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1. Introduction

In the year 1989, Bakhtin introduced the concept of b-metric spaces as
a generalization of metric spaces [2]. Later several authors proved so
many results on b-metric spaces [5, 6, 7, 8]. Mustafa and Sims defined
the notion of a generalized metric space, which is called a G-metric space
and established a fixed point theory for various mappings in this new
structure [9]. Shoaib et al. [15] obtained some fixed point theorems for
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a contractive dominated self-mapping in an ordered complete dislocated
quasi G-metric space. Aghajani, Abbas, and Roshan presented a new
type of metric which is called Gp-metric and studied some properties of
this metric [1]. Sedghi, Shobe, and Aliouche gave the notion of an S-
metric space and obtained some fixed point theorems for a self-mapping
on a complete S-metric space [14]. Recently, Sedghi et al. [13] defined
Sp-metric spaces, using the concept of S-metric spaces.

On the other hand, Wardowski [16] introduced a new contraction, the
so-called F-contraction, and proved some fixed point results for such
mappings on a complete metric space. After that, Wardowski and Dung
[17] defined the notion of F-weak contractions in metric spaces and gen-
eralized the theorem of Wardowski [16]. Dung and Hang [3] studied the
notion of a generalized F-contraction and extended a fixed point theo-
rem for such mappings. Piri and Kumam [11] further described a large
class of functions by replacing condition (F'3) instead of the condition
(F'3) in the definition of F-contraction.

Motivated by these researches, in this paper we introduce the notion of
dislocated Sp-metric spaces and prove some fixed point theorems for F-
contractions in complete dislocated Sp-metric spaces. We provide some
examples to verify the effectiveness and applicability of our results.

We begin with some definitions and auxiliary facts which will be needed
further on.

Throughout this paper, R, R, , and N denote the set of all real num-
bers, the set of all nonnegative real numbers, and the set of all positive
integers, respectively.

Definition 1.1. [13] Let X be a nonempty set. An S-metric on X is a
function S : X3 — [0,00) that satisfies the following conditions for each
z,y, 2,6 € X :

(S1) 0 < S(z,y,2) for all x,y,z € X withx #y # z # x,
(S2) S(x,y,z) =0 if and only if x =y = z,

(S3) S(x,y,z) < S(z,z,a) + S(y,y,a) + S(z,z,a).

Then the pair (X, S) is called an S-metric space.
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Lemma 1.2. [14] Let (X, S) be an S-metric space. Then for each x,y €
X we have S(z,x,y) = S(y,y, ).

Definition 1.3. [13] Let (X,S) be an S-metric space, let {x,} be a
sequence in X, and let x € X. Then

o (i) the sequence {x,} is said to be a Cauchy sequence if, for each e > 0,
there exists ng € N such that S(xy, Ty, Tm) < € for each m,n = ngy;

o (ii) the sequence {x,} is said to be convergent to a point x € X if,
for each € > 0, a positive integer ng exists such that for all n > ng,
S(x,x,zy) < €.

o (iii) (X, S) is said to be complete if every Cauchy sequence is conver-
gent.

Remark 1.4. e Let (X, d) be a metric space. Put Sq(z,y,z) = d(x,z)+
d(y, z) for all x,y,z € X; then (X, Sy) is an S-metric space. Sg is called
the S-metric generated by d. It can be easily shown that (X, d) is complete
if and only if (X, Syq) is complete [10].

o Let X = R. Consider the function S(x,y,z) = |z — z| + | + z — 2y|
for all x,y,z € R. Then (X,S) is an S-metric space and S # Sy for all
metrics d; see [10].

Definition 1.5. [13] Let X be a nonempty set, and let b > 1 be a
given real number. Suppose that a mapping Sy, : X3 — R, is a function
satisfying the following properties:

(Spl) 0 < Sp(x,y,z2) for all x,y,z € X withx £y # 2z # x,

(Sp2) Sp(z,y,2) =0 if and only if t =y = 2,

(Sp3) Sp(z,y,2) < b(Sp(x,z,a) + Sp(y,y,a) + Sp(z, z,a)) for all z,y,z,a € X.

Then the function Sy is called an Sy-metric on X and the pair (X, Sp)
s called an Sp-metric space.

