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Karamanoğlu Mehmetbey University

Recep Şahin
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is the advent of softwares for symbolic computations like GAP (Groups,
Algorithms and Programming). Providing algorithms to compute pre-
sentations of given monoids is a great help for the developers of these
softwares. So, in this work, we consider monoid presentation of gener-
alized extended Hecke group Hp,q, which is firstly defined in [8]. By
considering this monoid presentation, we find a complete rewriting sys-
tem. Thus, by this complete rewriting system we characterize the struc-
ture of elements of this product. Therefore, we obtain solvability of the
word problem.

Algorithmic problems such as the word, conjugacy and isomorphism
problems have played an important role in group theory since the work
of M. Dehn in early 1900’s. These problems are called decision problems
which ask for a “yes” or “no” answer to a specific question. Among
these decision problems especially the word problem has been studied
widely in groups and semigroups (see [1]). It is well known that the word
problem for finitely presented groups is not solvable in general; that is,
given any two words obtained by generators of the group, there may be
no algorithm to decide whether these words represent the same element
in this group.

There is a long history of studying combinatorial structures in the con-
text of infinite groups. One example is growth series, where for a given
set of generators, one counts the number of elements of length n, and
converts this sequence into a formal power series. By calculating such se-
ries, it becomes possible to classify related groups. In this way, in recent
years, the growth series have been studied by many authors. They have
computed the growth series for some special groups, such as, for surface
groups ([5]), for Fuchsian groups ([11]), for Heisenberg and Nil groups
([28]), for hyperbolic groups ([6]) and for Hecke groups ([22]). Some other
authors have also studied the growth series for special group products
(extensions). For example, in [23], Mann studied growth series on free
products of groups. In [2] and [10], the authors calculated the growth se-
ries of amalgamated free products and HNN -extensions. Johnson ([17])
presented some results on the growth series of wreath products. Recently,
in [18], the authors obtained growth series for crossed and two-sided
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crossed products of groups.

In this paper, we study on generalized extended Hecke group and show
that this group has solvable word problem. To do that, we obtain a com-
plete rewrtiting system and thus construct normal form of elements of
this group (see subsection 2.1). Then, by using the normal form structure
of elements of generalized extended Hecke group, we calculate growth
series (see subsection 2.2). As known Hecke group and its derivations
have especially been of great interest in many fields of Mathematics, for
example number theory, automorphic function theory and group theory.

(a) Extended Generalized Hecke Group

In [13], Hecke introduced an infinite class of discrete groups H(λq) of lin-
ear fractional transformations preserving the upper-half line. The Hecke
group is the group generated by

x(z) = −1
z

and u(z) = z + λq,

where λq = 2cosπ/q for the integer q  3. Let y = xu = − 1
z+λq

. Then
H(λq) has a presentation H(λq) =


x, y;x2, yq


. For q = 3, the resulting

Hecke group H(λ3) = M is the Modular group PSL(2,Z). By adding
the reflection r(z) = 1/z to the generators of the modular group, the
extended modular group H(λ3) = M was defined in [16]. Then the
extended Hecke group, denoted by H(λq), was firstly defined in [14] by
adding the reflection r(z) = 1/z to the generators of H(λq) similar to
the extended modular group M. The Hecke group H(λq) is a subgroup
of index 2 in H(λq). By [16], we know that the extended Hecke group
H(λq) is isomorphic to D2∗Z2Dq (where Dq is the dihedral group having
2q elements) and has a presentation

H(λq) =

x, y, r;x2, yq, r2, (xr)2, (yr)2


. (1)

Again, for q = 3, it is obtained the extended modular group M. The
Hecke groups H(λq), extended Hecke groups H(λq) and their normal
subgroups have been extensively studied from many points of view in
the literature ([4, 15, 20, 21, 24, 25, 26, 27]). The Hecke group H(λ3),
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the modular group PSL(2,Z), and its normal subgroups have especially
been of great interest in many fields of Mathematics, for example number
theory, automorphic function theory and group theory. As a different
view, in [7], the authors showed that the extended Hecke group H(λq)
is the semi-direct product (split extension) of the Hecke group H(λq) by
a cyclic group of order 2. Moreover, by considering the presentation (1),
they gave the necessary and sufficient conditions of (1) to be efficient
(which is an algebraic property) on the minimal number of generators.

