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1. Introduction

Through out this paper, p denotes a quasi-metric on a nonempty set X;
that is, a real valued function p on X x X such that for every x,y,z € X,

(i) p(z,y) = 0;
(ii) = = y if and only if p(z,y) = p(y, z) = 0;
(iii) p(z,y) < p(z,2) + p(z,y).
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A sequence {x,} in a quasi-metric space (X, p) is called p— convergence
at a point x € X if for every € > 0 there is an integer ng such that n > ng
implies that p(z,x,) < e. It is said to be p— Cauchy if for every £ > 0
there exists ng € N such that p(zy,zn) < € if ng < n < m. A quasi-
metric space (X, p) is called p—complete if every p—Cauchy sequence in
X is p—convergent. A point xg € X is called a limit point of set E C X
if there exists a sequence {z,} in E such that

lim p(zo,zyn) = 0.

n—oo

We denote by E’ the set of all limit points of F in X, and set
E=FEUEFE.

A self-mapping A on a quasi-metric space (X, p) is called p—continuous
at xg € X if

lim p(A(ro), A(za)) = lim p(A(a), A(o)) = 0,

n—oo n—oo

when for any sequence {x,} in X

lim p(xo,zn) = lim p(xy,,z0) = 0.
n—oo (o.9]

= s
Also, self-mappings A and S of a quasi-metric space (X, p) is said to be
p—compatible if

lim p(SAz,, ASx,) = lim p(ASz,,SAx,) =0,

n—oo
whenever {z,}is a sequence in X such that
lim p(zg, Az,) = lim p(xg, Szy) =0
n—oo n—oo
for some xp € X. In particular, the pair (A,S) is said to be weakly

compatible if Ax = Sx for some x € X, then ASz = SAx.

Schellekens [18] introduced the concept of quasi-metric spaces as a gen-
eralization of the concept of metric spaces. Quasi-metric spaces have
some applications in the study of computer science; for example see [7,
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9, 17] for the applications of this theory to the asymptotic complexity
analysis of Divide and Conquer algorithms. Some other authors extended
the fixed point theorems in metric spaces to quasi-metric spaces [4, 6,
10, 11, 15, 16]. For instance, Hick [10] proved if there exists 0 < v < 1
such that

p(Az, Ay) < ymax{p(z,y), p(z, Az), p(y, Ay), 1/2[p(x, Ay) + p(y, Az)]},

then A has a fixed point. He also proved a fixed point theorem for self-
mappings A of a p—complete quasi-metric (X, p) which satisfying the
following condition.

p(y, Ay) < o(y) — ¢(Ay),

where ¢ is a positive function on X. Ciric [4] generalized this result by
proving the following common fixed point theorem.

Theorem 1.1. Suppose A, S : X — X and ¢ : X — [0,00), where X is
a complete quasi-metric space. Let there is xy € X such that

p(y, Ay) + p(Ay, SAy) < ¢(y) — #(SAy)

for all y € {xg, Axy, SAxo, A(SA)xg, ..., (SA)" 20, A(SA) 0, ... }.

If Gi(z) = p(x, Az) and Ga(x) = p(z,Sz) are (S, A)—orbitally weak
lower semi-continuous relative to xg, then Ap = p = Sp for somep € X.
Jungck [12] and Jungck and Rhoades [13] introduced the notions of com-
patible and weakly compatible mappings on metric spaces. These no-
tions are a generalization of the notion of commuting self-mappings. Us-

ing concepts of compatible and weakly compatible mappings on metric
spaces, Singh and Jain [19] proved the following result.

Theorem 1.2. Let P; and Qj be self-mappings of a complete metric
space (X,d) fori=1,..,4 and j =0,1. If

(i) Qo(X) C PiP3(X), Q1(X) C PaPy(X).
(ii) PoPy = PyP>, P1Py = P3Py, QoPy = PyQo, Q1P = P3Q1.
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(iii) for every xz,y € X and for some 0 < vy < 1

(Qoz,Qy) < vymax{d(Qoz, P2Pyz),d(Qry, P Psy), d(P2Pyz, P1 Psy),
1/2[d(Qoz, PiP3y) + d(Q1y, PoPyx)]} (1)

(iv) the pair (Qo, PoPy) is compatible and the pair (Q1, P1 Ps3) is weakly
compatible.

(v) either PyPy or Qq is continuous.

