Journal of Mathematical Extension

Vol. 13, No. 3, (2019), 1-17

ISSN: 1735-8299

URL: http://www.ijmex.com

# Some Common Fixed Point of Two Families of Weakly Compatible Self-Maps on Quasi-Metric Spaces

#### M. Avar

Shiraz Branch, Islamic Azad University

### K. Jahedi\*

Shiraz Branch, Islamic Azad University

### M. J. Mehdipour

Shiraz University of Technology

**Abstract.** In this paper, we find the conditions guaranteeing the existence of a unique common fixed point of two families of weakly compatible self-maps on quasi-metric spaces.

AMS Subject Classification: 37C25; 54E50

Keywords and Phrases: Common fixed point, weakly compatible,

quasi metric

## 1. Introduction

Through out this paper,  $\rho$  denotes a quasi-metric on a nonempty set X; that is, a real valued function  $\rho$  on  $X \times X$  such that for every  $x, y, z \in X$ ,

- (i)  $\rho(x,y) \ge 0$ ;
- (ii) x = y if and only if  $\rho(x, y) = \rho(y, x) = 0$ ;
- (iii)  $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ .

Received: February 2018; Accepted: September 2018

<sup>\*</sup>Corresponding author

A sequence  $\{x_n\}$  in a quasi-metric space  $(X,\rho)$  is called  $\rho$ -convergence at a point  $x \in X$  if for every  $\varepsilon > 0$  there is an integer  $n_0$  such that  $n \geqslant n_0$  implies that  $\rho(x,x_n) < \varepsilon$ . It is said to be  $\rho$ -Cauchy if for every  $\varepsilon > 0$  there exists  $n_0 \in \mathbb{N}$  such that  $\rho(x_n,x_m) < \varepsilon$  if  $n_0 \leqslant n \leqslant m$ . A quasi-metric space  $(X,\rho)$  is called  $\rho$ -complete if every  $\rho$ -Cauchy sequence in X is  $\rho$ -convergent. A point  $x_0 \in X$  is called a *limit point* of set  $E \subseteq X$  if there exists a sequence  $\{x_n\}$  in E such that

$$\lim_{n \to \infty} \rho(x_0, x_n) = 0.$$

We denote by E' the set of all limit points of E in X, and set

$$\overline{E} = E \cup E'$$
.

A self-mapping A on a quasi-metric space  $(X, \rho)$  is called  $\rho-continuous$  at  $x_0 \in X$  if

$$\lim_{n \to \infty} \rho(A(x_0), A(x_n)) = \lim_{n \to \infty} \rho(A(x_n), A(x_0)) = 0,$$

when for any sequence  $\{x_n\}$  in X

$$\lim_{n \to \infty} \rho(x_0, x_n) = \lim_{n \to \infty} \rho(x_n, x_0) = 0.$$

Also, self-mappings A and S of a quasi-metric space  $(X, \rho)$  is said to be  $\rho$ -compatible if

$$\lim_{n \to \infty} \rho(SAx_n, ASx_n) = \lim_{n \to \infty} \rho(ASx_n, SAx_n) = 0,$$

whenever  $\{x_n\}$  is a sequence in X such that

$$\lim_{n \to \infty} \rho(x_0, Ax_n) = \lim_{n \to \infty} \rho(x_0, Sx_n) = 0$$

for some  $x_0 \in X$ . In particular, the pair (A, S) is said to be weakly compatible if Ax = Sx for some  $x \in X$ , then ASx = SAx.

Schellekens [18] introduced the concept of quasi-metric spaces as a generalization of the concept of metric spaces. Quasi-metric spaces have some applications in the study of computer science; for example see [7,

9, 17] for the applications of this theory to the asymptotic complexity analysis of Divide and Conquer algorithms. Some other authors extended the fixed point theorems in metric spaces to quasi-metric spaces [4, 6, 10, 11, 15, 16]. For instance, Hick [10] proved if there exists  $0 \le \gamma < 1$  such that

$$\rho(Ax, Ay) \leqslant \gamma \max\{\rho(x, y), \rho(x, Ax), \rho(y, Ay), 1/2[\rho(x, Ay) + \rho(y, Ax)]\},\$$

then A has a fixed point. He also proved a fixed point theorem for self-mappings A of a  $\rho$ -complete quasi-metric  $(X, \rho)$  which satisfying the following condition.

$$\rho(y, Ay) \leqslant \phi(y) - \phi(Ay),$$

where  $\phi$  is a positive function on X. Ciric [4] generalized this result by proving the following common fixed point theorem.

**Theorem 1.1.** Suppose  $A, S: X \to X$  and  $\phi: X \to [0, \infty)$ , where X is a complete quasi-metric space. Let there is  $x_0 \in X$  such that

$$\rho(y, Ay) + \rho(Ay, SAy) \leqslant \phi(y) - \phi(SAy)$$

for all  $y \in \{x_0, Ax_0, SAx_0, A(SA)x_0, ..., (SA)^n x_0, A(SA)^n x_0, ...\}$ . If  $G_1(x) = \rho(x, Ax)$  and  $G_2(x) = \rho(x, Sx)$  are (S, A)-orbitally weak lower semi-continuous relative to  $x_0$ , then Ap = p = Sp for some  $p \in X$ .

Jungck [12] and Jungck and Rhoades [13] introduced the notions of compatible and weakly compatible mappings on metric spaces. These notions are a generalization of the notion of commuting self-mappings. Using concepts of compatible and weakly compatible mappings on metric spaces, Singh and Jain [19] proved the following result.