Recently, in [8] and [9], the authors defined extended generalized Hecke
groups Hp,q, similar to extended Hecke groups Hq, by adding the re-
flection R(z) = 1/z to the generators of generalized Hecke groups Hp,q.
Then, extended generalized Hecke groups Hp,q have a presentation

Hp,q =

x, y, r ; xp = yq = r2 = (rx)2 = (ry)2 = 1

 ∼= Dp ∗Z2 Dq.

It is clear that

Hp,q : Hp,q


= 2. In [8], the authors also determined the

conjugacy classes of the torsion elements in Hp,q.

(b) String Rewriting System

Let X be a set and let X∗ be the free monoid consisting of all words
obtained by the elements of X. A string rewriting system, or simply
a rewriting system, on X∗ is a subset R ⊆ X∗ × X∗ and an element
(u, v) ∈ R, also can be written as u → v, is called a rule of R. The
idea for a rewriting system is an algorithm for substituting the right-
hand side of a rule whenever the left-hand side appears in a word. In
general, for a given rewriting system R, we write x → y for x, y ∈ X∗

if x = uv1w, y = uv2w and (v1, v2) ∈ R. Also we write x →∗ y if
x = y or x → x1 → x2 → · · · → y for some finite chain of reductions
and ↔∗ is the reflexive, symmetric, and transitive closure of →. We
should note that when x → y a good case is when |x|  |y| always
holds. Furthermore an element x ∈ X∗ is called irreducible with respect
to R if there is no possible rewriting (or reduction) x→ y; otherwise x
is called reducible. The rewriting system R is called

• Noetherian if there is no infinite chain of rewritings x → x1 → x2 →
· · · for any word x ∈ X∗,



COMPLETE REWRITING SYSTEM AND GROWTH SERIES ... 45

•Confluent if whenever x →∗ y1 and x →∗ y2, there is a z ∈ X∗ such
that y1 →∗ z and y2 →∗ z,

•Complete if R is both Noetherian and confluent.

A critical pair of a rewriting system R is a pair of overlapping rules such
that one of the forms

(i) (r1r2, s), (r2r3, t)∈ R with r2 = 1 or (ii) (r1r2r3, s) (r2, t)∈ R ,
is satisfied. Also a critical pair is resolved in R if there is a word z such
that sr3 →∗ z and r1t →∗ z in the first case or s →∗ z and r1tr3 →∗ z

in the second. A Noetherian rewriting system is complete if and only if
every critical pair is resolved ([29]). Knuth and Bendix have developed an
algorithm for creating a complete rewriting system R which is equivalent
to R, so that any word over X has an (unique) irreducible form with
respect to R. By considering overlaps of left-hand sides of rules, this
algorithm basicly proceeds forming new rules when two reductions of an
overlap word result in two distinct reduced forms. We finally note that
the reader is referred to [3] and [29] for a detailed survey on (complete)
rewriting systems.

Throughout this paper, we order words in given alphabet in the deg-lex
way by comparing two words first with their degrees (lengths), and then
lexicographically when the lengths are equal. Additionally, the notations
(i)∩(j) and (i)∪(j) will denote the intersection and inclusion overlapping
words of left hand side of relations (i) and (j), respectively.

(c) Growth Series

Let G be a finitely presented group with a semigroup generating set
S =


s∓11 , s∓12 , · · · , s∓1l


. By the length |g| of g ∈ G with respect to S,

we mean the quantity

|g| = inf {k : g = s1s2 · · · sk, si ∈ S, 1  i  k} .

The function f : N ∪ {0} → N defined by f(0) = a0 = 1 and

f(n) = an = # {g ∈ G : |g| = n, n  1}
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is called the growth function of G with respect to S, and the series

β(z) =
∞

n=0

anz
n is called the growth series of G (see [2, 12]).

There are several approaches to the evaluation of the growth series and
growth functions, according to different methods solving the word prob-
lem in a given group. One of them is to obtain normal form of elements
of this group.

2. Main Results

2.1 Rewriting system for extended generalized hecke group
Hp,q

Let us consider the monoid presentation of extended generalized Hecke
group Hp,q. It is not hard to see that the monoid presentation for Hp,q

is given as

Hp,q =< x, y, r,X, Y ; xp = yq = r2 = (rx)2 = (ry)2 = 1, (2)

xX = Xx = yY = Y y = 1 > .

By considering the presentation (2), we order the set {x, y, r,X, Y }∗

lexicographically by using the ordering x > y > r > X > Y . Now
we can give the first result of this paper. Before that we explain some
notations that used in the proof of Theorem 2.1.1.