Then P; and Q; have a unique common fized point for i =1,...,4 and
j=0,1.

Ciric et al.[5] obtained an extension of Theorem 1.2. In fact, they proved
the theorem for a countable family of compatible self-mappings of a
complete metric space by replacing relation (1) by

d(Qor,Qry) < max{p(d(Qor, 1 P2ir)), p(d(Qy, iy P2i-1Y)),
o(d(miiy Paz, miy Poi1y)), 0(1/2[d(Qox, miq P2i-1Y))
+ Sa(d(Qlya ﬂ?:lpmx)])}u (2)
where % P = PyPpy...Pp, and ¢ is an element of ®, the set of con-

tinuous non-decreasing function ¢ : [0,00) — [0,00) with ¢(0) = 0 and
p(t) <t for all t > 0.

In this paper, we investigate the question and prove an analogue of Ciric
et al. [5] for quasi-metric spaces.

2. Main Results

We commence this section with the main result of the paper.

Theorem 2.1. Let S1,S52,...,S59,, Ao and A1 be self-mappings of a
p—complete quasi-metric space (X,d) such that

(l) Ao(X) Q 7TZTL2152,‘_1(X> and Al(X) Q W?ZISQZ'(X),'
(ii) Flesgm’?:@rls% = 77?:(+152i7rf:132i f07" E = 1, ey — 1,‘
(111) AO(W?:gSQi) = (W?:@SZ’L')AO fOT = 2, ey 1y
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. V4 . n . _.n . l . _ 1.
i=122i—17— -1 = T= —1T=1°2i— =1 ;

(IV) T, 1SQZ 17 é_i_lSQl 1 s K_,'_lSQZ 17 1821 1 fOTE 1 n 1

(V) A1(7T?:£SQZ‘_1) = (W?:gSQi—l)Al fO?” = 2, e ny

(vi) 71 So; or Ay is p—continuous;

(vii) the pair (Ao, m1S2) is p—compatible and pair (Ay, 1 S2i—1) is

weakly compatible;

(viii) there exists ¢ € ® such that for everyu,v € X, x € m"_;S2;1(X)

and y € w'_152(X),

p(Aou,y) + p(Arv,z) < max{p(p(z, Aou)), p(p(y, A1v)), p(p(z,y)),
o(1/2[p(w, 71 S2i-10)) + p(y, Ty S2u)])}. (3)

Then S1,S2, ..., S, Ag, A1 have a unique common fized point in X .

Proof. Let zg € X. Choose x1,r9 € X such that
A()(II() = w?zngi_lxl =Y and Al.CCl = W?legixg =Y.
For any k € N, set
Aorop = 152 1%ok41 = Yor,  and  Aywopy1 = M S2iTop 12 1= Yokl

From properties of ¢ and condition (viii) we see that

p(Y2k; Yort1) +  p(Yok+1, Yok)

< max{p(p(Aozak, Aozar)), p(p(A1T2k+1, A1Tog41)),
(p(Aozak, A12og+1)), ©(1/2[p(Aowok, Ty S2i—122k+1)
p(Ar k41, Ty S2iar)]) }
max{Q(p(Yak, Yar-+1)), 0(1/2[p(Yak: yar) + p(Y2k+1, Y2r—1)]) }
max{p(p(yak Y2k-+1)), P(1/2[p(yar+1, yar) + p(Y2k: y2u—1)]) }
o(max{p(yar, Y2r-+1), P(Y2k+1, Yok )s P(Y2k> Y2k—1)})
o(p(y2k; Yor—1))-

NN IN

This shows that
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p(Yor+1, y2r) < @(p(yar, Y2r—1)) < p(Yors Y2r—1)

and

P(Yar> Yor+1) < p(Y2r, Yor—1)-

A similar argument shows that

P(Yor+2, Yar+1) < ©(P(Yor+1, Y2k)) < P(Y2k415 Y2k)

and
P(Yor+1, Yor+2) < P(Y2k+1, Y2k )-
By relation (6)—(7), we have

0< p(yn-l-lvyn) < @(P(ymyn 1)) P(ymyn 1)

and

0< p(ymynJrl) p(ynvyn 1)