**Theorem 1.2.** Let  $P_i$  and  $Q_j$  be self-mappings of a complete metric space  $(\mathcal{X}, d)$  for i = 1, ..., 4 and j = 0, 1. If

(i) 
$$Q_0(\mathcal{X}) \subseteq P_1P_3(\mathcal{X}), Q_1(\mathcal{X}) \subseteq P_2P_4(\mathcal{X}).$$

(ii) 
$$P_2P_4 = P_4P_2, P_1P_3 = P_3P_1, Q_0P_4 = P_4Q_0, Q_1P_3 = P_3Q_1.$$

(iii) for every  $x, y \in \mathcal{X}$  and for some  $0 < \gamma < 1$ 

$$(Q_0x, Q_1y) \leqslant \gamma \max\{d(Q_0x, P_2P_4x), d(Q_1y, P_1P_3y), d(P_2P_4x, P_1P_3y), 1/2[d(Q_0x, P_1P_3y) + d(Q_1y, P_2P_4x)]\}$$
(1)

- (iv) the pair  $(Q_0, P_2P_4)$  is compatible and the pair  $(Q_1, P_1P_3)$  is weakly compatible.
- (v) either  $P_2P_4$  or  $Q_0$  is continuous.

Then  $P_i$  and  $Q_j$  have a unique common fixed point for i = 1, ..., 4 and j = 0, 1.

Ciric et al.[5] obtained an extension of Theorem 1.2. In fact, they proved the theorem for a countable family of compatible self-mappings of a complete metric space by replacing relation (1) by

$$d(Q_{0}x, Q_{1}y) \leq \max\{\varphi(d(Q_{0}x, \pi_{i=1}^{n} P_{2i}x)), \varphi(d(Q_{1}y, \pi_{i=1}^{n} P_{2i-1}y)), \varphi(d(\pi_{i=1}^{n} P_{2i}x, \pi_{i=1}^{n} P_{2i-1}y)), \varphi(1/2[d(Q_{0}x, \pi_{i=1}^{n} P_{2i-1}y)) + \varphi(d(Q_{1}y, \pi_{i=1}^{n} P_{2i}x)])\},$$

$$(2)$$

where  $\pi_{i=\ell}^m P_i = P_\ell P_{\ell+1}...P_m$  and  $\varphi$  is an element of  $\Phi$ , the set of continuous non-decreasing function  $\varphi: [0,\infty) \to [0,\infty)$  with  $\varphi(0) = 0$  and  $\varphi(t) < t$  for all t > 0.

In this paper, we investigate the question and prove an analogue of Ciric et al. [5] for quasi-metric spaces.

## 2. Main Results

We commence this section with the main result of the paper.

**Theorem 2.1.** Let  $S_1, S_2, \ldots, S_{2n}, A_0$  and  $A_1$  be self-mappings of a  $\rho$ -complete quasi-metric space (X, d) such that

(i) 
$$A_0(X) \subseteq \pi_{i=1}^n S_{2i-1}(X)$$
 and  $A_1(X) \subseteq \pi_{i=1}^n S_{2i}(X)$ ;

(ii) 
$$\pi_{i=1}^{\ell} S_{2i} \pi_{i=\ell+1}^{n} S_{2i} = \pi_{i=\ell+1}^{n} S_{2i} \pi_{i=1}^{\ell} S_{2i}$$
 for  $\ell = 1, ..., n-1$ ;

(iii) 
$$A_0(\pi_{i=\ell}^n S_{2i}) = (\pi_{i=\ell}^n S_{2i}) A_0$$
 for  $\ell = 2, ..., n$ ;

(iv) 
$$\pi_{i=1}^{\ell} S_{2i-1} \pi_{i=\ell+1}^{n} S_{2i-1} = \pi_{i=\ell+1}^{n} S_{2i-1} \pi_{i=1}^{\ell} S_{2i-1}$$
 for  $\ell = 1, ..., n-1$ ;

(v) 
$$A_1(\pi_{i=\ell}^n S_{2i-1}) = (\pi_{i=\ell}^n S_{2i-1}) A_1$$
 for  $\ell = 2, ..., n$ ;

(vi) 
$$\pi_{i=1}^n S_{2i}$$
 or  $A_0$  is  $\rho$ -continuous;

(vii) the pair  $(A_0, \pi_{i=1}^n S_{2i})$  is  $\rho$ -compatible and pair  $(A_1, \pi_{i=1}^n S_{2i-1})$  is weakly compatible;

(viii) there exists  $\varphi \in \Phi$  such that for every  $u, v \in X$ ,  $x \in \overline{\pi_{i=1}^n S_{2i-1}(X)}$  and  $y \in \overline{\pi_{i=1}^n S_{2i}(X)}$ ,

$$\rho(A_0u, y) + \rho(A_1v, x) \leq \max\{\varphi(\rho(x, A_0u)), \varphi(\rho(y, A_1v)), \varphi(\rho(x, y)), \varphi(1/2[\rho(x, \pi_{i-1}^n S_{2i-1}v)) + \rho(y, \pi_{i-1}^n S_{2i}u)]\}.$$
(3)

Then  $S_1, S_2, \ldots, S_{2n}, A_0, A_1$  have a unique common fixed point in X.

**Proof.** Let  $x_0 \in X$ . Choose  $x_1, x_2 \in X$  such that

$$A_0x_0 = \pi_{i=1}^n S_{2i-1}x_1 := y_0$$
 and  $A_1x_1 = \pi_{i=1}^n S_{2i}x_2 := y_1$ .

For any  $k \in \mathbb{N}$ , set

$$A_0 x_{2k} = \pi_{i=1}^n S_{2i-1} x_{2k+1} := y_{2k}$$
 and  $A_1 x_{2k+1} = \pi_{i=1}^n S_{2i} x_{2k+2} := y_{2k+1}$ .