W[x,y], W ∗
[x,y] and W ∗∗

[x,y] denote all reduced words obtained by the gen-
erators x and y. Similarly, W[X,Y ], W ∗

[X,Y ] and W ∗∗
[X,Y ] denote all re-

duced words obtained by X and Y . We note that the words W[X,Y ]

and W[x,y] (and others) are of the same form obtained by replacing X

by x,Y by y and vice versa. We also note that, the words W [X,Y ] and
W [X,Y ] denote reduced words without last and first generator of the
word W[X,Y ], respectively. For instance, let W[X,Y ] = XYXX. Then we
have W [X,Y ] = XYX and W [X,Y ] = Y XX.

Theorem 2.1.1. A complete rewriting system for extended generalized
Hecke group Hp,q with monoid presentation given by (2) consists of the
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is called the growth function of G with respect to S, and the series

β(z) =
∞

n=0

anz
n is called the growth series of G (see [2, 12]).

There are several approaches to the evaluation of the growth series and
growth functions, according to different methods solving the word prob-
lem in a given group. One of them is to obtain normal form of elements
of this group.

2. Main Results

2.1 Rewriting system for extended generalized hecke group
Hp,q

Let us consider the monoid presentation of extended generalized Hecke
group Hp,q. It is not hard to see that the monoid presentation for Hp,q

is given as

Hp,q =< x, y, r,X, Y ; xp = yq = r2 = (rx)2 = (ry)2 = 1, (2)

xX = Xx = yY = Y y = 1 > .

By considering the presentation (2), we order the set {x, y, r,X, Y }∗

lexicographically by using the ordering x > y > r > X > Y . Now
we can give the first result of this paper. Before that we explain some
notations that used in the proof of Theorem 2.1.1.

W[x,y], W ∗
[x,y] and W ∗∗

[x,y] denote all reduced words obtained by the gen-
erators x and y. Similarly, W[X,Y ], W ∗

[X,Y ] and W ∗∗
[X,Y ] denote all re-

duced words obtained by X and Y . We note that the words W[X,Y ]

and W[x,y] (and others) are of the same form obtained by replacing X

by x,Y by y and vice versa. We also note that, the words W [X,Y ] and
W [X,Y ] denote reduced words without last and first generator of the
word W[X,Y ], respectively. For instance, let W[X,Y ] = XYXX. Then we
have W [X,Y ] = XYX and W [X,Y ] = Y XX.

Theorem 2.1.1. A complete rewriting system for extended generalized
Hecke group Hp,q with monoid presentation given by (2) consists of the



COMPLETE REWRITING SYSTEM AND GROWTH SERIES ... 47

following relations:

(1) xp = 1, (2) yq = 1, (3) r2 = 1,

(4) xX = 1, (5)Xx = 1, (6) yY = 1, (7) Y y = 1,

(8) xp−k = Xk


if p is even then 1  k  p

2

if p is odd then 1  k  p−1
2


,

(8∗)Xk = xp−k


if p is even then p+2
2  k  p

if p is odd then p+1
2  k  p


,

(9) yq−m = Y m


if q is even then 1  m  q

2

if q is odd then 1  m  q−1
2


,

(9∗) Y m = yq−m


if q is even then q+2
2  m  q

if p is odd then q+1
2  m  q


,

(10) rx = Xr, (11) ry = Y r, (12) xr = rX, (13) yr = rY,

(14) XrX = r, (15) Y rY = r, (16) rW[X,Y ]r = W[X,Y ],

(17) xW ∗
[X,Y ]r = rXW ∗

[X,Y ], (18) yW ∗∗
[X,Y ]r = rY W ∗∗

[X,Y ].

Proof. Since we have the ordering x > y > r > X > Y , there are no
infinite reduction steps for all overlapping words. Hence the rewriting
system is Noetherian. It remains to show that the confluent property
holds. To do that we have the following overlapping words and corre-
sponding critical pairs, respectively.