(9)

for all n € N. Hence {p(yn+1,¥n)} is a non-increasing sequence. Thus

there exists o > 0 such that lim,, o0 p(Yn+1,Yn) = a. This together with

(8) and continuity of ¢ shows that
a = lim o(p(Ynt1,yn)) = ¢(@).
n—oo
So a = 0. Thus
i p(ynt1,yn) = WM p(Yn, yn—1) = 0.
n—oo n—oo
From (9) we see that
lim p(yYn, Ynt1) = 0.
n—oo
Let ¢ and § be positive numbers with § < (¢ — ¢(¢))/3. By

im p(yn, Ynt1) = hm p(yn+1,yn) =0,

n—oo
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choose N € N such that p(yn,yn+1) < 6 and p(yn+1,yn) < d for all
n > N. If k,q € N, then by (viii) we have

P(Y2q+1, Yok41) <
<

+

N

NN

p(A172911, AoTogy2) + p(AoTok+2, Yokt1)
max{@(p(Aorart2, Aozart2)), P(p(Yar+1, A1T2441)),
e(p(Aomar+2, yar+1)), (1/2[p(AoTok+2, Ty S2i—1224+41)
P(Yok+1, Tie1S2T2r42)]) }

max{p(p(Y2k+1, Y2g+1))s P(P(Y2k+2, Y2k+1))
P(1/2[p(Y2r+2: Y2q) + p(Y2k-+1, Y2r+1)]) } (10)
max{p(p(Y2k+1, Y2¢+1)), P(P(Y2r+2, Y2k+1)),

P(P(Y2rt2, Y2r+1) + P(Y2r+1, Y2g+1) + p(Y2g+1, Y2)
O(p(yar+2; Yor+1) + p(Y2k+15 Y2g+1) + P(Y20+1, Y24))

20 + p(Y2k+1, Y2q+1)-

From properties of ¢ and (viii) with & = yoi, y = A1T2¢+1, u = z2; and

v = Tgq+1, we infer that

P(y%, y2q+1)

where

<

X
<

+

<

p(Aozak, A1xag+1) + p(A1Z2k41, Yok )
max{p(p(yar, Aorak), p(p(A122¢+1, A172141)),
(p(Yak, A1224+1)), ©(1/2]p(Yok, Ty S2i—1T2k+1)
p(A12q41, T S2izak)]) }

max{p(p(Y2q+1, Y2k+1)), P(P(Y2k, Y24+1))
©(1/2[p(Y2k, Yor) + p(Y2q+1, Y2x—1)]) }

‘P(tn,m)a

tnm = max{p(Yag+1, Y2r+1), 1/2(p(Y2q+1, Y2k—1) }-

In view of (10), we conclude that

tn,m

< max{p(Yag+1, Yor+1

)

)
max{p(Y2q+1, Y2k+1), P(Y2k+1, Y2k—1) } }

= max{p(y2q+1, Y2k+1)s P(Y2k+1, Y2k—1)}
< max{2d + p(y2k+1, Y2q+1), 20}
= 20+ p(Y2k+1, Y2q+1)-
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Now, we prove that if

P(Yn, ym) < () + (e — ¢(€))/3 + 20 (11)

for any m > n > N, then ¢, ,, < ¢+ 64. For this end, we consider the
following cases.

Case 1. Let n = 2r and m = 2s for some 7, s € N. Then

P(Y2r+1,Y2r) + p(Y2r, Y2s) + p(Y2s: Y2s+1)
w(e) + (e — p(e))/3 + 44.

P(Y2r+1,Y2s+1) <
<

Hence t,,, < €+ 60.

Case 2. Let n = 2r and m = 2s + 1 for some r,s € N. Then

p(Y2r+1,Y2r) + p(Y2r, Y2s+1)
p(e) + (e — ¢(€))/3 + 3.

P(Yor41, Y2s+1) <
<

50 tym < €4 64.

Case 3. Let n = 2r + 1 and m = 2s for some 7, s € N. Then

P(Y2r+1,Y2s) + p(Y2s, Y25+1)

P(y2r+1, 923-1—1) <
< ple) + (e —(e))/3 + 3.

Thus tp,m < € + 60.

Case 4. Let n = 2r +1 and m = 2s+ 1 for some r, s € N. According to
(2.), we get tym < €+ 6.