Definition 1.6. Let (X, Sy) be an Sy-metric space, and let b > 1. Then
Sy is called symmetric if

Sb(:r,x,y) - Sb(yaya I’) (1)
forall z,y € X.
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According to Lemma 1.2, the symmetry condition (1) is automatically
satisfied by an S-metric.

Definition 1.7. [13] If (X, Sp) is an Sy-metric space, then a sequence
{zn} in X is said to be:

(1) Cauchy if, for each e > 0, there exists ng € N such that Sp(p, Tn, Tim)
< e for each m,n = nyg.

(2) convergent to a point x € X if, for each € > 0, there exists ng € N

such that Sy(zy,Tn,x) < € or Sp(x,z,x,) < € for all n > ng. In this

case, we denote it by lim x, = x.
n—oo

Definition 1.8. [13] An Sy-metric space (X,Sp) is called complete if
every Cauchy sequence is convergent in X.

Example 1.9. [4] Let X = [0, 1]. Define S, : X3 — R, by Sy(z,y,2) =
(|ly + 2z —2x| + |y — 2|)?; then (X, S) is a complete Sy-metric space with
b=4.

We conclude this section, recalling the following fixed point theorems of

Wardowski and Dung [16, 17]. Before this, we quote some definitions.

Definition 1.10. [16] Let F be the family of all functions F : Ry — R

such that:

(F1) F is strictly increasing, that is, for all o, € Ry if a < 3, then

Fla) < F(B);

(F2) for each sequence {cu,} of positive numbers, lirf an = 0 if and
n—-+00

only if nli)rfooF(an) = —00;

(F'3) there exists k € (0,1) such that 1im+akF(oz) =0.
a—0
Recently, Piri and Kumam [11] described a large class of functions by

replacing the condition (F'3) by the following one:
(F3') F is continuous on (0, +00).

They denote by § the family of all functions F': Ry — R which satisfy
conditions (F1), (F2), and (F3').
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Example 1.11. [11] Let Fi(a) = -1, Fy(a) = -1 + o, F3(a) = 15,
Fy(a) = ﬁ, and F5(a) = Ina. Then Fy, Fy, F3, Fy, F5 € §.

Definition 1.12. [16] Let (X, d) be a metric space. A mapping T : X —
X is said to be an F-contraction on (X,d) if there exist F' € F and
7 > 0 such that, for all x,y € X,

d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(d(z,y)).

Theorem 1.13. [16] Let (X,d) be a complete metric space, and let
T : X — X be an F-contraction. Then T has a unique fized point
x* € X and for every x € X, the sequence {T"x} converges to x*.

There is an analogue to the theorem above for F' € § (see [11]).

Definition 1.14. [17] Let (X, d) be a metric space. A mapping T : X —
X s said to be an F-weak contraction on (X,d) if there exist F' € F
and T > 0 such that, for all x,y € X,

d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(M(z,y)),

where

d(z,Ty) + d(y, Tz) }

M(x,y) = max {d(ac, y),d(xz, Tx),d(y, Ty), 5

Theorem 1.15. [17] Let (X,d) be a complete metric space, and let
T : X — X be an F-weak contraction. If T or F 1is continuous, then
T has a unique fived point x* € X and for every x € X the sequence
{T"z} converges to z*.

2. Main Results

In this section, we introduce the concept of dislocated Sp-metric space
and then we demonstrate some fixed point results for F-contractions
in the setup such spaces. Our results are remarkable for two reasons:
first, the dislocated Sp-metric is more general; second, the contractivity
condition involves auxiliary functions form a wider class.
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Definition 2.1. Let X be a nonempty set, and let b > 1 be a given real
number. A function S : X3 — R, is a dislocated Sy-metric if, for all
x,Yy,z,a € X, the following conditions are satisfied:

(dSpl) Sp(x,y,z) =0 implies x =y = z,

(dSb2) Sb(xv Y, Z) < b(Sb(x7 xz, a) + Sb(yv Y, a) + Sb(Z, 2, G)) .

A dislocated Sy-metric space is a pair (X, Sp) such that X is a nonempty
set and Sy is a dislocated Sy-metric on X. In the case when b =1, Sy is

denoted by S and it is called the dislocated S-metric, and the pair (X, S)
is called the dislocated S-metric space.