(1) ∩ (1) : xp+1, (x, x), (1) ∩ (4) : xpX, (X,xp−1),

(1) ∪ (8) : xp, (1, xkXk), (1) ∩ (12) : xpr, (r, xp−1rX),

(1) ∩ (17) : xpW ∗
[X,Y ]r, (W

∗
[X,Y ]r, x

p−1rXW ∗
[x,y]),

(2) ∩ (2) : yq+1, (y, y), (2) ∩ (6) : yqY, (Y, yq−1),

(2) ∪ (9) : yq, (1, ymY m), (2) ∩ (13) : yqr, (r, yq−1rY ),

(2) ∩ (18) : yqW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, y

q−1rY W ∗∗
[x,y]),

COMPLETE REWRITING SYSTEM AND GROWTH SERIES ... 47

following relations:

(1) xp = 1, (2) yq = 1, (3) r2 = 1,

(4) xX = 1, (5)Xx = 1, (6) yY = 1, (7) Y y = 1,

(8) xp−k = Xk


if p is even then 1  k  p

2

if p is odd then 1  k  p−1
2


,

(8∗)Xk = xp−k


if p is even then p+2
2  k  p

if p is odd then p+1
2  k  p


,

(9) yq−m = Y m


if q is even then 1  m  q

2

if q is odd then 1  m  q−1
2


,

(9∗) Y m = yq−m


if q is even then q+2
2  m  q

if p is odd then q+1
2  m  q


,

(10) rx = Xr, (11) ry = Y r, (12) xr = rX, (13) yr = rY,

(14) XrX = r, (15) Y rY = r, (16) rW[X,Y ]r = W[X,Y ],

(17) xW ∗
[X,Y ]r = rXW ∗

[X,Y ], (18) yW ∗∗
[X,Y ]r = rY W ∗∗

[X,Y ].

Proof. Since we have the ordering x > y > r > X > Y , there are no
infinite reduction steps for all overlapping words. Hence the rewriting
system is Noetherian. It remains to show that the confluent property
holds. To do that we have the following overlapping words and corre-
sponding critical pairs, respectively.

(1) ∩ (1) : xp+1, (x, x), (1) ∩ (4) : xpX, (X,xp−1),

(1) ∪ (8) : xp, (1, xkXk), (1) ∩ (12) : xpr, (r, xp−1rX),

(1) ∩ (17) : xpW ∗
[X,Y ]r, (W

∗
[X,Y ]r, x

p−1rXW ∗
[x,y]),

(2) ∩ (2) : yq+1, (y, y), (2) ∩ (6) : yqY, (Y, yq−1),

(2) ∪ (9) : yq, (1, ymY m), (2) ∩ (13) : yqr, (r, yq−1rY ),

(2) ∩ (18) : yqW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, y

q−1rY W ∗∗
[x,y]),

COMPLETE REWRITING SYSTEM AND GROWTH SERIES ... 47

following relations:

(1) xp = 1, (2) yq = 1, (3) r2 = 1,

(4) xX = 1, (5)Xx = 1, (6) yY = 1, (7) Y y = 1,

(8) xp−k = Xk


if p is even then 1  k  p

2

if p is odd then 1  k  p−1
2


,

(8∗)Xk = xp−k


if p is even then p+2
2  k  p

if p is odd then p+1
2  k  p


,

(9) yq−m = Y m


if q is even then 1  m  q

2

if q is odd then 1  m  q−1
2


,

(9∗) Y m = yq−m


if q is even then q+2
2  m  q

if p is odd then q+1
2  m  q


,

(10) rx = Xr, (11) ry = Y r, (12) xr = rX, (13) yr = rY,

(14) XrX = r, (15) Y rY = r, (16) rW[X,Y ]r = W[X,Y ],

(17) xW ∗
[X,Y ]r = rXW ∗

[X,Y ], (18) yW ∗∗
[X,Y ]r = rY W ∗∗

[X,Y ].

Proof. Since we have the ordering x > y > r > X > Y , there are no
infinite reduction steps for all overlapping words. Hence the rewriting
system is Noetherian. It remains to show that the confluent property
holds. To do that we have the following overlapping words and corre-
sponding critical pairs, respectively.

(1) ∩ (1) : xp+1, (x, x), (1) ∩ (4) : xpX, (X,xp−1),

(1) ∪ (8) : xp, (1, xkXk), (1) ∩ (12) : xpr, (r, xp−1rX),

(1) ∩ (17) : xpW ∗
[X,Y ]r, (W

∗
[X,Y ]r, x

p−1rXW ∗
[x,y]),

(2) ∩ (2) : yq+1, (y, y), (2) ∩ (6) : yqY, (Y, yq−1),

(2) ∪ (9) : yq, (1, ymY m), (2) ∩ (13) : yqr, (r, yq−1rY ),

(2) ∩ (18) : yqW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, y

q−1rY W ∗∗
[x,y]),

COMPLETE REWRITING SYSTEM AND GROWTH SERIES ... 47

following relations:

