Multiplication Operators with Adjoint in a Cowen-Douglas Class Operator

P. Heiatian Naeini*
Payame Noor University

B. Yousefi

Payame Noor University

R. Soltani

Payame Noor University

Abstract

In this paper, we will consider multiplication operators on Hilbert spaces of analytic functions on a domain $\Omega \subset \mathbf{C}$. Also, we determine the commutants of certain multiplication operators with adjoints in a Cowen-Douglas class operator.

AMS Subject Classification: 47B38; 47A10
Keywords and Phrases: Hilbert space of analytic functions, commutant, cowen-douglas class of operators, fredholm alternative theorem.

1. Introduction

In this section we include some preparatory material which will be needed later.
For a positive integer n and a domain $U \subset \mathbf{C}$, the Cowen-Douglas class $B_{n}(U)$ consists of bounded linear operators T on any fixed separable infinite dimensional Hilbert space H with the following properties:
(a) U is a subset of the spectrum of T.
(b) $\operatorname{ran}(\lambda-T)=H$ for every $\lambda \in U$.
(c) $\operatorname{Span}\{\operatorname{ker}(\lambda-T): \lambda \in U\}=H$.

[^0](d) $\operatorname{dim}[\operatorname{ker}(\lambda-T)]=n$ for every $\lambda \in U$.

Here Span denotes the closed linear span of a collection of sets in H. Conditions (a) and (b) insure that U is contained in the point spectrum of T and $T-\lambda$ is right invertible for $\lambda \in U$. Clearly, (d) implies (a), Also, note that condition (d) implies (a), and since (a) and (b) imply that $\operatorname{ker}(\lambda-T)$ is constant, condition (d) imposes only that it is finite dimensional. Recall that if T is semi-Fredholm, then $\operatorname{ran}(T)$ is closed and at least one of $\operatorname{dim} \operatorname{ker}(T)$ and $\operatorname{dim} \operatorname{ker}\left(T^{*}\right)$ is finite. Now since $\operatorname{ind}(T-\lambda)$ is continuous and $T-\lambda$ is right invertible, we can see that $\operatorname{ind}(T-\lambda)=\operatorname{dim} \operatorname{ker}(T)$ is constant.
The classes $B_{n}(U)$ were introduced by Cowen and Douglas ([5]), and each element of $B_{n}(U)$ is called a Cowen-Douglas class operator. By B_{n} we mean $B_{n}(U)$ for some complex domain U. For the study of the Cowen-Douglas classes B_{n}, we mention $[1,5,6,16,18,22,23]$.
Also, if X is a Banach space of functions analytic on a plane domain Ω, a complex-valued function φ on Ω for which $\varphi f \in X$ for every $f \in X$ is called a multiplier of X and the multiplier φ on X determines a multiplication operator M_{φ} on X by $M_{\varphi} f=\varphi f, f \in X$. The set of all multipliers of X is denoted by $M(X)$. Clearly $M(X) \subset H^{\infty}(\Omega)$ where $H^{\infty}(\Omega)$ is the space of all bounded analytic functions on Ω. In fact $\|\varphi\|_{\infty} \leqslant\left\|M_{\varphi}\right\|$ ([17]).
If X is a Banach space of functions analytic on a domain $\Omega \subset \mathbb{C}$ and X holds the axioms:
Axiom (1). Every point $w \in \Omega$ is a nonzero bounded linear functional on X,
Axiom (2). Every function $\varphi \in H^{\infty}(\Omega)$ is a multiplier of X,
Axiom (3). If $f \in X$ and $f(\lambda)=0$, then there is a function $g \in X$ such that $(z-\lambda) g=f$,
then X is called a Banach space of analytic functions on Ω. Also, if X is a Hilbert space, it is called a Hilbert space of analytic functions on Ω ([13, 15, 19, 21, 23]). The Hardy and Bergman spaces are examples for Hilbert spaces of analytic functions on the open unit disk.
In this paper, we suppose that \mathcal{H} is a Hilbert space of functions analytic on a domain $\Omega \subset \mathbf{C}$. Here, we want to investigate the intertwining multiplication operators on B_{n}. For some other sources on these topics one can see $[2,3,7$, $8,9,10,11,12,14,17,20]$.

