(Conv(T Xp)) + (u(Conv(TXy))))
F((TXy) + (T Xy)))
(u(
(u(

F(p(Xn) + o(u(Xn))) — 7
F(p(Xn-1) + o(u(Xn-1))) = 27

NN

N

F(u(Xo) + (X)) = (n + 1),

that is,

F(u(Xsr) +o(i(Xa11))) < F(u(X0)+0 (X))~ (n+1)7, for all m € N.

(3)
Therefore by (3), we get F(pu(Xn41) + @((Xnt1))) — —00 as n — oo.

Thus, from the property (F»), we have

Jim () + ¢ (p(dn)) = 0,
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therefore
lim p(&,) =0.

n—o0o

Now from (6°) of Definition 1.1, we have X» = (oo ; &, is nonempty,
closed, convex set and Xoo C &), for all n € N. Also 7 (Xy) C X» and
Xoo € kerp. Therefore, by Theorem 1.2, 7 has a fixed point u in the set
X and hence u € X. O

Remark 2.3. If o(t) = 0 in Theorem 2.2, then we get Theorem 3.2 [13].

Remark 2.4. Toking various concrete functions F' € § in the condition
(2) of Theorems 2.2, we can get various classes of u-set contractive
conditions. We state just a few examples which include results existing
in the literature:

(A1) Taking F(t) = Int (t > 0), 7 = In(3) where A € (0,1), we have
condition

WTM) > 0= p(TM)+ @(u(TM)) < A[pM) + o(p(M))].

(A2) Taking F(t) =Int+t (t >0), 7 =In(5) where A € (0,1), we have
condition

w(TM) > 0= [u(TM)+ o(u(TM))]eTM+eT M) = M)+ (M)
< ARM) + p(uM))).

(A8) Taking F(t) = Int (t > 0) and T = In(35), @(t) = t where X €

(0,1), we have Darbo’s p-set contraction condition

wW(TM) > 0= pu(TM) < Au(M).

(A4) Taking F(t) = —% (t>0), 7=\ (A>0), the condition is

(M) + p(u(M)
W(TM) > 0= u(TM)+o((TM)) < [1+ Ay/(M) + o(p(M))]2




96 H. KUMAR NASHINE AND J. REZAEI ROSHAN

Proposition 2.5. Let X be a nonempty, bounded, closed, and convex
subset of a Banach space E and T : X — X is continuous operator. If
there exist 7 > 0, F € § and a continuous mapping ¢ : Rt — RT such
that

w(TM) > 0= 7+ F(diam(T M) + ¢o(diam(T M)))
< F(diam(M) + p(diam(M))),
for all M C X. Then T has a unique fized point in X .

Proof. Following Theorem 2.2 and argument of Proposition 3.2 [13], 7
has a fixed point in X.

To prove uniqueness, we suppose that there exist two distinct fixed
points ¢, € X, then we may define the set T := {(,{}. In this case
diam(Y) = diam(7(Y)) = || — ¢|| > 0. Then using (4), we get

diam(7 (1)) > 0= 7+ F(diam(7T (Y)) + ¢(diam(7(Y))))

< F(diam(T) 4+ ¢(diam(Y))), (4)
a contradiction and hence £ = (. [

Following is the generalized classical fixed point result derived from
Proposition 2.5.

Corollary 2.6. Let X be a nonempty, bounded, closed, and convexr sub-
set of a Banach space E and let T : X — X be an operator. It there
exist T > 0, F' € § and a continuous and strictly increasing mapping
o : RT — R such that

[Tu=Tv|| > 0= 7+F(|Tu=Tv[+e([Tu=Tvl)) < F(llu=vll+e(u—v])
(5)

for all u,v € X. Then T has a unique fized point.

Proof. Let p : Mr — RT be a set quantity defined by the formula
u(X) = diamX, where diamX = sup{||lu —v|| : u,v € X'} stands for the
diameter of X. It is easily seen that p is a MNC in a space E in the
sense of Definition 1.1. Therefore from (5) we have
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sup ||Tu—Tv||>0=

u,vEX
T+ F(sup [|Tu—Tu|+¢( sup [Tu-Tv|)) =7+ sup F(|Tu—Tv|+¢(|Tu-"Tvl))
u,vEX u,vEX u,vEX
< swp F(llu—vf + (|l —vl]))
u,vEX
SF(sup Ju—v]+¢( sup [ju—v]]))
u,veEX u,vEX

which implies that
diam(T (X)) > 0= 7+F(diam(T (X)) +o(diam(T(X)))) < F(diam(X)+p(diam(X)).