(1) xp = 1, (2) yq = 1, (3) r2 = 1,

(4) xX = 1, (5)Xx = 1, (6) yY = 1, (7) Y y = 1,

(8) xp−k = Xk


if p is even then 1  k  p

2

if p is odd then 1  k  p−1
2


,

(8∗)Xk = xp−k


if p is even then p+2
2  k  p

if p is odd then p+1
2  k  p


,

(9) yq−m = Y m


if q is even then 1  m  q

2

if q is odd then 1  m  q−1
2


,

(9∗) Y m = yq−m


if q is even then q+2
2  m  q

if p is odd then q+1
2  m  q


,

(10) rx = Xr, (11) ry = Y r, (12) xr = rX, (13) yr = rY,

(14) XrX = r, (15) Y rY = r, (16) rW[X,Y ]r = W[X,Y ],

(17) xW ∗
[X,Y ]r = rXW ∗

[X,Y ], (18) yW ∗∗
[X,Y ]r = rY W ∗∗

[X,Y ].

Proof. Since we have the ordering x > y > r > X > Y , there are no
infinite reduction steps for all overlapping words. Hence the rewriting
system is Noetherian. It remains to show that the confluent property
holds. To do that we have the following overlapping words and corre-
sponding critical pairs, respectively.
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(1) ∪ (8) : xp, (1, xkXk), (1) ∩ (12) : xpr, (r, xp−1rX),

(1) ∩ (17) : xpW ∗
[X,Y ]r, (W

∗
[X,Y ]r, x

p−1rXW ∗
[x,y]),

(2) ∩ (2) : yq+1, (y, y), (2) ∩ (6) : yqY, (Y, yq−1),

(2) ∪ (9) : yq, (1, ymY m), (2) ∩ (13) : yqr, (r, yq−1rY ),

(2) ∩ (18) : yqW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, y

q−1rY W ∗∗
[x,y]),
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(3) ∩ (3) : r3, (r, r), (3) ∩ (10) : r2x, (x, rXr),

(3) ∩ (11) : r2y, (y, rY r), (3) ∩ (16) : r2W[X,Y ]r, (W[X,Y ]r, rW[x,y]),

(4) ∩ (5) : xXx, (x, x), (4) ∩ (8∗) : xXk, (xk−1, xXp−k),

(4) ∩ (14) : xXrX, (rX, xr), (5) ∩ (1) : Xxp, (xp−1, X),

(5) ∩ (4) : XxX, (X,X), (5) ∩ (8) : Xxp−k, (xp−k−1, Xxk),

(5) ∩ (12) : Xxr, (r,XrX), (5) ∩ (17) : XxW ∗
[X,Y ]r, (W

∗
[X,Y ]r,XrXW

∗
[x,y]),

(6) ∩ (7) : yY y, (y, y), (6) ∩ (9∗) : yY m, (Y m−1, yY q−m),

(6) ∩ (15) : yY rY, (rY, yr), (7) ∩ (2) : Y yq, (yq−1, Y ),

(7) ∩ (6) : Y yY, (Y, Y ), (7) ∩ (9) : Y yq−m, (yq−m−1, Y Y m),

(7) ∩ (13) : Y yr, (r, Y rY ), (7) ∩ (18) : Y yW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, Y rY W

∗∗
[x,y]),

(8) ∩ (4) : xp−kX, (XkX,xp−k−1), (8) ∩ (8) : xp−k+1, (Xkx, xXk),

(8) ∩ (12) : xp−kr, (Xkr, xp−k−1X),

(8) ∩ (17) : xp−kW ∗
[X,Y ]r, (X

kW ∗
[X,Y ]r, x

p−k−1rXW ∗
[X,Y ]),

(8∗) ∩ (5) : Xkx, (xp−kx,Xk−1), (8∗) ∩ (8∗) : Xk+1, (xp−kX,Xxp−k),

(8∗) ∩ (14) : XkrX, (xp−krX,Xk−1r), (9) ∩ (6) : yq−mY, (Y mY, yq−m−1),

(9) ∩ (9) : yq−m+1, (Y my, yY m), (9) ∩ (13) : yq−mr, (Y mr, yq−m−1rY ),

(9) ∩ (18) : yq−mW ∗∗
[X,Y ]r, (Y mW ∗∗

[X,Y ]r, y
q−m−1rY W ∗∗

[x,y]),

(9∗) ∩ (7) : Y my, (yq−my, Y m−1), (9∗) ∩ (9∗) : Y m+1, (yq−mY, Y yq−m)