From properties of  $\varphi$  and condition (viii) we see that

$$\begin{split} \rho(y_{2k},y_{2k+1}) &+ \rho(y_{2k+1},y_{2k}) \\ &\leqslant & \max\{\varphi(\rho(A_0x_{2k},A_0x_{2k})),\varphi(\rho(A_1x_{2k+1},A_1x_{2k+1})), \\ & \varphi(\rho(A_0x_{2k},A_1x_{2k+1})),\varphi(1/2[\rho(A_0x_{2k},\pi_{i=1}^nS_{2i-1}x_{2k+1}) \\ &+ \rho(A_1x_{2k+1},\pi_{i=1}^nS_{2i}x_{2k})])\} \\ &= & \max\{\varphi(\rho(y_{2k},y_{2k+1})),\varphi(1/2[\rho(y_{2k},y_{2k})+\rho(y_{2k+1},y_{2k-1})])\} \\ &\leqslant & \max\{\varphi(\rho(y_{2k},y_{2k+1})),\varphi(1/2[\rho(y_{2k+1},y_{2k})+\rho(y_{2k},y_{2k-1})])\} \\ &\leqslant & \varphi(\max\{\rho(y_{2k},y_{2k+1}),\rho(y_{2k+1},y_{2k}),\rho(y_{2k},y_{2k-1})\}) \\ &\leqslant & \varphi(\rho(y_{2k},y_{2k-1})). \end{split}$$

This shows that

$$\rho(y_{2k+1}, y_{2k}) \leqslant \varphi(\rho(y_{2k}, y_{2k-1})) \leqslant \rho(y_{2k}, y_{2k-1}) \tag{4}$$

and

$$\rho(y_{2k}, y_{2k+1}) \leqslant \rho(y_{2k}, y_{2k-1}). \tag{5}$$

A similar argument shows that

$$\rho(y_{2k+2}, y_{2k+1}) \leqslant \varphi(\rho(y_{2k+1}, y_{2k})) \leqslant \rho(y_{2k+1}, y_{2k}) \tag{6}$$

and

$$\rho(y_{2k+1}, y_{2k+2}) \leqslant \rho(y_{2k+1}, y_{2k}). \tag{7}$$

By relation (6)–(7), we have

$$0 \leqslant \rho(y_{n+1}, y_n) \leqslant \varphi(\rho(y_n, y_{n-1})) \leqslant \rho(y_n, y_{n-1}) \tag{8}$$

and

$$0 \leqslant \rho(y_n, y_{n+1}) \leqslant \rho(y_n, y_{n-1}) \tag{9}$$

for all  $n \in \mathbb{N}$ . Hence  $\{\rho(y_{n+1}, y_n)\}$  is a non-increasing sequence. Thus there exists  $\alpha \geqslant 0$  such that  $\lim_{n\to\infty} \rho(y_{n+1}, y_n) = \alpha$ . This together with (8) and continuity of  $\phi$  shows that

$$\alpha = \lim_{n \to \infty} \varphi(\rho(y_{n+1}, y_n)) = \varphi(\alpha).$$

So  $\alpha = 0$ . Thus

$$\lim_{n \to \infty} \rho(y_{n+1}, y_n) = \lim_{n \to \infty} \rho(y_n, y_{n-1}) = 0.$$

From (9) we see that

$$\lim_{n \to \infty} \rho(y_n, y_{n+1}) = 0.$$

Let  $\varepsilon$  and  $\delta$  be positive numbers with  $\delta < (\varepsilon - \varphi(\varepsilon))/3$ . By

$$\lim_{n \to \infty} \rho(y_n, y_{n+1}) = \lim_{n \to \infty} \rho(y_{n+1}, y_n) = 0,$$

choose  $N \in \mathbb{N}$  such that  $\rho(y_n, y_{n+1}) < \delta$  and  $\rho(y_{n+1}, y_n) < \delta$  for all  $n \ge N$ . If  $k, q \in \mathbb{N}$ , then by (viii) we have

$$\begin{split} \rho(y_{2q+1},y_{2k+1}) &\leqslant & \rho(A_1x_{2q+1},A_0x_{2k+2}) + \rho(A_0x_{2k+2},y_{2k+1}) \\ &\leqslant & \max\{\varphi(\rho(A_0x_{2k+2},A_0x_{2k+2})),\varphi(\rho(y_{2k+1},A_1x_{2q+1})), \\ &\varphi(\rho(A_0x_{2k+2},y_{2k+1})),\varphi(1/2[\rho(A_0x_{2k+2},\pi_{i=1}^nS_{2i-1}x_{2q+1}) \\ &+ & \rho(y_{2k+1},\pi_{i=1}^nS_{2i}x_{2k+2})])\} \\ &= & \max\{\varphi(\rho(y_{2k+1},y_{2q+1})),\varphi(\rho(y_{2k+2},y_{2k+1})), \\ &\varphi(1/2[\rho(y_{2k+2},y_{2q}) + \rho(y_{2k+1},y_{2k+1})])\} \\ &\leqslant & \max\{\varphi(\rho(y_{2k+1},y_{2q+1})),\varphi(\rho(y_{2k+2},y_{2k+1})), \\ &\varphi(\rho(y_{2k+2},y_{2k+1}) + \rho(y_{2k+1},y_{2q+1}) + \rho(y_{2q+1},y_{2q})\} \\ &\leqslant & \varphi(\rho(y_{2k+2},y_{2k+1}) + \rho(y_{2k+1},y_{2q+1}) + \rho(y_{2q+1},y_{2q})) \\ &\leqslant & 2\delta + \rho(y_{2k+1},y_{2q+1}). \end{split}$$

From properties of  $\varphi$  and (viii) with  $x = y_{2k}, y = A_1 x_{2q+1}, u = x_{2k}$  and  $v = x_{2q+1}$ , we infer that

$$\rho(y_{2k}, y_{2q+1}) \leqslant \rho(A_0 x_{2k}, A_1 x_{2q+1}) + \rho(A_1 x_{2k+1}, y_{2k}) 
\leqslant \max\{\varphi(\rho(y_{2k}, A_0 x_{2k}), \varphi(\rho(A_1 x_{2q+1}, A_1 x_{2k+1})), 
\varphi(\rho(y_{2k}, A_1 x_{2q+1})), \varphi(1/2[\rho(y_{2k}, \pi_{i=1}^n S_{2i-1} x_{2k+1}) 
+ \rho(A_1 x_{2q+1}, \pi_{i=1}^n S_{2i} x_{2k})])\} 
= \max\{\varphi(\rho(y_{2q+1}, y_{2k+1})), \varphi(\rho(y_{2k}, y_{2q+1})), 
\varphi(1/2[\rho(y_{2k}, y_{2k}) + \rho(y_{2q+1}, y_{2k-1})])\} 
\leqslant \varphi(t_{n,m}),$$