Definition 2.2. Let (X, Sy) be a dislocated Sy-metric space, let {z,} be
any sequence in X, and let x € X. Then:

(1) the sequence {xy} is said to be a Cauchy sequence in (X,Sp) if,
for each € > 0, there exists ng € N such that Sp(Tp, Tn, Ty) < €
for each m,n > ny.

(73) the sequence {zy} is said to be convergent to x if, for eache >0, a
positive integer ng exists such that Sy(z,x,x,) < € for all n = ny

and we denote it by lim x, = x.
n—oo

(1i1) (X, Sp) is said to be complete if every Cauchy sequence is conver-
gent.

The following examples show that a dislocated Sp-metric is not neces-
sarily a dislocated S-metric.

Example 2.3. Let X = {0,1,2}. Define S, : X3 — R, by

(L, w—yrtzoratyteta,
%a x:z#y,
Sb($7y7z): %a yzz#xv
%7 QU:?J:Z:(L
0

r=y=z=1or2

for all z,y, z € X. It is easy to show that (X, Sp) is a complete dislocated
Sp-metric space when b = 2. It is not a dislocated S-metric space. For
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this, we show that (dSy2) does not hold when b = 1. To prove this, let
z=1andy =2 =2 Then § = 5(1,2,2) £ S(1,1,2) +25(2,2,2) =
i. Note that Sy is symmetric, in the sense of Definition 1.6.

Example 2.4. Let X = [0,1]; then the mapping S : X3 — R, defined
by Sy(z,y,2) = x4+ § + 2z is a complete dislocated Sy-metric on X
with b = % Obviously, Sy, is not symmetric. Also, it is not a dislocated
S-metric space. Indeed, we have

3

2= 5(0,0,1) % 25(0,0,0) + S(1,1,0) = =

Example 2.5. Let X = R, ; then the mapping S : X? — R, defined

by S(z,y,z) = x+2y+z, is a complete dislocated S-metric on X, which
is not symmetric, since 1 = 5(0,0,1) # S(1,1,0) = 3.

Definition 2.6. Let (X, Sy) be a dislocated Sy-metric space. A mapping
T: X — X is said to be an F-contraction on (X, Sy) if there exist F' € §
and T > 0 such that for all z,y € X,

Sy(Tx, Tz, Ty) >0= 7+ F(b2Sb(Tx,Tx,Ty)) < F(S(z,2,y)). (2)
Our first main result is the following.

Theorem 2.7. Let (X, Sy) be a complete dislocated Sy-metric space, and
let T: X — X be an F-contraction. Then T has a unique fized point in X.

Proof. Let zp € X be arbitrary and fixed. Let {x,} be the Picard
sequence of T based on xg, that is, z,+1 = Tx, for n = 0,1,2,.... If
no € N exists such that Sy(2n,, Tng, Tne+1) = 0, then x,, is a fixed point
of T and the existence part is proved. On the contrary case, assume
that Sp(zp, Tn, Tny1) > 0 for all n € NU{0}. Applying the contractivity
condition (2), we get

T+ F(bQSb(Twn, Tx,, Tan)) < F(Sb(acn, T, T.Z'n)) (3)
We will show that

Sb(xn—i—laxn—i—l’Txn—i—l) < Sb(l'nyxnmin)’ (4)
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for all n € N. Suppose, on the contrary, that Sy(Tng+1, Tng+1, T Tng+1) =
St(Tngs Tng, T'Tn,) for some ng € N. From (3), we have

F(bQSb(xno-‘rlaxno-‘rlaTxno-‘rl)) g F(Sb(xnoaxnoaTxno)) - T,

which together condition (F'1) implies that

Sb(mno-f—la Tng+1, T$n0+1) < Sb(xno y Lng s Txno)

It gives us a contradiction. Therefore, (4) holds. So, {Sy(zy,Zn, Txn)}
is a decreasing positive sequence in Ry and it converges to some A >
0. We claim that A = 0. To prove the claim, let it be untrue, and let
A > 0. Then, for any £ > 0, it is possible to find a positive integer m
such that

Sp(Tmy Ty T) < A+ €.
By (F1), we get
F(Sy(zm, Tm, Tom)) < F(A+e¢). (5)