(9∗) ∩ (15) : Y mrY, (yq−mrY, Y m−1r), (10) ∩ (1) : rxp, (Xrxp−1, r),

(10) ∩ (4) : rxX, (Xrx, r), (10) ∩ (8) : rxp−k, (Xrxp−k−1, rXk),

(10) ∩ (12) : rxr, (Xr2, r2X),

(10) ∩ (17) : rxW ∗
[X,Y ]r, (XrW ∗

[X,Y ]r, r
2XW ∗

[x,y]),

(11) ∩ (2) : ryq, (Y ryq−1, r), (11) ∩ (6) : ryY, (Y ry, r),

(11) ∩ (9) : ryq−m, (Y ryq−m−1, rY m), (11) ∩ (13) : ryr, (Y r2, r2Y ),

(11) ∩ (18) : ryW ∗∗
[X,Y ]r, (Y rW ∗∗

[X,Y ]r, r
2YW ∗∗

[x,y]),

(12) ∩ (3) : xr2, (rXr, x), (12) ∩ (10) : xrx, (rXx, xXr),

(12) ∩ (11) : xry, (rXy, xY r), (12) ∩ (16) : xrW[X,Y ]r, (rXW[X,Y ]r, xW[x,y]),

48 E. K. ÇETINALP, E. G. KARPUZ, R. ŞAHIN AND F. ATEŞ
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(10) ∩ (12) : rxr, (Xr2, r2X),

(10) ∩ (17) : rxW ∗
[X,Y ]r, (XrW ∗

[X,Y ]r, r
2XW ∗

[x,y]),

(11) ∩ (2) : ryq, (Y ryq−1, r), (11) ∩ (6) : ryY, (Y ry, r),

(11) ∩ (9) : ryq−m, (Y ryq−m−1, rY m), (11) ∩ (13) : ryr, (Y r2, r2Y ),

(11) ∩ (18) : ryW ∗∗
[X,Y ]r, (Y rW ∗∗

[X,Y ]r, r
2YW ∗∗

[x,y]),

(12) ∩ (3) : xr2, (rXr, x), (12) ∩ (10) : xrx, (rXx, xXr),

(12) ∩ (11) : xry, (rXy, xY r), (12) ∩ (16) : xrW[X,Y ]r, (rXW[X,Y ]r, xW[x,y]),
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(13) ∩ (3) : yr2, (rY r, y), (13) ∩ (10) : yrx, (rY x, yXr),

(13) ∩ (11) : yry, (rY y, yY r), (13) ∩ (16) : yrW[X,Y ]r, (rY W[X,Y ]r, yW[x,y]),

(14) ∩ (5) : XrXx, (rx,Xr), (14) ∩ (8∗) : XrXk, (rXK−1, Xrxp−k),

(14) ∩ (16) : XrW[X,Y ]r, (rW [X,Y ]r,XW[x,y]) (the wordW[X,Y ] starts withX),

(14) ∩ (14) : XrXrX, (r2X,Xr2), (15) ∩ (7) : Y rY y, (ry, Y r),

(15) ∩ (9∗) : Y rY m, (rY m−1, Y ryq−m), (15) ∩ (15) : Y rY rY, (r2Y, Y r2),

(15) ∩ (16) : Y rW[X,Y ]r, (rW [X,Y ]r, Y W[x,y]) (the wordW[X,Y ] starts with Y ),

(16) ∩ (3) : rW[X,Y ]r
2, (rW[X,Y ]r,W[x,y]r),

(16) ∩ (10) : rW[X,Y ]rx, (rW[X,Y ]Xr,W[x,y]x),

(16) ∩ (11) : rW[X,Y ]ry, (rW[X,Y ]Y r,W[x,y]y),

(16) ∩ (14) : rW[X,Y ]rX, (rW [X,Y ]r,W[x,y]X) (the wordW[X,Y ] ends withX),

(16) ∩ (15) : rW[X,Y ]rY, (rW [X,Y ]r,W[x,y]Y ) (the wordW[X,Y ] ends with Y ),

(16) ∩ (16) : rW[X,Y ]rW


[X,Y ]r, (W[x,y]W


[X,Y ]r, rW[X,Y ]W


[x,y])

(17) ∩ (3) : xW ∗
[X,Y ]r

2, (rXW ∗
[x,y]r, xW

∗
[X,Y ]),

(17) ∩ (10) : xW ∗
[X,Y ]rx, (rXW ∗

[x,y]x, xW
∗
[X,Y ]Xr),

(17) ∩ (11) : xW ∗
[X,Y ]ry, (rXW ∗

[x,y]y, yW
∗
[X,Y ]Y r),

(17) ∩ (14) : xW ∗
[X,Y ]rX, (rXW ∗

[x,y]X,xW
∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends withX)