where

$$t_{n,m} = \max\{\rho(y_{2q+1},y_{2k+1}), 1/2(\rho(y_{2q+1},y_{2k-1})\}.$$

In view of (10), we conclude that

$$t_{n,m} \leq \max\{\rho(y_{2q+1}, y_{2k+1}), \\ \max\{\rho(y_{2q+1}, y_{2k+1}), \rho(y_{2k+1}, y_{2k-1})\}\}$$

$$= \max\{\rho(y_{2q+1}, y_{2k+1}), \rho(y_{2k+1}, y_{2k-1})\}$$

$$\leq \max\{2\delta + \rho(y_{2k+1}, y_{2q+1}), 2\delta\}$$

$$= 2\delta + \rho(y_{2k+1}, y_{2q+1}).$$

Now, we prove that if

$$\rho(y_n, y_m) < \varphi(\varepsilon) + (\varepsilon - \varphi(\varepsilon))/3 + 2\delta \tag{11}$$

for any  $m \ge n \ge N$ , then  $t_{n,m} < \varepsilon + 6\delta$ . For this end, we consider the following cases.

Case 1. Let n=2r and m=2s for some  $r,s\in\mathbb{N}$ . Then

$$\rho(y_{2r+1}, y_{2s+1}) \leq \rho(y_{2r+1}, y_{2r}) + \rho(y_{2r}, y_{2s}) + \rho(y_{2s}, y_{2s+1})$$
  
$$\leq \varphi(\varepsilon) + (\varepsilon - \varphi(\varepsilon))/3 + 4\delta.$$

Hence  $t_{n,m} < \varepsilon + 6\delta$ .

Case 2. Let n = 2r and m = 2s + 1 for some  $r, s \in \mathbb{N}$ . Then

$$\rho(y_{2r+1}, y_{2s+1}) \leqslant \rho(y_{2r+1}, y_{2r}) + \rho(y_{2r}, y_{2s+1})$$
$$\leqslant \varphi(\varepsilon) + (\varepsilon - \varphi(\varepsilon))/3 + 3\delta.$$

So  $t_{n,m} < \varepsilon + 6\delta$ .

Case 3. Let n = 2r + 1 and m = 2s for some  $r, s \in \mathbb{N}$ . Then

$$\rho(y_{2r+1}, y_{2s+1}) \leqslant \rho(y_{2r+1}, y_{2s}) + \rho(y_{2s}, y_{2s+1})$$
  
$$\leqslant \varphi(\varepsilon) + (\varepsilon - \varphi(\varepsilon))/3 + 3\delta.$$

Thus  $t_{n,m} < \varepsilon + 6\delta$ .

Case 4. Let n = 2r + 1 and m = 2s + 1 for some  $r, s \in \mathbb{N}$ . According to (2.), we get  $t_{n,m} < \varepsilon + 6\delta$ .

By a similar argument as given in [5], we can show that the sequence  $\{y_n\}$  is  $\rho$ -Cauchy. Hence from the  $\rho$ -completeness of X, it follows that there exists  $z \in X$  such that  $\lim_{n\to\infty} \rho(z,y_n) = 0$ . Hence

$$\lim_{k \to \infty} \rho(z, A_1 x_{2k+1}) = \lim_{k \to \infty} \rho(z, \pi_{i=1}^n S_{2i-1} x_{2k+1})$$

$$= \lim_{k \to \infty} \rho(z, A_0 x_{2k}) = \lim_{k \to \infty} \rho(z, \pi_{i=1}^n S_{2i} x_{2k}) = 0 \quad (12)$$

and so

$$\lim_{k \to \infty} (\rho(A_0 x_{2k}, z) + \rho(A_1 x_{2k+1}, z))$$

$$\leq \lim_{k \to \infty} (\max \{ \varphi(\rho(z, A_0 x_{2k})), \varphi(\rho(z, A_1 x_{2k+1})), \varphi(\rho(z, z)), \varphi(1/2[\rho(z, \pi_{i=1}^n S_{2i-1} x_{2k+1}) + \rho(z, \pi_{i=1}^n S_{2i} x_{2k})]) \})$$

$$= 0.$$

Thus

$$\lim_{k \to \infty} \rho(A_1 x_{2k+1}, z) = \lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i-1} x_{2k+1}, z)$$

$$= \lim_{k \to \infty} \rho(A_0 x_{2k}, z) = \lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} x_{2k}, z) (13)$$

$$= 0.$$

Now, we consider the following cases.

Case I. Let  $\pi_{i=1}^n S_{2i}$  is  $\rho$ -continuous. From (12) and (13) we see that

$$\lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} \pi_{i=1}^n S_{2i} x_{2k}, \pi_{i=1}^n S_{2i} z) = \lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} z, \pi_{i=1}^n S_{2i} \pi_{i=1}^n S_{2i} x_{2k}) = 0$$

and

$$\lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} A_0 x_{2k}, \pi_{i=1}^n S_{2i} z) = \lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} z, \pi_{i=1}^n S_{2i} A_0 x_{2k}) = 0.$$

Since  $(A_0, \pi_{i=1}^n S_{2i})$  is  $\rho$ -compatible, we have

$$\lim_{k \to \infty} \rho(A_0 \pi_{i=1}^n S_{2i} x_{2k}, \pi_{i=1}^n S_{2i} z) = \lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} z, A_0 \pi_{i=1}^n S_{2i} x_{2k}) = 0.$$