Since Sy(zy, Tn, Tnt1) > 0 for all n, then by repeatedly using (2) and
taking (5) into account, we obtain

F(0*Sp(T" @y, T" T, T )

< F(S’b(T”_lmm, Tz, T”xm)) -7

< FO*Sy (T 12y, T o, Tam)) — 7
< F(Sy(T" 22, T" 220, T" '2)) — 27
< F(Sb(:xm,mm,Txm)) —nT

< F(A+¢)—nr.
Letting n — oo in the above inequality, we get

lim F(bQSb(T"xm,TnxmaTonm)) = —0Q.

n—-4o0o
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Hence, from (F2), we derive liI_P Sy(T™ %y, T, T" ' 22,) = 0. Then
n—-roo

St(Tmtns Tmans TTmin) < A for n large enough. It is a contradiction
with the definition of A; therefore,

lim Sy(zy,zpn, Txy) = 0. (6)

n—-—+o00

Now, we prove that {z,} is a Cauchy sequence in (X,S). Suppose
the contrary. Then € > 0 exists for which we can find monotonically
increasing sequences {p(n)} and {g(n)} of natural numbers such that

p(n) > q(n) >n,
Sp(Tg(n)s Tg(n)> Tp(n)) > €

Sb(wq(n)v Lg(n)> xp(n)—l) <e. (7)

Regarding (2) and (7), we can write
F(bQSb( Lg(n)s Lg(n)s L p(n))) (Sb( q(n)—laxq(n)—lvxp(n)—l)) -T
< F(Sb(xq(n)—b Lg(n)—1s xp(n)—l))v (8)
which together (F'1) implies
Sp(Tgn)s Ta(n) Tpn)) < So(Tq(n)—15 Tg(n)—1, Tp(n)—1)-

Using this together with (dS;2), we get

e < Sh(g(n), To(n)s Tp(n))
< Sp(@g(n)-1, Tq(n) 15 Tp(n)-1)
< 2656 (q(n)—15 Ta(n)—1> Lq(n)) + b6 (Zp(n)—15 Tp(n)—1, Tq(n))
< 2055 (2q(n)-1) Tg(n)—15 q(n)>+252512(%(71)—17ffp(n)—bffp(n)—l)
+02S(4(n) Ta(nys Tp(n)—1)
< 2055 (2q(n)-1, Tq(n)—15 q(n)>+GbSSb(xp(n>—bfp(n)—wfp(n))

H0 S (4(m)> Tan)s Tpim) 1)
By virtue of this fact and in view of (6) and (7), we have

& < Limsup Sp(Cq(n), Tg(n): Lp(n)) < HNSUP Sy (2 (n)—1, Zg(n)—1, Tp(ny—1) < b7e. (9)

n—-+4oo n—-+oo



78 H. MEHRAVARAN, M. KHANEHGIR AND R. ALLAHYARI

Using (8), (9), (F'1), and (F'3), we find that

F(b%e) < F (0" limsup Sy(2g(m), To(n)s Tp(n)))

n—-+00

< F(lim sup Sb(ajq(n),l, Tg(n)—1> l’p(n)—l)) -7

n—-4oo

< F(b%e) -1,

which leads to a contradiction with the assumption 7 > 0. Therefore
{z,} is a Cauchy sequence in the complete dislocated Spy-metric space
X. Then, v € X exists such that x,, — v as n — oo, that is, for any
e > 0, there exists ny € N such that Sy(v,v,z,) < e for all n > nj.
We are going to show that v is a fixed point of T'. First note that if
Sp(Tv, Tv, Tx,) = 0, for some n > nq, then, from (dSp2), we obtain

Sp(Tv, Tv,v) < 2bSp(Tv, Tv, Txy,) + bSp(v,v, Txy) < be.

On the other hand, if for each n > ny, Sy(Tv, Tv, Tx,) > 0, then, using
(2), we have

F(bZSb(Tv,Tv,Txn)) < F(Sb(v,%mn)) —T.