(17) ∩ (15) : xW ∗
[X,Y ]rY, (rXW ∗

[x,y]Y, xW
∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends with Y )

(17) ∩ (16) : xW ∗
[X,Y ]rW[X,Y ]r, (rXW ∗

[x,y]W[X,Y ]r, xW
∗
[X,Y ]W[x,y])

(18) ∩ (3) : yW ∗∗
[X,Y ]r

2, (rY W ∗∗
[x,y]r, yW

∗∗
[X,Y ]),

(18) ∩ (10) : yW ∗∗
[X,Y ]rx, (rY W ∗∗

[x,y]x, yW
∗∗
[X,Y ]Xr),

(18) ∩ (11) : yW ∗∗
[X,Y ]ry, (rY W ∗∗

[x,y]y, yW
∗∗
[X,Y ]Y r),

(18) ∩ (14) : yW ∗∗
[X,Y ]rX, (rY W ∗∗

[x,y]X, yW
∗∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends withX),

(18) ∩ (15) : yW ∗∗
[X,Y ]rY, (rY W ∗∗

[x,y]Y, yW
∗∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends with Y ),

(18) ∩ (16) : yW ∗∗
[X,Y ]rW[X,Y ]r, (rY W ∗∗

[x,y]W[X,Y ]r, yW
∗∗
[X,Y ]W[x,y]),

In fact, all these above critical pairs are resolved by reduction steps.
We show some of them as follows:
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[X,Y ]rx, (rXW ∗

[x,y]x, xW
∗
[X,Y ]Xr),

(17) ∩ (11) : xW ∗
[X,Y ]ry, (rXW ∗

[x,y]y, yW
∗
[X,Y ]Y r),

(17) ∩ (14) : xW ∗
[X,Y ]rX, (rXW ∗

[x,y]X,xW
∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends withX)

(17) ∩ (15) : xW ∗
[X,Y ]rY, (rXW ∗

[x,y]Y, xW
∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends with Y )

(17) ∩ (16) : xW ∗
[X,Y ]rW[X,Y ]r, (rXW ∗

[x,y]W[X,Y ]r, xW
∗
[X,Y ]W[x,y])

(18) ∩ (3) : yW ∗∗
[X,Y ]r

2, (rY W ∗∗
[x,y]r, yW

∗∗
[X,Y ]),

(18) ∩ (10) : yW ∗∗
[X,Y ]rx, (rY W ∗∗

[x,y]x, yW
∗∗
[X,Y ]Xr),

(18) ∩ (11) : yW ∗∗
[X,Y ]ry, (rY W ∗∗

[x,y]y, yW
∗∗
[X,Y ]Y r),

(18) ∩ (14) : yW ∗∗
[X,Y ]rX, (rY W ∗∗

[x,y]X, yW
∗∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends withX),

(18) ∩ (15) : yW ∗∗
[X,Y ]rY, (rY W ∗∗

[x,y]Y, yW
∗∗
[X,Y ]r) (the wordW ∗

[X,Y ] ends with Y ),

(18) ∩ (16) : yW ∗∗
[X,Y ]rW[X,Y ]r, (rY W ∗∗

[x,y]W[X,Y ]r, yW
∗∗
[X,Y ]W[x,y]),

In fact, all these above critical pairs are resolved by reduction steps.
We show some of them as follows:
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(1) ∩ (17) : xpW ∗
[X,Y ]r, (W

∗
[X,Y ]r, x

p−1rXW ∗
[x,y]),

xpW ∗
[X,Y ]r −→


W ∗

[X,Y ]r

xp−1rXW ∗
[x,y] → XrXW ∗

[x,y] → rW ∗
[x,y] →W ∗

[X,Y ]r

(4) ∩ (14) : xXrX, (rX, xr),

xXrX −→

rX
xr → rX

(7) ∩ (18) : Y yW ∗∗
[X,Y ]r, (W

∗∗
[X,Y ]r, Y rY W

∗∗
[x,y]),

Y yW ∗∗
[X,Y ]r −→


W ∗∗

[X,Y ]r

Y rY W ∗∗
[x,y] → rW ∗∗

[x,y] →W ∗∗
[X,Y ]r

(10) ∩ (17) : rxW ∗
[X,Y ]r, (XrW ∗

[X,Y ]r, r
2XW ∗

[x,y]),

rxW ∗
[X,Y ]r −→


XrW ∗

[X,Y ]r → XW ∗
[x,y]

r2XW ∗
[x,y] → XW ∗

[x,y]