**Step 1.** From (viii) with  $u = \pi_{i=1}^n S_{2i} x_{2k}, v = x_{2k+1}, x = A_0 \pi_{i=1}^n S_{2i} x_{2k}$  and  $y = A_1 x_{2k+1}$ , we have

$$\begin{array}{lll} \rho(A_0\pi_{i=1}^nS_{2i}x_{2k},A_1x_{2k+1}) & + & \rho(A_1x_{2k+1},A_0\pi_{i=1}^nS_{2i}x_{2k}) \\ & \leqslant & \max\{\varphi(\rho(A_0\pi_{i=1}^nS_{2i}x_{2k},A_0\pi_{i=1}^nS_{2i}x_{2k})), \\ & \varphi(\rho(A_1x_{2k+1},A_1x_{2k+1})), \\ & \varphi(\rho(A_0\pi_{i=1}^nS_{2i}x_{2k},A_1x_{2k+1})), \\ & \varphi(1/2[\rho(A_0\pi_{i=1}^nS_{2i}x_{2k},\pi_{i=1}^nS_{2i-1}x_{2k+1}) \\ & + & \rho(A_1x_{2k+1},\pi_{i=1}^nS_{2i}\pi_{i=1}^nS_{2i}x_{2k})])\}. \end{array}$$

Letting  $k \to \infty$ , we see that

$$\rho(\pi_{i=1}^{n} S_{2i}z, z) + \rho(z, \pi_{i=1}^{n} S_{2i}z) 
\leqslant \max\{\varphi(\rho(\pi_{i=1}^{n} S_{2i}z, z)), 
\varphi(1/2[\rho(\pi_{i=1}^{n} S_{2i}z, z) + \rho(z, \pi_{i=1}^{n} S_{2i}z)])\} 
\leqslant \varphi(\max\{\rho(z, \pi_{i=1}^{n} S_{2i}z), \rho(\pi_{i=1}^{n} S_{2i}z, z)\}).$$

If

$$\max\{\rho(z, \pi_{i-1}^n S_{2i}z), \rho(\pi_{i-1}^n S_{2i}z, z)\} = \rho(z, \pi_{i-1}^n S_{2i}z), \tag{14}$$

then

$$\rho(z, \pi_{i=1}^n S_{2i}z) \leqslant \rho(\pi_{i=1}^n S_{2i}z, z) + \rho(z, \pi_{i=1}^n S_{2i}z) \leqslant \varphi(\rho(z, \pi_{i=1}^n S_{2i}z)).$$

So  $\rho(z, \pi_{i=1}^n S_{2i}z) = 0$ . By (14), we have

$$0 \leqslant \rho(\pi_{i=1}^n S_{2i}z, z) \leqslant \rho(z, \pi_{i=1}^n S_{2i}z) = 0.$$

It follows that

$$\rho(\pi_{i-1}^n S_{2i}z, z) = \rho(z, \pi_{i-1}^n S_{2i}z) = 0.$$

Thus  $\pi_{i=1}^n S_{2i}z = z$ . Similarly, if

$$\max\{\rho(z, \pi_{i=1}^n S_{2i}z), \rho(\pi_{i=1}^n S_{2i}z, z)\} = \rho(\pi_{i=1}^n S_{2i}z, z),$$

then  $\pi_{i=1}^n S_{2i}z = z$ .

**Step 2.** Put  $u=z, v=x_{2k+1}, x=A_0z$  and  $y=A_1x_{2k+1}$  in condition (viii). Then

$$\rho(A_0z, A_1x_{2k+1}) + \rho(A_1x_{2k+1}, A_0z) 
\leqslant \max\{\varphi(\rho(A_0z, A_0z)), \varphi(\rho(A_1x_{2k+1}, A_1x_{2k+1})), \varphi(\rho(A_0z, A_1x_{2k+1})), \varphi(1/2[\rho(A_0z, \pi_{i=1}^n S_{2i-1}x_{2k+1}) + \rho(A_1x_{2k+1}, \pi_{i=1}^n S_{2i}z)])\}.$$

Letting  $k \to \infty$ , we obtain

$$\rho(A_0 z, z) + \rho(z, A_0 z) 
\leq \max \{ \varphi(\rho(A_0 z, z)), \varphi(1/2[\rho(A_0 z, z) + \rho(z, \pi_{i=1}^n S_{2i} z)]) \}.$$

Since  $\pi_{i=1}^n S_{2i}z = z$  and  $\varphi$  is non-decreasing, it follows that

$$\rho(A_0z, z) + \rho(z, A_0z) \leqslant \varphi(\rho(A_0z, z)). \tag{15}$$

This implies that  $\rho(A_0z, z) = 0$ . From (3) and the fact that  $\varphi(0) = 0$  we see that  $\rho(z, A_0z) = 0$ . Therefore,

$$A_0z = \pi_{i=1}^n S_{2i}z = z.$$

**Step 3.** From (viii) with  $u = \pi_{i=2}^n S_{2i}z$ ,  $v = x_{2k+1}$ ,  $x = A_0 \pi_{i=2}^n S_{2i}z$  and  $y = A_1 x_{2k+1}$ , we see that

$$\rho(A_0 \pi_{i=2}^n S_{2i} z, A_1 x_{2k+1}) + \rho(A_1 x_{2k+1}, A_0 \pi_{i=2}^n S_{2i} z) \\
\leqslant \max \{ \varphi(\rho(A_0 \pi_{i=2}^n S_{2i} z, A_0 \pi_{i=2}^n S_{2i} z)), \\
\varphi(\rho(A_1 x_{2k+1}, A_1 x_{2k+1})), \\
\varphi(\rho(A_0 \pi_{i=2}^n S_{2i} z, A_1 x_{2k+1})), \\
\varphi(1/2[\rho(A_0 \pi_{i=2}^n S_{2i} z, \pi_{i=1}^n S_{2i-1} x_{2k+1}) \\
+ \rho(A_1 x_{2k+1}, \pi_{i=1}^n S_{2i} \pi_{i=2}^n S_{2i} z)] \}.$$

Since  $A_0z = z$ , by letting  $k \to \infty$ , we get

$$\rho(\pi_{i=2}^{n}S_{2i}z, z) + \rho(z, \pi_{i=2}^{n}S_{2i}z) 
\leq \max\{\varphi(\rho(\pi_{i=2}^{n}S_{2i}z, z)), \varphi(1/2[\rho(\pi_{i=2}^{n}S_{2i}z, z) 
+ \rho(z, \pi_{i=2}^{n}S_{2i}z)])\} 
\leq \varphi(\max\{\rho(\pi_{i=2}^{n}S_{2i}z, z), \rho(z, \pi_{i=2}^{n}S_{2i}z)\}).$$

This shows that  $\pi_{i=2}^n S_{2i}z = z$ . Thus  $S_2(\pi_{i=2}^n S_{2i}z) = S_2z$  and so  $S_2z = \pi_{i=1}^n S_{2i}z = z$ . Continuing this procedure, we obtain  $A_0z = S_{2i}z = z$  for i = 1, ..., n.