It enforces that Sy(Tv, Tv, T'zy) < Sp(v,v,z,) < € for each n > n;. From
(dSp2) it follows that

Sp(Tv, Tv,v) < 2bSy(Tv,Tv,Txy) + bSp(v,v, Txy)
< 3be

for each n > nj. Since € > 0 is arbitrary, in each cases, we deduce
Sp(Tv, Tv,v) = 0, that is Tv = v. Hence, v is a fixed point of T. Next,
we study the uniqueness of the fixed point of 7. Assume that T has
two different fixed points v; and ve. Then Sp(v1,v1,v2) > 0, and from
condition (2) we get

0<7< F(Sb(vl,vl,vg)) — F(bQSb(Tvl,Tvl,Tvg))

< F(bzsb(’(}]_,vl,UQ)) - F(bzsb(’l)]_,vl,UQ)) = 07

which is a contraction. Then Sy(v1,v1,v2) = 0, and so v; = v9 which is
a contradiction. Therefore, the fixed point is unique. [
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Remark 2.8. Let (X, d) be a complete metric space. If we take S(x,y, z) =
w, then (X, S) is a complete S-metric space and S(x,x,y) =
d(z,y). So Theorem 1.13 (see [16]) is a special case of Theorem 2.7.

Now, we present an example illustrating the applicability of our main
result.

Example 2.9. Let (X,Sp) be the same as Example 2.4. Define the
mapping T : X — X by

1 —
10 Ifl,

T(z) = {410, z €[0,1),

and take F'(«) = Ina; we obtain the result that 7" is an F-contraction
with 0 < 7 < In3. To see this, let us consider the following calcula-
tions. First observe that

Sp(x, z,y)
2 < Ak e . 7 S
T+ F(b Sp(Tx, Tx,Ty)) < F(Sb(l’,x,y)) < In 028, (T, Tz, Ty) ~ T

We distinguish the following cases:
(i) Forx =1 and 0 < y < 1, we have Sp(Tx,Tx,Ty) > 0 and
> +2

In T
o, =T
s0Y 1T 50

(17) For 0 < x < 1, y = 1, we have Sy(Tx,Tz,Ty) > 0 and
%x+2

= >
27 s =
3202t 10

In

(7i1) For x = y = 1, we have S(T1,T1,T1) = 2% and

ln%)ZT.

(iv) For 0 < z < y < 1, we have Sp(Tz, Tx,Ty) > 0 and
%x+2y

27

11179 >T.
320 1 50Y

(v) For 0 < y < x < 1, we have Sy(Tx,Tz,Ty) > 0 and

%m—l—?y

In -——+—
27 9, =T
160L T 20Y
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(vi) For 0 < x =y < 1, we have Sp(T'z, Tz, Ty) > 0 and
160 .

In— >

9
From the above cases it may readily be seen that if 0 < 7 < In 3, then
% > 7. Hence T is an F-contraction. So, all the required
hypotheses of Theorem 2.7. are satisfied and T has the unique fixed

point 0.

In

For Fi(a) = 1=, Fa(0) =lna+a, F3(a) = =L + a, and Fy(a) = :/—é,
we also include the range of changes of 7 in Table 1.
Table 1: The range of changes of 7

F1 | (0,0.8037]

F> | (0,1.9016]

F5 | (0,0.421296]

Fy | (0,0.5923]
On the other hand, F(«a) = ﬁ does not satisfy condition (2). To
see this, take z =1, y € [0,1). Then

F(Sb(l,l,y)) - F(b Sb(Tovﬁv E)) = e%+2y —67%727! - % 79y81(»)27 . (10)

& — €

Minimum value of (10) is —7.29579x 101°, and it occurs at y = 5.74918 x
10~ It enforces that 7 < 0, which is a contradiction.

Definition 2.10. Let (X, Sy) be a dislocated Sy-metric space. A mapping
T: X — X is said to be an F-weak contraction on (X, Sy) if there exist
F €% and 7 > 0 such that for all z,y € X,

Sp(Tz, Tz, Ty) > 0= 7+ F(b*Sy(Tx, Tz, Ty)) < F(M(z,y)), (11)

where

S(y,y, Tx) Sb(y7y,Ty)}‘

M (z,y) = max {Sy(z, z,y), Sp(Tx, Tz, Ty), o T0b
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Our second fixed point result is a version of Theorem 1.15, for F-weak
contractions in dislocated Sp-metric spaces.