Thus following Proposition 2.5, 7 has an unique fixed point. [J

Corollary 2.7. Let (E,| - ||) be a Banach space and let X be a closed
convex subsets of E. Let T1,To : X — X be two operators satisfying the
following conditions:

(1) (T + T2)(X) C X;

(1I) there exist 7 > 0, F' € § and a continuous and increasing mapping
¢ : Rt — RT such that

|Tou="Tivl| > 0= 7+ F(|Tru = Tro| + ¢(|Tru = Ty0)|))) < F([lu = ol + ¢(lu = v]}))
(III) T3 is a continuous and compact operator.

Then J :=T1 + 13 : X — X has a fized point u € X.

Proof. Suppose that M is a subset of X with a(M) > 0. By the
notion of Kuratowski MNC, for each n € N, there exist Ci,...,Cpn)
bounded subsets such that M C U:Z(ln )¢; and diam(C;) < a(M) + L.
Suppose that «(7;(M)) > 0. Since T3(M) C U?i(f) T1(C;), there exists
ip € {1,2,...,m(n)} such that a(7;(M)) < diam(71(C;,)). Using (6)
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condition of 77 with discussed arguments, we have

7+ Fla(Ti(M)) + o(o(Ti(M))) < 7+ F(diam(T1(Ciy ) + ¢(diam(Ty(Ciy))))
< F(diam(Cyy) + ¢(diam(C;,))

F(a(M) + % + @(a(M) + i)) (7)

VAN

Passing to the limit in (7) as n — oo, we get

7+ F(a(Ti(M)) + p(a(T1(M)))) < F((M) + ¢(a(M))).
Using (IIT) hypothesis, we have by the notion of o that

THF((IM) +o (M) = 7+ F(a(Ti(M)+T(M)) + ¢ (a(Ti(M) + T:(M))))
< T+HF (M) + a(T(M)) + ¢ (a(Ty(M)) + a (T:(M))))
= 7+ F(a(Ti(M)) + ¢ (a(Ty(M))))
< Fla(M) +o(a(M)).

Thus by Theorem 2.2, 7 has a fixed point v € X. O

Remark 2.8. If ¢(t) = 0 in Proposition 2.5-Corollary 2.7, we get result
given in [13, Proposition 3.2-Corollary 3.4].

2.1 Coupled fixed point theorems

This section is concern with the coupled fixed point theorems of Section 2.

Definition 2.1.1. [15] An element (u,v) € E? is called a coupled fived
point of a mapping G : E*> — E if G(u,v) = u and G(v,u) = v.

The first coupled fixed point result is:

Theorem 2.1.2. Let X be a nonempty, bounded, closed, and convex
subset of a Banach space E. Suppose that G : X x X — X is continuous
operator. If there exist T > 0, F € §, and ¢ : RT — R is continuous,
increasing and sub-additive mapping such that

fori,j € {1,2},i# 7, p(G (X x X)) >0

(G (X x X)) + ¢ (pu(G (X X ])+
W”( 4 (G (X, % X))+ 0 (G X ) ®

< F (p (&) + p (&) + o (u (&) + p (X))
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for all X;, X; C X, where p is an arbitrary MNC. Then G has at least a
coupled fized point (u,v) € X x X.

Proof. Consider the map G:X XX — X x X defined by the formula

~

g(uv U) = (g(ua U)v g(va ’LL))

3 is continuous due to continuity of G. Following [4], we define a new
MNC in the space X x X as

(M) = pu(Xr) + p(Xe),

where X, i = 1,2 denote the natural projections of X. Without loss of
generality, we can assume M is a nonempty subset of X2. Hence, by the
condition (8) and using (2°) of Definition 1.1 we conclude that

AGM)) < L(G(X x Xp) x (X2 x A1)
= w(G(X1 x A2)) + pu(G(X x 1)),

therefore by the assumption, we have
1(G(M)) >0,
that implies

7+ F(R(G(M)) + p(i(G(M))))
T4+ F(i(G(X1 x Xp) x G(Xy x A1) + @((G (A1 x Ag) x G(&g x A1))))
(

<
< T+ F(p(G(X x X)) + u(G(Xe x X1)) + o(p(G(X x X)) + o(u(G(Xz x &1))))
< F(uX) + p(X) + o (u(d) + p(A2)))

= F(M) + ¢(ia(M))),

that is,

AG(M)) > 0 = T+F(I(G(M))+p(H(G(M)))) < FEM)+p((M))).