**Step 4.** By condition (i), there exists  $v \in X$  such that

$$z = A_0 z = \pi_{i=1}^n S_{2i-1} v.$$

Putting  $u = x_{2k}$ ,  $x = A_0 x_{2k}$  and  $y = A_1 v$  in condition (viii), we have

$$\rho(A_0x_{2k}, A_1v) + \rho(A_1v, A_0x_{2k}) 
\leqslant \max\{\varphi(\rho(A_0x_{2k}, A_0x_{2k})), \varphi(\rho(A_1v, A_1v)), 
\varphi(\rho(A_0x_{2k}, A_1v)), \varphi(1/2[\rho(A_0x_{2k}, \pi_{i=1}^n S_{2i-1}v) 
+ \rho(A_1v, \pi_{i=1}^n S_{2i}x_{2k})])\}.$$

Letting  $k \to \infty$ , we find

$$\rho(z, A_1 v) + \rho(A_1 v, z) 
\leq \max\{\varphi(\rho(z, A_1 v)), \varphi(1/2[\rho(z, \pi_{i=1}^n S_{2i-1} v) + \rho(A_1 v, z)])\} 
= \max\{\varphi(\rho(z, A_1 v)), \varphi(1/2[\rho(z, z) + \rho(A_1 v, z)])\} 
\leq \varphi(\max\{\rho(z, A_1 v), \rho(A_1 v, z)\}).$$

Hence  $A_1v=z$  and therefore

$$\pi_{i=1}^n S_{2i-1}v = A_1v = z.$$

As  $(A_1, \pi_{i=1}^n S_{2i-1})$  is weakly compatible, we have

$$\pi_{i=1}^n S_{2i-1} A_1 v = A_1 \pi_{i=1}^n S_{2i-1} v.$$

Thus  $\pi_{i=1}^n S_{2i-1}z = A_1z$ .

**Step 5.** Putting  $u = x_{2k}$ , v = z,  $x = A_0 x_{2k}$  and  $y = A_1 z$  in condition (viii), we have

$$\rho(A_0x_{2k}, A_1z) + \rho(A_1z, A_0x_{2k}) 
\leqslant \max\{\varphi(\rho(A_0x_{2k}, A_0x_{2k})), \varphi(\rho(A_1z, A_1z)), 
\varphi(\rho(A_0x_{2k}, A_1z)), \varphi(1/2[\rho(A_0x_{2k}, \pi_{i=1}^n S_{2i-1}z) 
+ \rho(A_1z, \pi_{i=1}^n S_{2i}x_{2k})]\}.$$

Letting  $k \to \infty$ , we get

$$\rho(z, A_1 z) + \rho(A_1 z, z) 
\leq \max\{\varphi(\rho(z, A_1 z)), \varphi(1/2[\rho(z, A_1 z) + \rho(A_1 z, z)])\} 
\leq \varphi(\max\{\rho(z, A_1 z), \rho(A_1 z, z)\}).$$

So  $\pi_{i=1}^n S_{2i-1}z = A_1z = z$ .

**Step 6.** Putting  $u = x_{2k}, v = \pi_{i=2}^n S_{2i-1}z, x = A_0 x_{2k}$  and  $y = A_1 \pi_{i=2}^n S_{2i-1}z$  in condition (viii), we have

$$\begin{array}{lll} \rho(A_{0}x_{2k},A_{1}\pi_{i=2}^{n}S_{2i-1}z) & + & \rho(A_{1}\pi_{i=2}^{n}S_{2i-1}z,A_{0}x_{2k}) \\ & \leqslant & \max\{\varphi(\rho(A_{0}x_{2k},A_{0}x_{2k})),\varphi(\rho(A_{1}\pi_{i=2}^{n}S_{2i-1}z,A_{0}x_{2k})),\varphi(\rho(A_{0}x_{2k},A_{1}\pi_{i=2}^{n}S_{2i-1}z,A_{0}x_{2k})), \\ & & \qquad \qquad A_{1}\pi_{i=2}^{n}S_{2i-1}z)),\varphi(\rho(A_{0}x_{2k},A_{1}\pi_{i=2}^{n}S_{2i-1}z)), \\ & \qquad \qquad \qquad \varphi(1/2[\rho(A_{0}x_{2k},\pi_{i=1}^{n}S_{2i-1}\pi_{i=2}^{n}S_{2i-1}z) \\ & \qquad \qquad + & \qquad \qquad \rho(A_{1}\pi_{i=2}^{n}S_{2i-1}z,\pi_{i=1}^{n}S_{2i}x_{2k})])\}. \end{array}$$

Letting  $k \to \infty$  shows that

$$\rho(z, \pi_{i=2}^{n} S_{2i-1}z) + \rho(\pi_{i=2}^{n} S_{2i-1}z, z) \leqslant \max\{\varphi(\rho(z, \pi_{i=2}^{n} S_{2i-1}z)), \\ \varphi(1/2[\rho(z, \pi_{i=2}^{n} S_{2i-1}z) + \rho(\pi_{i=2}^{n} S_{2i-1}z, z)])\} \\ \leqslant \varphi(\max\{\rho(z, \pi_{i=2}^{n} S_{2i-1}z), \rho(\pi_{i=2}^{n} S_{2i-1}z, z)\}).$$

So  $\pi_{i=2}^n S_{2i-1}z = z$  and hence  $S_3z = z$ . Continuing this procedure, we have  $A_1z = S_{2i-1}z$  for i = 1, ..., n. Thus  $A_0z = A_1z = S_iz = z$  for i = 1, ..., 2n. That is, z is a common fixed point of  $A_0, A_1, S_1, S_2, ..., S_{2n}$ .