Theorem 2.11. Let (X,S,) be a complete dislocated Sy-metric space,

and let T : X — X be an F-weak contraction satisfying the following

condition:

Sy, y, Ty) Se(y,y, Ty) n Sp(T'z, Tz, Ty)
100 ’ 5b 100

Then T has a unique fixed point in X.

max {

} < Sb<T$,TIIZ‘,Ty)

Proof. Let zp € X be arbitrary and fixed. Define a sequence {z,} in
X such that 1 = Txg and x4+ = Tz, for all n € N. We may suppose
that x,41 # x, for all n, otherwise T has obviously a fixed point. Then
Sp(Tn, Ty, Tnt1) > 0 for any n € NU {0} and hence (11) implies that
F(0*Sy(Trn—1,Trn-1,T7y)) < F(M(zp_1,20)) — 7. (12)
Now, using (dSp2), we obtain
max{Sb(:vnﬂ,:cnﬂ,xn),Sb(Tan,Txnthxn)}
< M(xnfl,xn)
= max{Sb(xnfl,xnfl,xn),Sb(Txnfl,T:rnfl,Txn),
Sb(xn7$n7Txnfl) Sb(xnaxanxn)}
1052 ’ 10b
max { So(Tn—1,Tn-1,2n), So(TTn—1, TTn_1,TTn),
So(Tn, Tny Txn) Sp(Tn, Tn, TTn)

100 ’ 100 }
= maX{Sb(xn_l,ivn_l,fl?n),Sb($n,$n,$n+1)},

then (12) becomes
F(bQSb(Txn—l,Txn—thn)) < F(maX{Sb(ﬂfn—lamn—lzxn): Sb(xn733n733n+1)}) -7

/A

3

If we assume that
max {Sb(xn—la Tn—1, xn): Sb(xnv Tn, mn—l—l)} = Sb($n, U xn-{—l)
for some n, then from (12) we have

F(*Sy(Tan-1,Ton-1,T2,)) < F(Sy(Tp-1,TTn-1,T2,)) — T
< F(Sb(Tl‘n_l,Txn_l,Txn)).
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Using condition (F'1), we conclude that Sp(zp, Tn, Tnt1) < Sp(Tn, Tn, Tnt1),
which is a contradiction. Therefore

max {Sb(xn—ly Tn—1, .Z'n), Sb(xn; Tn,y xn—l—l)} = Sb(a:n—h Tn—1, xn)
for each n. Applying again (12) and (F'1), we deduce that
Sb(l‘n, Tn, xn—i—l) < Sb(l'n—la Tn—1, xn)

That is, {Sb(:cn, T, xn+1)} is a strictly decreasing positive sequence in
R, and it converges to some A > 0. We declare that A = 0. Suppose, it
is not true, then A > 0. For each € > 0, let us choose m € N such that

Sp(Tmy Ty TTy) < A+ €.
From (F'1), we have
F(Sp(zm, T, Tom)) < F(A+¢). (13)

Since T is an F-weak contraction and taking into account Sy(TZp,, Ty, T2xm) >
0, we get

T+ PV Sp(TTm, T, T?2)) < F (M (2, Tm)). (14)
Since M (2, Txy,) = max {Sb(wm, Ty Ty Sp(T T, T, T2wm)}, then
from (11) and (F'1), we get
max {Sb(Txm, Txm, T21‘m), St(Tmy T Txm)} = Sp(Tm, T, TT)-
Hence (14) becomes
F(0*Sp(Txm, T, T?%m)) < F(Sp(Tm, T, Tm)) — 7.

This yields
F(bZSb(T2xm,T2xm,T3xm)) F(Sb(Tﬂcm,Txm,Tme)) -7

F(b*Sy(T2m, Tm, T?zm)) — T

F(Sb(ycm, Tm, Txm)) — 27,

VASV/AN/AN

Continuing the above process and using (13), we observe that
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F(6*So(T" @, T" @, T" ' )

F(Sy(T" @, T" ', T ) — 7
F(U*Sy(T"  n, T" ', T m)) — 7
F(Sb(Tn_me, Tn—me717 T"_lilfmfl)) — 27