By a similar argument as given in [5], we can show that the sequence
{yn} is p—Cauchy. Hence from the p—completeness of X, it follows that
there exists z € X such that lim,,_,o p(2z,y,) = 0. Hence

lim p(z, Aiwors1) = lim p(z, Ml S2i1%9k41)
k—o0 k—o0

= lim p(z, Aoxor) = lim p(z, 7 Sowor) =0 (12)
k—o0 k—o0
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and so

lim (p(Aowar,2) + p(Aixorst,2))

k—o0
< lim (max{p(p(z, Aowar)), 9(p(2; Arai))s 9 (p(2,2)),
©(1/2[p(2z, M1 S2i— 19k 1) + p(z, Ty S2iwar)]) })
= 0.
Thus
lim p(A1zor41,2) = lim p(myS2i-1%2k 41, 2)
k—oo k—oo

= lim p(Aozak, z) = lim p(7]_qS2xok, 2)(13)
k—o0 k—o0

= 0.

Now, we consider the following cases.

Case I. Let 7] | Sy; is p—continuous. From (12) and (13) we see that
khj{)lo p(ﬂ?zlsgiﬂglzlsgil'%, 71'?:1521‘2) = khrgo p(ﬂ?:152¢z7 77?:1521'7'(?:1522'33%) =0
and
lm p(milyS2 AoZog, M1 S2i2) = lim p(milySaiz, miy Sa; Aoway) = 0.
k—o0 k—o0
Since (Ao, m}"152;) is p—compatible, we have
klirgo p(Aomie, Saixog, e S2i2) = kli»Holo p(mie S22, Aoy S2ixay) = 0.

Step 1. From (viii) with u = 7" S9;Tok, v = Togt1, 2 = AomlS2iTax
and y = Ajx9,11, we have

+  p(Arwopy1, Aol S2iar)

< max{p(p(Aomiq S2iwak, AoTig S2iTak)),
p(p(A1zok+1, A1T2k11)),
o(p(AomiySoiror, A1Tor 1)),
©(1/2][p(Aomiy S o, Ti—1S2 - 1T2k+1)

+  p(A1Zokq1, ey S2im 1 S2iar)]) }-

p(Agﬂ'lnzlsgiiﬁzk, A1op 1)
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Letting kK — 0o, we see that
p(mit152iz,2) +  p(z,ml1522)
< max{p(p(ml522, 2)),
p(1/2[p(mi1 52z, 2) + p(z, w1 52i2)]) }
< p(max{p(z, 7l 82i2), p(mii1 922, 2)}).-
If
max{p(z, Ty Sn2), p(ny Soizs 2)} = pl iy Siz), (14)
then
p(z,mis152i2) < p(mit152i2, 2) + p(z, Tl 52i2) < @(p(z, Til152i2)).
So p(z, 71 52iz) = 0. By (14), we have
0 < p(rlySniz, 2) < plz, 7y Siz) = 0.
It follows that
p(mie152i2, 2) = p(z, mi=1522) = 0.
Thus 7]t ; S2;2 = 2. Similarly, if
max{p(z, miL152i%), p(mi=152i2, 2) } = p(mil1 522, 2),
then 7' | S22z = 2.
Step 2. Put w = z, v = 911, * = Agz and y = Ajx9iy1 in condition
(viii). Then

+  p(A12op41, Ao2)

< max{p(p(Aoz, 402)), p(p(A122k+1, A122k41)),
p(p(Aoz, A1zax11)), p(1/2[p(Aoz, Ty S2i—1T2k+1)

+  p(Arwapir, 1 522)]) }-

p(Aoz, A1xok41)

Letting £k — 0o, we obtain

p(AOZ,Z) + p(Z,A(]Z)
< max{p(p(Aoz, 2)), ¢(1/2[p(Aoz, 2) + p(2, TiL152i2)]) }-
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Since mL;S2;z = z and ¢ is non-decreasing, it follows that
p(Aoz, 2) + p(z, Aoz) < @(p(Apz, 2)). (15)

This implies that p(Agz,z) = 0. From (3) and the fact that ¢(0) = 0
we see that p(z, Agz) = 0. Therefore,

Aoz = w152z = 2.
Step 3. From (viii) with u = 7}* S22, v = Zop41, 2 = Aom} 552z and
y = A1x9k+1, We see that
p(AomigS2iz, A1mapt1) +  p(A1Tokt1, AomisyS2i2)
< max{p(p(AomyS2iz, Aomi952i2)),
p(p(Ar22p41, A1Tok11)),
P(p(AomiigS2iz, A1Tok11)),
@(1/2[p(Aom; S22, M1 S2i— 172+ 1)
+ p(Ar@opyr, Ty S2imii952i2)]) }-
Since Agz = z, by letting k — oo, we get
p(migS2iz,2) +  p(z, mipS2iz)
max{p(p(milyS2iz, 2)), p(1/2[p(mis S22, 2)
p(z, mioS2i2)]) }
p(max{p(mily S22, 2), p(2, Mip52i%)}).