Case II. Let  $A_0$  be  $\rho$ -continuous. By (12) and (13),

$$\lim_{k \to \infty} \rho(A_0^2 x_{2k}, A_0 z) = \lim_{k \to \infty} \rho(A_0 z, A_0^2 x_{2k}) = 0.$$

Since  $(A_0, \pi_{i=1}^n S_{2i})$  is  $\rho$ -compatible, we have

$$\lim_{k \to \infty} \rho(\pi_{i=1}^n S_{2i} A_0 x_{2k}, A_0 z) = \lim_{k \to \infty} \rho(A_0 z, \pi_{i=1}^n S_{2i} A_0 x_{2k}) = 0.$$

**Step 7.** Putting  $u = A_0 x_{2k}$ ,  $v = x_{2k+1}$ ,  $x = A_0^2 x_{2k}$  and  $y = A_1 x_{2k+1}$  in condition (viii), we have

$$\begin{split} \rho(A_0^2x_{2k},A_1x_{2k+1}) &+ \rho(A_1x_{2k+1},A_0^2x_{2k}) \\ &\leqslant &\max\{\varphi(\rho(A_0^2x_{2k},A_0^2x_{2k})),\varphi(\rho(A_1x_{2k+1},A_1x_{2k+1})),\\ &\varphi(\rho(A_0^2x_{2k},A_1x_{2k+1})),\varphi(1/2[\rho(A_0^2x_{2k},\pi_{i=1}^nS_{2i-1}x_{2k+1})\\ &+ \rho(A_1x_{2k+1},\pi_{i=1}^nS_{2i}A_0x_{2k})])\}. \end{split}$$

Letting  $k \to \infty$  gives that

$$\rho(A_0z, z) + \rho(z, A_0z) 
\leq \max\{\varphi(\rho(A_0z, z)), \varphi(1/2[\rho(A_0z, z) + \rho(z, A_0z)])\} 
\leq \varphi(\max\{\rho(A_0z, z), \rho(z, A_0z)\}).$$

Hence  $A_0z = z$  and therefore, for every i = 1, ..., n

$$A_1 z = S_{2i-1} z = z$$

by the same argument that was used in Steps 4–6.

**Step 8.** By condition (i), there exists  $u \in X$  such that

$$z = A_1 z = \pi_{i=1}^n S_{2i} u.$$

Putting  $v = x_{2k+1}$ ,  $x = A_0 u$  and  $y = A_1 x_{2k+1}$  in condition (viii), we have

$$\rho(A_0u, A_1x_{2k+1}) + \rho(A_1x_{2k+1}, A_0u) 
\leqslant \max\{\varphi(\rho(A_0u, A_0u)), \varphi(\rho(A_1x_{2k+1}, A_1x_{2k+1})), 
\varphi(\rho(A_0u, A_1x_{2k+1})), \varphi(1/2[\rho(A_0u, \pi_{i=1}^n S_{2i-1}x_{2k+1}) 
+ \rho(A_1x_{2k+1}, \pi_{i-1}^n S_{2i}u)]\}.$$

Letting  $k \to \infty$  and using Step 7, we see that

$$\rho(A_0 u, z) + \rho(z, A_0 u) 
\leq \max \{ \varphi(\rho(A_0 u, z)), \varphi(1/2[\rho(A_0 u, z) + \rho(z, z)]) \} 
= \varphi(\rho(A_0 u, z)).$$

This implies that

$$A_0 u = z = \pi_{i=1}^n S_{2i} u.$$

As  $(A_0, \pi_{i=2}^n S_{2i})$  is weakly compatible, we have

$$A_0 z = \pi_{i=1}^n S_{2i} z = z.$$

A discussion similar to Step 3 shows that  $S_{2i}z = A_0z = z$  for i = 1, ..., n. Thus  $A_0z = A_1z = S_iz = z$  for i = 1, ..., 2n. That is, z is a common fixed point of  $A_0, A_1, S_1, S_2, ..., S_{2n}$ .

To prove the uniqueness theorem, let w be a common fixed point of  $A_0, A_1, S_1, S_2, ..., S_{2n}$ . Hence

$$A_0 w = A_1 w = S_i w = w$$

for i = 1, ..., 2n. Putting  $u = z, v = w, x = A_0 z$  and  $y = A_1 w$  in condition (viii), we have

$$\rho(A_0z, A_1w) + \rho(A_1w, A_0z) 
\leqslant \max\{\varphi(\rho(A_0z, A_0z)), \varphi(\rho(A_1w, A_1w)), \varphi(\rho(A_0z, A_1w)), \varphi(1/2[\rho(A_0z, \pi_{i=1}^n S_{2i-1}w) + \rho(A_1w, \pi_{i=1}^n S_{2i}z)])\} 
\leqslant \varphi(\max\{\rho(z, w), \rho(w, z)\}).$$

Therefore, z=w. That is, z is a unique common fixed point of the mappings.  $\square$ 

We conclude the paper with the following result.

**Proposition 2.2.** Let  $\{S_{2i}\}_{i=1}^n$  and  $\{T_{\alpha}\}_{{\alpha}\in J}$  be two families of self-mappings of a  $\rho$ -complete quasi-metric space (X,d). If there exists  $\beta \in J$  such that

(i) 
$$T_{\beta}(X) \subseteq \pi_{i=1}^n S_{2i-1}(X)$$
 and  $T_{\alpha}(X) \subseteq \pi_{i=1}^n S_{2i}(X)$  for all  $\alpha \in J$ .