NN N

F(Sb(mm,xm,Tmm)) —nT
F(A+¢)—nt

N N

Passing to the limit n — +o00 in the above relation, we obtain

lim  F (62 Sy(T"wm, T" @, T" ) = —o0.

n—-+o0o

It follows from (F'2) that

lim  Sy(T" %, T, T ) = 0.

n—-+o0o

So, Sp(T" Ty, T, T 20) = Sp(Tmtns Tman, TTman) < A for n suf-
ficiently large, which is a contradiction with the definition of A. There-
fore

lim Sy(zp, zp, Tnt1) = 0. (15)

n—-+o0o

Next, we intend to show that the sequence {z,} is a Cauchy sequence
in (X,Sp). Arguing by contradiction, we assume that ¢ > 0, and the
sequences {p(n)} and {g(n)} of natural numbers exist such that, for all
n €N,

p(n) > q(n) > n,
Sb(Tg(n)s Tq(n)s Tp(n)) 2 &

Sb(xq(n)vxq(n)axp(n)fl)) <e. (16)
In the light of (16) and condition (11), we find that

F (O Sp(Tq(m)-1 Tq(n) -1, T2p(my—1) < F(M(@q(m) -1, Tp(ny-1)) = T- (17)
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Applying (dSp2) and our hypothesis, we get

max {S(Zg(n) 15 Ta(n)—1, Tp(n)—1)s So(TTq(m)—1, TTg(m)—1, TTp(n)—1) }
< M(Q?q(»@,l, wp(n)fl)
= maX{Sb(fﬁqm)—hxqm)—hwp(n)—l)’

Sb(@p(n) =1, Tp(n)—1, TTq(n) 1)
1002 ’

Sb(Tl’q(n)717 T:rq(n)fl, Txp(n)71)7

Sb(@p(n)—15 Tpn)—1, TTp(n)—1) }
106

< max{Sb(xqm)fl,xq<n)71,mp(n>71) So(Txq(ny—1, Txq(m)—1, TTp(n)-1),
Sb(Zpn)—1, Tpn)—1, TTpny—1) Sb(Tﬂﬁq(m LT Tqny—1, TZp(n)— 1)
5b 106
Se(Tp(n) =15 Tp(n) =1, TTp(n)—1) }
106
< maX{Sb(ivq(m—h%(n)—h%(n)—l%Sb(qum)—hT%(n)—hT%(n)—l)}

As a consequence of (17) and (F'1), we have

max {Sb(wqm)—h%(n)—h Tp(n)—1)s Sb(Tq(n), Tq(n) x,,(n))} = Sb(Tg(n)—1) Tq(n)—1, Tp(n)—1)-

Accordingly, (17) becomes

F (6°St(Zq(n)s Tg(n) o)) < F(Sp(@gm) -1, Tg(m)—1: Tpmy—1)) = T
and so using (F'1), we get
Sb(xq(n)’ Lg(n)s xp(n))) < Sb(xq(n)—la Lg(n)—1> xp(n)—l)' (18)

By (16), (18), and using (dSy2), we obtain

e < Sp(%q(n)s Ta(n) Tp(n))
< Sp(@g(n)—1> Tg(n)—15 Tp(n)—1)
< 2650(Tg(n)—15 Tg(n)—1 Tq(n)) + DS6(Zp(n) 1, Tp(n) 15 Lq(n))
< 208y(g(n)—1, Tg(n)-1, ¥ q<n>)+2b256(%(n>71’%(n)71a%(n)fl)
b2 (L (n)s Tg(n) s Tp(m) 1)
< 2655 (Tg(n)—1> Ta(n)—1, % q(n))+6b3sb(mp(n),1,xp(n),1,xp(n))

02 S (T g(n) s Tg(n) s Tp(n)—1)-
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Regarding to (15) and (16), we have

e < limiup Sb(xq(n)v Lq(n)> xp(”))

< limsup Sb(xq(n)—la Lg(n)—15 xp(n)—l) < be. (19)

n—-+o0o

In view of (18) and (19) together with (F'1), (F'3’), we have

F(b%e) < F(0°limsup Sy(2g(n)s To(n)s Tp(n)))

n—-+00
< F( limiup Sp(Tg(n)=15 Tg(n)—1 ﬂcp(n)—l)) -7
< F(b%e) — .