Therefore from Theorem 2.2, we get G has at least one fixed point in
X2, and hence G has a coupled fixed point. O

The second result is as follows:
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Theorem 2.1.3. Let X be a nonempty, bounded, closed, and convex
subset of a Banach space E. Suppose that G : X x X — X is continuous
operator. If there exist T > 0, F' € § and a continuous and increasing
mapping ¢ : RY — R* such that
fori,je{1,2},i#j, p(G(Xix ;) >0 }
=7+ F(p(G (X x X)) +o(pn(G(Xx X)) o, (9)
< F (max{p(d1), p(X2)} + ¢ (max{pu(X1), u(X2)}))

for all X;, X; C X, where p is an arbitrary MNC. Then G has at least a

coupled fized point (u,v) € X x X.

Proof. Consider the map G:X XX — X xX defined by the formula
g(“? U) = (g(u7 1)), g(v’ u))

§ is continuous due to continuity of G. Following [4], we define a new
MNC in the space X x X as

(M) = max{u(X1), u(X2)}

where &j, ¢ = 1,2 denote the natural projections of M. Without loss of
generality, we can assume M is a nonempty subset of X x X. Following
previous theorem, we have

AGM)) < (G(X x Xp) x G(Xz x X))
= max{u(G(X1 x A2)), u(G(X2 x X1))},

which is, by the assumption,

AG(M) > 0.

Hence, by the condition (9), and using (2°) of Definition 1.1 we conclude
that

7+ F(E(GM)) + p(@G(M)))
< T PG (X x Xp) x G(Xp x X1)) + p(1(G(X x Xp) x G(Xp x 41))))
= 7+ F(max{u(G(%1 x X)), m(G(X x X1))} + p(max{u(G(X1 x X3)), p(G(Xy x X1))}))
= 7+ max{F(u(G(X1 x X)) + o(u(G(X1 x X2)))), F(1(G(Xz x X1)) + @(n(G(X2 x X1))))}
P max{ F(max{p(X1), n(X2)} + p(max{p(X1), n(X2)})), }
h F(max{p(X2), n(X1)} + p(max{p(X2), u(X1)})
= Flmax{p(X1), p(X2)} + p(max{pu(X1), p(42)}))
= F(E(M) + (M),
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that is,

~

AGM) > 0= 7+ F(I(G(M))) < F(I(M) + p(i(M))).
Hence by Theorem 2.2, we reached that ? has at least one fixed point
in X2, and thus G has a coupled fixed point. O

Remark 2.1.4. In view of the Remark 2.4 (A1-(A3)), some new coupled
fixed point results can be derived from Theorems 2.1.2 and Theorems
2.1.3.

3. Application to the Volterra Integral Equa-
tions in Banach Algebras

Let (X, ||.]|) be a real Banach algebra and the symbol C ([0, T, X ) stands

for the space consisting of all continuous mappings f : [0,7] — X, with

T > 0. In this section inspired by Theorem 4.1 of J. Garcia-Falset et

al. [13], we will consider the existence of a solution z € C (0,77, X) to
the following nonlinear Volterra integral equation

t
s = b 0)+Gr) [ ga@)Qrds  (0)
We will assume that the following conditions are satisfied:

(a) f:]0,T] x X — X is a continuous mapping such that there exists
a bijective, strictly increasing function F' : (0, 00) — (—00,0) and

If (ta) = F(ty)l > 0= 7+ F(If (ta)~ f Lyl + o (If (t2) = [ (Ey)ll)
< F(lz—yl+ oz —yl))- (11)

(b) G and @ are some operators acting continuously from the space
C (]0,T],X) into itself and there are increasing functions ¢, :
R*T — R™ such that
1G ()]l
1Q ()|l

(=)
o (ll=ll),

<
<

for any z € C'([0,7],X).
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(¢) g :[0,T] x X — X is a continuous mapping such that there ex-
ists an increasing function u € L' ([0,T],RT) and an increasing
continuous function § : RT™ — RT such that

lg (¢, )l < w (8) 6 (ll]),

for any # € X and ae. t € [0,7]. Moreover, for any fixed z € X
the mapping ¢t — ¢ (¢, z) is measurable over the interval [0,7] and the
mapping x — ¢ (t,x) is continuous for a.e. ¢t € [0,77],

© ()Y ()0 () llully
v

< 1.