2. Intertwining Multiplication Operators

By Propositions 3.1 and 5.2 in [23], K. Zhu gives sufficient conditions for the adjoint of multiplication operators on Hilbert spaces of analytic functions belong to the Cowen-Douglas classes B_{n} for a positive integer n. Then in [18], B. Yousefi and S. Foroutan investigate the converse of Zhu's results. Also, in $[18,23]$, the commutant of special multiplication operators with adjoints in a Cowen-Douglas class operator, has been considered. Here, under Axioms (1), (2), (3), we want to determine the commutants of certain multiplication operators with adjoints in a Cowen-Douglas class operator.
Regarding the given axioms on \mathcal{H}, we note that a few comments are in order: Since by Axiom (2) every function $\varphi \in H^{\infty}(\Omega)$ is a pointwise multiplication of \mathcal{H}, so by the closed graph theorem, the operator of multiplication by φ, M_{φ}, is a bounded linear operator on \mathcal{H}. Also, Axiom (3) says that if $f \in \mathcal{H}$ and $f(\lambda)=0$, then $f /(z-\lambda)$ is in \mathcal{H}. Thus, this condition implies that $\operatorname{ker}\left(M_{z}-\lambda\right)^{*}=\mathbf{C} e_{\lambda}$ for every λ in Ω ([13]). Now, we give an example satisfying Axioms (1), (2), (3):

Example 2.1. Consider the Hilbert Bergman space $L_{a}^{2}(\mathbf{D})$ where \mathbf{D} is the open unit disc in the complex domain. Then $L_{a}^{2}(\mathbf{D})$ holds in the Axioms (1), $(2),(3)([4$, Theorem 8.5 , page 67$])$.

The following characterization of the commutant $\{T\}^{\prime}$ of T is given in Theorem 3.7 of [6], which is stated for the convenience of the reader. In the following K is the reproducing kernel for a coanalytic functional Hilbert space \mathcal{K} defined in [6].

Theorem 2.2. If S is in $B_{n}(\Omega)$ and the operator X commutes with S, then there exists an analytic function $\Phi: \Omega \rightarrow \mathcal{B}\left(\mathbb{C}^{\mathbf{n}}\right)$ such that $X K(\lambda,)=.K(\lambda,.) \Phi$ $(\lambda)($ all $\lambda \in \Omega)$ and for every $f \in \mathcal{K}, X^{*} f()=.(\Phi(.))^{*} f($.$) .$
In the following let Ω be such that if $\lambda \in \Omega$ then $-\lambda \in \Omega$. Also, we assume that the composition operator $C_{-z}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $C_{-z} f=f(-z)$ is bounded.

Theorem 2.3. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geqslant 3, S M_{\varphi^{n}}=-M_{\varphi^{n}} S, M_{\varphi^{i}} S M_{\varphi}=-M_{\varphi} S M_{\varphi^{i}}$ for $2 \leqslant i<n$, and $S M_{\varphi}+M_{\varphi} S$ is compact, then $S=M_{h} C_{-z}$ for some $h \in H^{\infty}(\Omega)$.

Proof. First, note that by Proposition 2.2 in [23], the adjoint of the operator $M_{\varphi}: \mathcal{H} \rightarrow \mathcal{H}$ belongs to the Cowen-Douglas class $B_{1}(U)$, where

$$
U=\{\bar{z}: z \in V\}
$$

Clearly we can get $T_{1} M_{\varphi}=-M_{\varphi} T_{1}$, where

$$
T_{1}=S M_{\varphi^{n-1}}+M_{\varphi^{n-1}} S
$$

Thus by Proposition 3 in [18], $T_{1}=M_{h_{1}} C_{-z}$ for some h_{1} in $H^{\infty}(\Omega)$. Note that $S M_{\varphi}+M_{\varphi} S$ is compact, so the operators

$$
M_{\varphi}\left(S M_{\varphi}+M_{\varphi} S\right)
$$

and

$$
\left(S M_{\varphi}+M_{\varphi} S\right) M_{\varphi}
$$

are also compact. By subtracting them, we conclude that $S M_{\varphi^{2}}-M_{\varphi^{2}} S$ is compact. This implies that the operators

$$
M_{\varphi}\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right)
$$

and

$$
\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right) M_{\varphi}
$$

are also compact. Again by subtracting them and using the fact that

$$
M_{\varphi^{2}} S M_{\varphi}=-M_{\varphi} S M_{\varphi^{2}}
$$

we obtain that the operator $S M_{\varphi^{3}}+M_{\varphi^{3}} S$ is compact. By repeating this method, we can see that $S M_{\varphi^{i}}+M_{\varphi^{i}} S$ is compact for $3 \leqslant i<n$. Now, if $i=n-1$, then T_{1} is compact. But $T_{1}=M_{h_{1}} C_{-z}$, thus

$$
T_{1} \circ C_{-z}=M_{h_{1}} \circ C_{-z} \circ C_{-z}=M_{h_{1}}
$$

Hence $M_{h_{1}}$ is also compact. By the Fredholm Alternative Theorem, we show that $h_{1}=0$. For this suppose that λ is an arbitrary nonzero element of \mathbf{C}. Then by the Fredholm Alternative Theorem, $\operatorname{ran}\left(M_{h_{1}-\lambda}\right)$ is closed and

$$
\operatorname{dimker}\left(M_{h_{1}-\lambda}\right)=\operatorname{dimker}\left(M_{h_{1}-\lambda}\right)^{*}<\infty
$$