(12) ∩ (16) : xrW[X,Y ]r, (rXW[X,Y ]r, xW[x,y]),

xrW[X,Y ]r −→

rXW[X,Y ]r → xW[x,y]

xW[x,y]

(14) ∩ (16) : XrW[X,Y ]r, (rW [X,Y ]r,XW[x,y]) (the wordW[X,Y ] starts withX),

XrW[X,Y ]r −→

rW [X,Y ]r →W [x,y]

XW[x,y] →W [x,y]

(18) ∩ (14) : yW ∗∗
[X,Y ]rX, (rY W ∗∗

[x,y]X, yW
∗∗
[X,Y ]r) (the wordW[X,Y ] ends withX),

yW ∗∗
[X,Y ]rX −→


rY W ∗∗

[x,y]X → rY W ∗∗
[x,y]

yW ∗∗
[X,Y ]r → rY W ∗∗

[x,y]
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After all these above processes, since the rewriting system is Noetherian
and confluent it is complete.

Hence the result. 
By considering Theorem 2.1.1, we have the following other result of this
subsection.

Corollary 2.1.2. Let R be the set of relations (1)− (18) given in The-
orem 2.1.1. Let us consider the word u ∈ Hp,q. Then the normal form
C(u) has a form

W[X,Y ]rW
1
[X,Y ]W

1

[x,y]W
2
[X,Y ]W

2

[x,y] · · ·W
t
[X,Y ]W

t

[x,y],

where W[X,Y ], W i
[X,Y ] and W

i

[x,y] (1  i  t) are R-reduced words. In

addition W i
[X,Y ]W

i

[x,y] (1  i  t) and W j

[x,y]W
j+1
[X,Y ] (1  j  t − 1) are

also R-reduced words.

By considering Corollary 2.1.2, we can give the following result.

Theorem 2.1.3. The word problem for extended generalized Hecke group
Hp,q, given by monoid presentation in (2), is solvable.

We note that in [19], the authors obtained normal form of elements of ex-
tended Hecke groupH(λq) by using Gröbner-Shirshov basis theory. Thus
they showed the solvability of the word problem for that group. Here,
by Theorem 2.1.3, we generalized the result given in [19].

2.2 Growth series for extended generalized hecke group
Hp,q

In this subsection, we study growth series, which is other main subject
of this paper, on extended generalized Hecke group Hp,q. So we have the
following result.

Theorem 2.2.1. The growth series for extended generalized Hecke group
Hp,q is

Hp,q(z) =
(1 + (p− 1)z)(1 + (q − 1)z)(1 + z)

1− (p− 1)(q − 1)z2
.
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Proof. Since Hp,q
∼= Dp ∗Z2 Dq, to obtain growth series of Hp,q, we

take into consideration growth series of Dp ∗Z2 Dq. Firstly, we consider
the presentation of Dp =


x, y; xp, y2, (xy)2


and we take the word w1 ∈

Dp. Then the normal form C(w1) of the word w1 has a form xkyl, where
0  k  p − 1 and 0  l  1. Growth series Dp(z) of this normal form
is computed as a separate product of the growth series of every word
(see, e.g. [12]). That is, Dp(z) is equal to product of the growth series of
words of the forms xk (0  k  p− 1) and yl (0  l  1). Growth series
of words of the forms xk (0  k  p− 1) and yl (0  l  1) with respect
to generating sets S1 =


x, x2, · · · , xp


and S2 =


y, y2


are 1+(p−1)z

and 1 + z, respectively. So, we obtain Dp(z) = (1 + (p− 1)z)(1 + z) with
respect to the generating set S1 ∪ S2. Similarly, the growth series of the
dihedral group Dq of order 2q is Dq(z) = (1 + (q − 1)z)(1 + z).

Hence, by [2], we have

1
Hp,q(z)

=
1

(Dp ∗Z2 Dq)(z)
=

1
Dp(z)

+
1

Dq(z)
− 1
Z2(z)

=
1

(1 + (p− 1)z)(1 + z)
+

1
(1 + (q − 1)z)(1 + z)

− 1
(1 + z)

=
1− (p− 1)(q − 1)z2

(1 + (p− 1)z)(1 + (q − 1)z)(1 + z)
. 
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54 E. K. ÇETINALP, E. G. KARPUZ, R. ŞAHIN AND F. ATEŞ
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