It is a contradiction with 7 > 0, and it follows that {z,} is a Cauchy
sequence in X . By completeness of (X, Sp), {x,,} converges to some point
v € X. Therefore, for each € > 0, there exists n; € N such that

Sb(’l),'l},l'n) <g, (20)

for all n > n;. We claim that v is a fixed point of T'. If Sp(Tv, Tv, Txy) =
0 for some n > ny, then from (dSy2) we deduce that

Sp(Tv, Tv,v) < 28y(Tv, Tv, Txy) + bSp(v,v, Txy) < be.
Also, if Sy(Tv,Tv,Txy,) > 0 for all n > ny, then from (11) we have
F(b*Sy(Tv, Tv, Txy)) < F(M(v,2,)) — 7. (21)
In view of (dSy2) and our assumptions, we obtain

max { Sy (v, v, zn), Sp(Tv, Tv, Tzn)}

< M(v,zn)
Sb(fL’n, Tn, T«:Cn) }

< max{Sb(v,v,:cn),Sb(Tv,Tv,Txn), b

4 So(Tv, Tv, Tzn) So(Tn,Tn,TTs) }
106 ’ 106

max {Sb(v, U, Tn )y So (T, T, Tzn)}

N

Then (21) turns into

F(szb(Tv, TU,TJZn)) < F(max {Sb(v,v,xn), Sb(Tv,Tv,Tmn)}) —T.
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If max {Sb(v, v, Ty,), Sp(Tv, T, Txn)} = Sp(Tv, Tv, T'xy,), then from (21)

and (F'1) we lead to a contradiction and consequently
max {Sb(’u,v,:cn), Sb(Tv,TU,Txn)} = Sp(v,v, 2y,

and so
F(b25b(TU,T’U,T{L'n)) < F(Sb(v, v,wn)) —T. (22)

Employing (22) and (F'1), we derive that
Sp(Tv, Tv, Txy) < Sp(v,v,xy). (23)
From (dS2), (23), and (20) for each n > n;, we have
Sp(Tv, Tv,v) < 25,(Tv, Tv, Txy) + bSp(v,v, Txy,) < 3be.

Thus, in each cases Sy(Tv, Tv,v) = 0 which implies that Tv = v. Hence,
v is a fixed point of T. Finally, we show that T" has at most one fixed
point. Indeed, if v1,v2 € X are two fixed points of T such that v; # vg,
then from (11) we obtain

F(b*Sy(Tv1, Tvr, Tve)) < F(M(v1,v9)) — 7. (24)

Applying (dSp2) and the assumption of the theorem, it follows that

N

Sb(v1,111,112) M(’Ul,’vz)

max{Sb(vhvhv2)7Sb(Tvl,thTvg),
Sb(’l}z, v2, T’Uz) + Sb(Tvl, TUl, T’UQ)
5b 10b ’

St (v2,v2, Tvz) }
10b

é max{Sb(vl,vl,vg),Sb(Tvl,Tvl,Tvg)}

N

= Sy(v1,v1,v2).

Due to this fact and applying (24), we yield Sy (v1, v1, v2) < Sp(vi,v1,v2),
which is a contradiction. Hence v; = vo. This completes the proof. [

Example 2.12. Let X = R, and define S, : R* — Ry by Sy(z,y, 2) =
‘Z—'—i—%—i—%]z\. Then (X, Sp) is a complete dislocated Sp-metric space with
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b=3. Let T: X — X be defined by T'(z) = 5. Also, take F'(a) = Ina

for a > 0. Note that M(x,y) = M and if = or y is nonzero, then
Sy(Tz, Tz, Ty) > 0. In this case, we have

16
T+ F(b2Sb(T:C,T:c,Ty)) < F(M(x, y)) & ln(a) >T.
Also, we observe that
Se(y,y:Ty) So(y,y, Ty) | Sp(Tx, Tz, Ty)\ _ 9]yl 41]y| + |=|
max{ 106 '~ &b 106 } - { 960 ' 960 }
30|z| + 90]y|
960

= So(Tz,Tz,Ty)

for all z,y € X. Now, if we assume that 0 < 7 < ln(%), then all
conditions of Theorem 2.11 hold and 0 is a unique fixed point of 7.
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