(d) liminf,_

Theorem 3.1. Under assumptions (a)-(d), Eq.(10) has at least one
solution in the space x € C ([0,T],X).

Proof. Define an integral operator J : C'([0,7],X) — C([0,T],X)
b
Y t
T (t) = £ (6,2 (1) + G (2) /0 9 (5, (5)) Qx (5) ds.

We will show that the operator J has a one fixed point. To this end we
define the following two mappings 77,72 : C ([0,7],X) — C([0,T],X)
by:

Tix(t) = f(t,z(t)),
Tw(t) = Ga(t) /O g (5,2 () Q () ds,

where J =71 + 7Ts.

It is easy to see that 77 is well-defined. Now we show that 75 is well-
defined, let € > 0 arbitrarily and z € C ([0, 7], X) be given and fixed. Next
let My = Sl—lpte_[o_,T] llg (t,z ()|, since Gz is uniformly continuous on
[0,T], there exists d1(¢) > 0 such that for all ¢1,t5 € [0,T], with
|ta — t1] < 61 (¢) we have

9
(1+TM [|Qz]|)

IGz (t2) — Gz (t1)]l < 5
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g

2(1+ M |G| |Qz] )
generality we may assume that t; < to and to —t; < J (¢) and we obtain

Put ¢ (¢) = min {51 (e), } Without loss of

1o (t2) = Tox (t1)

(Go(t2) = Gu (1)) " 5,2 (5)) Qz (5) ds
+Gx (to) ftf g(s,2(s))Qz (s)ds

t1

Gz (t2) = Gz ()] - i lg (s, (DI - |Q= ()] ds + (|G (&) -

/N

[ g (s, ()] 1Q (5)] ds

3

TM M . ty—t

< 2(1-|—TA/11 HQJ:Hoo) 1“Qx“w+ 1||G‘T||ao HQ'ZHOO(2 1)
S
2 2

Next, we show that 73 is a continuous operator. Fix y € C ([0,7], X)

and e > 0 be given, since G and () are some operators acting continu-
ously from the space C (0,77, X) into itself, so there exist d; > 0 and
d9 > 0, such that

Ve € O(0.7),X), (I —yly <6 = |Gz~ Gyll, <)
Ve € C(0.7).X), (|~ 1yl < 6= |Qr — Qullo, <22),

where €; and €2 depend on ¢ and will be given.

On the other hand, since the mapping © — ¢ (¢,z) is continuous for
a.e. t € [0,T], there exits a d3 > 0 such that for a.e. ¢t € [0,7] we have

Ve e C([0,T],X), (lz@#) -y @l <ds=llg(t, ) —g &yl <es),

where €3 depends on € and will be given.

Now if we put § = min {41, d2,d3}, then for any =z € C ([0,7], X) that
|z —yl|l, <6, by the triangle inequality we obtain
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t

[T (t)-Tw®)] = |Gzt / 0 (5,2(5)) Qe (5)ds — Gy 1) / 0(5./(5)) Qu(s)ds

N

|Gz (t) - Gy (@) /0 lg (s, (s))] - 1Qu (s)l] ds
+HQ¢E—QyHm-HGy(t)H-/O lg (s, (s))ll ds

Gyl - 1990 /0 lg (s, (s)) = 9 (s, (s))]] ds

VAN

T
I\Gﬂ:—GwaHQ%HN-/ lg (s, (s))ll ds

" T
+HQI—QyHm-HGyHm-/O lg (s, (s))ll ds

T
+HGyHOC~HQyHoo~/ lg (s, (5)) = g (s, (s))| ds

0

T T
sl.w(l\wl\oc)-/o U(S)G(Hw(S)H)dﬁew(\\yllm)/0 u(s) 0 (Jlz (s)])) ds
esT Gyl - QY]
e1¥ (lylloo +0) - lull -0 (lylloc +0) + 20 (Iylloo) - Nl 8 [yl +9)
+Tesp (Iyloo) 0 (llylloc)
€ € ¢