(ii) 
$$\pi_{i=1}^{\ell} S_{2i} \pi_{i=\ell+1}^{n} S_{2i} = \pi_{i=\ell+1}^{n} S_{2i} \pi_{i=1}^{\ell} S_{2i}$$
 for  $\ell = 1, ..., n-1$ ;

(iii) 
$$T_{\beta}(\pi_{i=\ell}^n S_{2i}) = (\pi_{i=\ell}^n S_{2i}) T_{\beta}$$
 for  $\ell = 2, ..., n$ ;

(iv) 
$$\pi_{i=1}^{\ell} S_{2i-1} \pi_{i=\ell+1}^{n} S_{2i-1} = \pi_{i=\ell+1}^{n} S_{2i-1} \pi_{i=1}^{\ell} S_{2i-1}$$
 for  $\ell = 1, ..., n-1$ ;

(v) 
$$T_{\alpha}(\pi_{i=\ell}^{n}S_{2i-1}) = (\pi_{i=\ell}^{n}S_{2i-1})T_{\alpha}$$
 for  $\ell = 2, ..., n$ ;

(vi) 
$$\pi_{i=1}^n S_{2i}$$
 or  $T_\beta$  is  $\rho$ -continuous;

(vii) the pair  $(T_{\beta}, \pi_{i=1}^n S_{2i})$  is  $\rho$ -compatible and pair  $(T_{\alpha}, \pi_{i=1}^n S_{2i-1})$  is weakly compatible;

$$\rho(T_{\beta}u, y) + \rho(T_{\alpha}v, x) \leq \max\{\varphi(\rho(x, T_{\beta}u)), \varphi(\rho(y, T_{\alpha}v)), \varphi(\rho(x, y)), \varphi(1/2[\rho(x, \pi_{i=1}^{n} S_{2i-1}v)) + \rho(y, \pi_{i=1}^{n} S_{2i}u)]\},$$

then  $\{T_{\alpha}\}$  and  $\{S_{2i}\}_{i=1}^n$  have a unique common fixed point in X.

**Proof.** Let  $\alpha_0 \in J$ . In Theorem 2.1, set  $A_0 = T_\beta$  and  $A_1 = T_{\alpha_0}$ . Then  $T_{\alpha_0}, T_\beta, S_1, ..., S_{2n}$  have a unique fixed point, say z. Now, let  $\alpha \in J$ . Then

$$\rho(T_{\beta}z, T_{\alpha}z) + \rho(T_{\alpha}z, T_{\beta}z) 
\leqslant \max\{\varphi(\rho(T_{\beta}z, T_{\beta}z)), \varphi(\rho(T_{\alpha}z, T_{\alpha}z)), \varphi(\rho(T_{\beta}z, T_{\alpha}z)), \varphi(1/2[\rho(T_{\beta}z, \pi_{i=1}^{n}S_{2i-1}z) + \rho(T_{\alpha}z, \pi_{i=1}^{n}S_{2i}z)])\} 
\leqslant \varphi(\max\{\rho(z, T_{\alpha}z), \rho(T_{\alpha}z, z)\}).$$

Since  $T_{\beta}z = z$ , it follows that  $T_{\alpha}z = z$  for all  $\alpha \in J$ .  $\square$ 

### References

- [1] D. W. Boyd and J. S. Wong, On nonlinear contractions, *Proc. Amer. Math. Soc.*, 20 (1969), 458–464.
- [2] L. B. Ciric, Generalized contractions and fixed-point theorems, *Publ. Inst. Math.*, 26 (1971), 19–26.
- [3] L. B. Ciric, On a family of contractive maps and fixed points, *Publ. Inst. Math.*, 31 (1974), 45–51.
- [4] L. B. Ciric, Periodic and fixed point theorems in a quasi-metric space, Austral. Math. Soc., 54 (A) (1993), 80–85.
- [5] L. B. Ciric, A. Razani, and J. S. Ume, Common fixed point theorems for families of weakly compatible maps, *Comput. Math. Appl.*, 55 (2008), 2533–2543.
- [6] S. Cobzas, Completeness in quasi-metric spaces and Ekeland Variational Principle, *Topology Appl.*, 158 (2011), 1073–1084.
- [7] J. W. De Bakker and E. P. De Vink, Denotational models for programming languages: applications of Banach's fixed point theorem, *Topology Appl.*, 85 (1998), 35–52.
- [8] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79.
- [9] L. M. Garcia-Raffi, S. Romaguera, and E. A. Sanchez-Perez, Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms, J. Math. Anal. Appl., 348 (2008), 346-355.
- [10] T. L. Hicks, Fixed point theorems for quasi-metric spaces, *Math. Japonica*, 33 (2) (1988), 231–236.
- [11] J. Jachymski, A contribution to fixed-point theory in quasi-metric spaces, *Publ. Math. Debrecen*, 43 (3-4) (1993), 283–288.
- [12] G. Junck, Common fixed points for commuting and compatible maps on compacta, *Proc. Amer. Math. Soc.*, 103 (1988), 977–983.
- [13] G. Junck and B. E. Rhoades, Fixed points for set valued functions without continuity, *Indian J. Pure Appl. Math.*, 29 (1998), 227–238.
- [14] E. Rakoch, A note on contractive mappings, *Proc. Amer. Math. Soc.*, 13 (1962), 459–645.

- [15] B. E. Rhoades, Some fixed point theorems in quasi-metric spaces, *Demonstr. Math.*, 30 (1997), 301–305.
- [16] S. Romaguera and E. Checa, Continuity of contractive mappings on complete quasi-metric spaces, *Math. Japonica*, 35 (1990), 137–139.
- [17] S. Romaguera and M. Schellekens, Duality and quasi-normability for complexity spaces, *Appl. Gen. Topol.*, 3 (1) (2002), 91–112.
- [18] M. Schellekens, The smyth completion: a common fouration for denonational semantics and complexity analysis, in: Proc. MFPS 11, Electronic Notes in Theoretical Computer Science, 1 (1995), 211–232.
- [19] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, *J. Math. Anal. Appl.*, 301 (2005), 439–448.

#### Moosa Avar

Ph.D student of Mathematics Department of Mathematics Shiraz Branch, Islamic Azad University Shiraz, Iran

E-mail: moosaavar@yahoo.com

#### Khadijeh Jahedi

Associate Professor of Mathematics Department of Mathematics Shiraz Branch, Islamic Azad University Shiraz, Iran

E-mail: mjahedi80@yahoo.com

### Mohammad Javad Mehdipour

Associate Professor of Mathematics Department of Mathematics Shiraz University of Technology Shiraz, Iran

E-mail: mehdipour@sutech.ac.ir