N+ N

This shows that 7" ,S2;z = z. Thus Sa(7],S52i2) = Saz and so Spz =
71 S22 = z. Continuing this procedure, we obtain Aypz = Sy;z = z for
1=1,...,n.

Step 4. By condition (i), there exists v € X such that
z = Aoz = m 1 S9i_1v.
Putting u = xok, * = Apxor and y = Ajv in condition (viii), we have
p(Aozar, A1v) +  p(Arv, Agzar)
< max{p(p(Aozak, Aoxar)), p(p(A1v, A1v)),
@(p(Aowar, A1v)), p(1/2[p(Aowok, Ty S2i-1v)
+  p(Arv, Ty Saizar)]) -



12 M. AVAR, K. JAHEDI AND M. J. MEHDIPOUR

Letting £ — oo, we find
p(z, Aiv) + p(A1v,2)

< max{p(p(z, A1v)), ¢(1/2[p(z, mZ1 S2i-1v) + p(A1v, 2)])}
max{p(p(z, A1v)),¢(1/2[p(z, 2) + p(A1v, 2)]) }
go(max{p(z, Alv),p(Alv, Z)})

Hence Ajv = z and therefore

¥
¥

N

i1 S2i-1v = Ajv = 2.
As (Ay, w1 S2—1) is weakly compatible, we have
i1 Sei—1A1v = Ay S2i—1v.
Thus 7} S2;—12 = A 2.

Step 5. Putting u = zog, v = 2, © = Agwor and y = Az in condition
(viii), we have
p(Aozak, A12) + p(A1z, Aoway)
< max{p(p(Aozak, Aozar)), p(p(A12, A12)),
e(p(Aozok, A12)), 0(1/2[p(Aowok, Tz S2i-12)
+  p(Arz, my Soiwar)]) }-
Letting £ — oo, we get
oo Arz) + p(Arz,2)
< max{p(p(z, A12)), p(1/2[p(z, A12) + p(A12,2)])}
< p(max{p(z, A12), p(A12, 2)}).
So it 5912 = A1z = 2.
Step 6. Putting u = zop, v = M5 S9i—12, 7 = Aoz and y = A7} S2-12
in condition (viii), we have
p(Aoo, A1miioSoi12) +  p(A1miieSei12, Aozor)
< max{p(p(Aozak, Aozar)), p(p(A17ipS%i-172,
ArmiyS2i-12)), p(p(Aozak, A1mioS2i-17)),
p(1/2[p(Aoxak, Ty S2i-1mi=952i-172)
+ A1y Si12, M1 S2iar)]) }-
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Letting k£ — oo shows that

p(2, Mg S2ic12)  +  p(miigS2i-12,2) < max{p(p(z, My S2i-12)),
@(1/2[p(2, g S2i-12) + p(migS2i-12, 2)]) }
< p(max{p(z, 7Ly S2i-12), p(TiteS2i-12, 2)}).
So 7' 5S2i—12 = z and hence S3z = z. Continuing this procedure, we

have A1z = Sy;_1z for ¢ = 1,...,n. Thus Aypz = A1z = S;z = z for
1 =1,...,2n. That is, z is a common fixed point of Ag, A1, 51,52, ..., Sop.

Case II. Let Ay be p—continuous. By (12) and (13),

lim p(A02562k,A()Z) = klim p(Aoz,A[)Qa:Qk) = 0.

k—o00

Since (Ao, m}"152;) is p—compatible, we have

lim p(m;y S2; AoTak, Aoz) = lim p(Agz, miy S Aowar) = 0.
k—o0 k—o00

Step 7. Putting u = Apxox, v = Topy1, T = A%ZL‘Qk and y = Ajzor4q in
condition (viii), we have

+ p(A1zopi1, Azor)

< max{p(p(Afzor, Ajzar)), 0(p(A1zk41, A1Tok41)),
o(p(Afz ok, Arars1)), 0(1/2[p(Afzok, Tiey S2i-122k41)

4+ p(Arwopy1, Ty S2iAoTar)]) }

p(Adzar, A17og11)

Letting £k — oo gives that

p(AOZ,Z) + p(Z,A(]Z)
< max{p(p(Aoz, 2)), 9(1/2p(Aoz, 2) + plz, A2)])}
< gp(max{p(Aoz,z),p(z,Agz)}).