< gHots =g

VAN

VAN

3 3 3
where
I €
! 31+ ([ylle +0) lully 0 (lyll +9))
€
gy = )
31+ @ (ylloo) Nlully € (lyll +0))
€
€3 =

3(1+Tese (lylloo) ¥ (lylloo))

Now we show that 75 is a compact operator.
IfB={xecC(0,T],X):|z| <1 }istheopen unit ball of C' ([0,T], X),
then we claim that 73 (B) is a compact subset of C ([0,T7],X). To see

this, by the Arzela—Ascoli’s theorem, we need only to show that 73 (B) is
an uniformly bounded and equi-continuous subset of C' ([0,77], X) . First
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we show that 73 (B) = {7Taz : © € B} is uniformly bounded. By the con-
ditions (a) and (b) for any = € B, we have the following estimates

[T (5] = chm [ o) Qe

< ez \ [ o) Qe

< Gzl /0 lg (s, (s)) Q (s)]| ds

< [Gal [ lla(ss &) 10z ()]s
T

< [Grl- 1@l [l (siz ()]s
T

< NGl Qa0 (e (5] ds

< ollalle) ¢ (2o 0 (zllo) - lull

< o) B1).0(1). Jul,.

Hence, putting My := ¢ (1) .9 (1) .0 (1) . ||ul|, , we conclude that, 75 (B)
is uniformly bounded. Now we show that, 7 (B) is an uniformly equi-
continuous subset of C ([0,7],X). To see this, let x € B be arbitrary,
and let € > 0. Since Gz is uniformly continuous, there exists some
91 (¢) > 0 such that

Vi, 1o € [O,T] R (‘tg — t1| < (E) - HG.r (tQ) — Gx (tl)H < 81),

where €1 depends on € and will be given. Without loss of generality we
may assume that t; < t2. Now by the Mean Value Theorem for Integrals,
there exists some ¢, € (t1,t2) such that

/t 2 lg (s, 2 (s)) || ds = (t2 = t1) - [|g (ca, x ()] -

Let d(¢) = min{d; (¢),e2}, where €3 is depends on e and will be
given. Therefore, if ¢1,ty € [0,T] satisfies 0 < ta —t; < d(¢) and = € B,
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then we have the following estimates

[T (t) =T ()] = |Galt) [ g(s.0(6) Qo(s)as=Gattn) [ g (s)Qr (s

Va\

|G (t2) = G (1) /0 g (s ()1 Qe ()] s

ﬂ@ﬂmwKQM@x@mw@@mw

VN

T to
€1 HQ»’EHW-/O \Ig(sv»’v(S))HdHHGIHWHQIHW/t lg (5,2 (s))]l ds

Va\

e ([le] )/ u(s)8 |z (s)l) ds

(
o (l2l0) ¥ (2ll0) (b2 = £1) - llg (cas  (c2))

at ([2l) - lully 0 (l2ll) + €29 (2llo) ¥ (1] o) w (e2) € ([l (c2) )
(1

<
< et (1).0(1) [full; + 20 (1) ¥ (1) u(T)6(1)
< §+§:a

where
I 15
L2040 () .01 full)’
g9 = °

2(14+ (1) (1).u(T).0(1))
Therefore 75 is a compact operator.

Next, we show that 77 is a F-contraction. Let z,y € C([0,7],X), and
|Tix — Tyl > 0. By applying the fact that every continuous function
attains it’s maximum on a compact set, there exists ¢t € [0, 7] such that
0 < | Tiw — Tyl = [If (¢, (t) — f (£ y (). By (a) and using the
fact that F and ¢ are strictly increasing functions we obtain

I )

NI

|

)

PP (T~ Tl (- Tal) = rer( O T 0

F(lle(®) =y Ol +o(lz() -y @)
F(lle =yl + oz -yll))-

NI

Hence 77 is a F-contraction. Now we show that there exists some
M3 > 0 such that ||7;z||, < M3 holds for each z € C' ([0,7],X). Since
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F' is bijective and strictly increasing we have

1T = Tyl +o (1T = Tiylloe) <FF (2 =yl + ¢ (lz = yllo) = 7).

Let 0 < ||lz| + ¢ (|lz] o), since F (||z]|, + ¢ (]|z]l)) < 0, the above
inequality implies that

|T12] < |Tiz — T10| o + [|710] o
< |Tix = T00] o, + 6 (| Tz — T0]L) + [ 720
< FHF (2]l + ¢ (I2llo)) — 7) + 17201
< F =740 -
Therefore

IMs>0,¥z (xeC([0,T],X) = |Tiz|, < Ms),

where, M3 := F~1[—7] + | 710, -

Finally, we claim that there exists some r > 0, such that J (B, (0)) C
B, (0) with B, (0) = {x € C([0,T],X) : ||z[|,, <7}. On the contrary,
for any v > 0 there exists some x, € B, (0) such that ||7 (x-)|| > 7. This
implies that liminf, oo 2 |7 (2,)[| > 1. On the other hand, we have

[T, ()] = IIf(tywv(t))llJrHwa(t) [ o, (9) @ 515

N

[T | + Gy (D] H [ o, Qe (93

N

t
M+ 1|Gas |, - Qs | /0 lg (5,24 (5))]] ds

N

T
Ms + ¢ (llzyllo) ¥ (lzyll) /O w (t) 0 (v (s)II) ds
< Mz+o() P ()-00) - lul;-
Hence, by the above estimate and condition (d) we get

()4 ()0 () - ully
g

which is a contradiction. Thus in view of the above discussions and

<1

1 C P
N | _
lim inf S 1T (29l < lim inf
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Corollary 2.7 we conclude that Eq.(10) has at least one solution in
B, (0)CcC(0,7],X). O
Example 3.2. Consider the Volterra integral equation of the form

t
_ 3t Jz(t)] 1 /=) s> {fla(s)le™*Wsina(s) Vle(s)]
@ (t) = arctan (e )+(1+758‘z<t)‘>5+12+cos4x(t) | ) In{ 1+ | ds.

(12)

Let X :=R, t€[0,1], T :=1 and 7 := 7. Now in order to investigate
the conditions of Theorem 3.1 we have

(a) Define the functions f : [0,1]xR — R given by f (¢, z) = arctan (e%)+

|z (£)] o

=, J is continuous and

|f(tz) = f(ty)] < = () 5 - v () 5|
(1+7%8R @) (1+ 78 Ol)
Consider the function h : [0,00) — [0,00),h (t) = (1+7t\5/§)5
1 —336
Since W' (t) = ——————— > 0 and A" (t) = <0,
(1+733%)° VICOMIE LN

so h is strictly increasing and concave. Moreover since h (0) = 0 and h
is concave, then h (t +s) < h(t) + h(s).

Without loss of generality, we can assume that |z| > |y|. In this case,
we obtain

[f (tz) = f @&yl < (=) = h(y)
< h(lzl = lyl) < h(lz—yl)

(1+ 788 —v])

Now, by choosing the function F' : (0,00) — (—00,0) given by F (t) =

-1
%, and the function ¢ : RT™ — R* given by ¢ (t) = Tt, it is easy to see
that the inequality (13) implies that the condition (11) holds.
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Indeed we have

F 4P (02) - () 4 607 () — F(9))) < Fle -yl + 6 (2 o)
T4 PBIF(La) - £ (hy) <F (8l —y)
1 -1
Ry v ey ATy
1+ 78z -y 1
T TRE BT Tty

DYy P i 10

1+ 78z -y
1) - b < — Y
(1 + 78|z - y|>
(b) Define the continuous operators G , @ : C'([0,1],R) — C ([0, 1],R)
given by

V|

Go = 4(2+ costx)’
5/

QRQr = In (1—!— 3|ac]> .

By choosing the strictly continuous functions ¢, : RT™ — RT given by
Vi Vi
p(t) = e and ¢ (t) = 5 we have
|Gl

(),
|Qx| x|).