Hence Agz = z and therefore, for every i = 1,...,n
A1z = Sy12 = z,

by the same argument that was used in Steps 4-6.
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Step 8. By condition (i), there exists u € X such that
zZ = Alz = w?zngiu.

Putting v = 2941, © = Apu and y = Ajx9x+1 in condition (viii), we
have
+  p(A1z2r41, Aou)
< max{p(p(Aou, Aou)), p(p(A1Tok 41, A1T2k41)),

o(p(Aou, A1z2x11)), p(1/2[p(Aou, Ty S2i- 122k +1)
+  p(A1mopy1, iy S2u)])}-

Letting £k — oo and using Step 7, we see that

p(Aou, A1 xok41)

p(AOUa Z) + p(szOU')
< max{p(p(Aou, 2)), ¢(1/2[p(Aou, 2) + p(2, 2)])}
= p(p(Aou, 2)).

This implies that
Apu = z = mj—; Sou.

As (Ag, m]_5S9;) is weakly compatible, we have
Aoz = w1522 = 2.
A discussion similar to Step 3 shows that Sy;z = Agz = zfori=1,...,n.

Thus Agz = A1z = S;z = z for i = 1,...,2n. That is, z is a common
fixed point of Ag, A1,S1,S52, ..., Son.

To prove the uniqueness theorem, let w be a common fixed point of
A(), Al, Sl, Sg, ceey Sgn. Hence

Agw = Aqjw = S;w = w

for i« = 1,...,2n. Putting u = z,v = w,x = Agz and y = Ajw in
condition (viii), we have

p(Apz, Ajw) + p(Ajw, Apz)
< max{p(p(Aoz, Ao2)), p(p(A1w, Ayw)), p(p(Aoz, A1w)),
©(1/2[p(Aoz, miy Szicrw) + p(Arw, Tl 1 52:2)]) }
< p(max{p(z, w), p(w, 2)}).
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Therefore, z = w. That is, z is a unique common fixed point of the
mappings. [0

We conclude the paper with the following result.
Proposition 2.2. Let {S}' ; and {T,}acs be two families of self-

mappings of a p—complete quasi-metric space (X,d). If there exists
B € J such that

(i) Th(X) C 7 S2i-1(X) and To(X) C 7S (X) for all e J.
(ii) szlsziﬂ;(lzz_,'_lSQi = W?:Z_'_lSQﬂTf:lSQZ’ fort=1,...,n—1;

(iii) Tp(m];S2i) = (], S2:)T3  for € =2,...,n;

(iv) wlesgi_lﬂ?:Hngi_l = w?:e+15’2i_17rf:182i_1 fort=1,...n—1;
(v) To(m]ySoi—1) = (m]yS2i—1)Te  for € =2,..,n;

(vi) 71 So; or T is p—continuous;

(vii) the pair (T, m}1S2;) is p—compatible and pair (T, 7' 1S2-1) is
weakly compatible;

(viii) there exists ¢ € ® such that for everyu,v € X, x € n" 1 Sy;_1(X),y €
S (X) and a € J

p(Tsu,y) + p(Tov,z) < max{p(p(x, Tpu)), p(p(y, Tav)), v(p(z,y)),
o(1/2[p(w, w1 S2i-1v)) + p(y, Ty S2iu)]) },

then {To,} and {S2;}_; have a unique common fized point in X.

Proof. Let g € J. In Theorem 2.1, set Ag = T3 and Ay = T4,. Then
Toy, 138,51, ..., Son have a unique fixed point, say z. Now, let a € J.
Then

p(Tpz,Towz) + p(Taz,Ts2)
< max{p(p(Tsz, T3z2)), p(p(Taz, Taz)), p(p(1pz, Taz)),
@(1/2][p(Tpz, w1 S2i-12) + p(Toz, mi=152:2)]) }

p(max{p(z, Taz), p(Taz,2)})-

N

Since Tz = z, it follows that T,z = z foralla € J. O
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