S
< v (fxl)
(c) Define the continuous function ¢ : [0,1] x R — R given by

t2{/|xle T sinx
(1+1t)(1+22)

g(t,z) =
Considering the increasing function u € L' ([0,1],RT) given by u (t) =
2

57 and the increasing and continuous function # : RT™ — RT given
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by 0 () = v/x, and we have
t2 7 |:E

(1+1)

=

= u(t).0(z)).

lg (t,2)] <
1 1P 1
(d) Since f, 17dt =In2— 57 80 We have

s
PO Il _ i
¥ y=00 ot

1 1 1\ 105
= —(In2—=) lim | — =0<1.
12 2 ) 25\ 5

So all the conditions of Theorem 3.1 are satisfied and Eq.(12) has at

lim
y—00

least one solution in C ([0, 1],R).
Finally, we present another example.

Example 3.3. We consider the following Volterra integral equation

+12€ t)\/i t cos sv/ |z ( ln( + 200/ ( )
(@) O b ARG
(14)

where, X :=[-5,5],t€[0,2], T:=2and 7 = % Now we examine all

the conditions of Theorem 3.1:

o ¢) .

z(t) = 4cost+

(a) Define the function f : [0,2] x [-5,5] — [-5,5] given by f (t,x) =
4cost + %, the graph of this function depicted in Figure 1.
+% z(t



FIXED POINT THEOREM VIA MEASURE OF ... 111

y 4

0.0

Figure 1. The graph of f(t,x) = 4cost + %
(141 /1l

It is easy to see that f is continuous and

|z (t)] . |y (1)]
(1 3vie@l) 1+ Vo)

|f(t2) = f(ty)l <

|-

t
(1+ V0"
With the same calculations as the previous example, it can be shown that
k is strictly increasing and concave, so k (t + s) < k (t) + k (s) .Without
loss of generality, we can assume that |z| > |y|. In this case, we obtain

Now we define the function k : [0,00) — [0,00),k (t) =

|f(tx) = fty)| < k(lz]) =k (y])
< k(=) = Jyl)
< k(| —yl)

[z —yl

1 v
(14—54 ]x—y|>

So we have
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— z—ul?
F6a) = Fby)lHlf (ha) - fley)lte —2¥ ol
(1+30m=al) (1430 =)

Now we show that

2
|2 — | o —yl® o —yl + |z —y|

8

+ :
4 4
1 1
(1+5\/4 ’x—y|> (1+5\/4 ’95—3/|> <1+é4|x—y—|—|:ﬂ—y|2)

For this purpose, we show that for each a € [0, 5] the following inequality
is established,
2 2
Play= — 270 0 T >
(14—%\4/&4-&2) (1+35Va) (1+3Va)

Indeed, by plotting the function of P, it is observed that the above
inequality is always true. See Figure 2.

+ t t t
0 1 2 3 4

Figure 2. The graph of P (a)
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Therefore, with the above discussion, we have the following inequality
2
[z =yl + [z —y]

f (tx) — f(ty)|+|f (tz) = f Ly < i
(1+;4 |x—y|+|x—y|2)

Hence
THF([f (8 2) = F Gyl + o (If (42) = f (L y)]) S F(lz =yl + ¢ (lz = yl)),
where the function F : (0,00) — (—o00,0) given by F (t) = —4=, and the

%7
function ¢ : RT — R* given by ¢ (¢) = t2, so the condition (11) holds.

(b) Define the continuous operators G , @ : C ([0,2], [-5,5]) — C ([0,2], [-5, 5])

given by
e o 12e74/|x]
x - 1+e4z ’
1n<1+200 ¢ \x|)
Qx = 1+1.2

By choosing the strictly continuous functions ¢, : RT™ — R given by
@ (t) = 12y/t and ¥ (t) = 200v/t, we have

G| < @ (|a]),
Qx| < ¥ (|z)
(c) Define the continuous function g : [0,2] x [=5,5] — [—5, 5] given
by
vzl
t = t .
g (t,x) = cos 0+0

Considering the increasing function u € L' ([0,1],RT) given by u (t) =
1
57 and the increasing and continuous function § : R — R™T given

by 0 () = /z, and we have

Yaid

()| < 55

= u(t).0(|z]).
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1
d) Since [*——dt =1In 3, so we have
0 1+1¢

24 6/~ /1
o e EMOE) ful, . 2400/7g7¥7In3
y—00 y y—00 y

= 2400 x In 3 lim

y—oo Ry

=0<1

So the all conditions of Theorem 3.1 are satisfied and Eq.(14) has at
least one solution in C' ([0,2],[—5,5]).
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