Clearly, $M_{h_{1}-\lambda}$ is injective. This implies that $\left(M_{h_{1}-\lambda}\right)^{*}$ is also injective and so $\operatorname{ran}\left(M_{h_{1}}\right)$ is dense in \mathcal{H}. But $\operatorname{ran}\left(M_{h_{1}}\right)$ is closed, thus $M_{h_{1}}-\lambda$ is surjective. Therefore, $M_{h_{1}-\lambda}$ is invertible for all $\lambda \neq 0$. Hence, $h_{1}-\lambda$ is nonvanishing on Ω for all $\lambda \neq 0$, and so $h_{1}(z) \neq \lambda$ for all $z \in \Omega$ and all $\lambda \in \mathbf{C} \backslash\{\mathbf{0}\}$. Now, clearly it should be $h_{1}=0$ on Ω from which we conclude that $T_{1}=0$. Thus

$$
S M_{\varphi^{n-1}}=-M_{\varphi^{n-1}} S
$$

By continuing this way, we conclude that $S M_{\varphi^{3}}=-M_{\varphi^{3}} S$ which implies that

$$
\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right) M_{\varphi}=M_{\varphi}\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right)
$$

Now by Proposition 4.1 in [23], we can write $S M_{\varphi^{2}}-M_{\varphi^{2}} S=M_{g}$ for some g in $H^{\infty}(\Omega)$. Now, by the same method used earlier, by applying the Fredholm Alternative Theorem, we see that $g=0$. Thus, $S M_{\varphi^{2}}=M_{\varphi^{2}} S$ and so $T_{2} M_{\varphi}=$ $M_{\varphi} T_{2}$ where

$$
T_{2}=S M_{\varphi}+M_{\varphi} S
$$

Hence $T_{2}=M_{h_{2}}$ for some $h_{1} \in H^{\infty}(\Omega)$. But by the hypothesis T_{2} is compact, so $M_{h_{2}}$ is also compact. Therefore, $h_{2}=0$ and so $T_{2}=0$. This implies that $S M_{\varphi}=-M_{\varphi} S$ and now by Proposition 3 in [18], we get $S=M_{h} C_{-z}$ for some $h \in H^{\infty}(\Omega)$. Thus the proof is complete.

Theorem 2.4. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. Let for some integer $n \geqslant 3, S M_{\varphi^{n}}=-M_{\varphi^{n}} S$ and $M_{\varphi^{i}} S M_{\varphi}=-M_{\varphi} S M_{\varphi^{i}}$ for $2 \leqslant i<n$. If $S M_{\varphi}-M_{\varphi} S$ is compact, then $S=M_{h}$ for some $h \in H^{\infty}(\Omega)$.

Proof. First note that since

$$
\left(S M_{\varphi^{n-1}}+M_{\varphi^{n-1}} S\right) M_{\varphi}=-M_{\varphi}\left(S M_{\varphi^{n-1}}+M_{\varphi^{n-1}} S\right)
$$

thus there exists $h_{1} \in H^{\infty}(\Omega)$ such that $S M_{\varphi^{n-1}}+M_{\varphi^{n-1}} S=M_{h_{1}} C_{-z}$. Now compactness of $S M_{\varphi}-M_{\varphi} S$ implies that the operator

$$
S M_{\varphi^{2}}-M_{\varphi^{2}}=M_{\varphi}\left(S M_{\varphi}-M_{\varphi} S\right)+\left(S M_{\varphi}-M_{\varphi} S\right) M_{\varphi}
$$

is compact. Hence

$$
S M_{\varphi^{3}}+M_{\varphi^{3}}=\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right) M_{\varphi}-M_{\varphi}\left(S M_{\varphi^{2}}-M_{\varphi^{2}} S\right) M_{\varphi}
$$

is also compact. Finally by continuing this method, we can see that $S M_{\varphi^{n-1}}+$ $M_{\varphi^{n-1}} S$ and so $M_{h_{1}} C_{-z}$ is compact. Thus it should be $h_{1}=0$ on Ω which implies that $S M_{\varphi^{n-1}}=-M_{\varphi^{n-1}} S$. Now, by a similar method used in the proof of Theorem 2.3, we have $S M_{\varphi^{2}}=M_{\varphi^{2}} S$. Put $W=S M_{\varphi}-M_{\varphi} S$. Clearly, $W M_{\varphi}=M_{\varphi} W$ and so $W=M_{g}$ for some $g \in H^{\infty}(\Omega)$. By compactness of W, we get $g=0$ on Ω. Hence $S M_{\varphi}=M_{\varphi} S$ and by Proposition 4.1 in [23], there exists $h \in H^{\infty}(\Omega)$ such that $S=M_{h}$.

Theorem 2.5. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geqslant 3, S M_{\varphi^{n}}=M_{\varphi^{n}} S, M_{\varphi^{i}} S M_{\varphi}=M_{\varphi} S M_{\varphi^{i}}$ for $2 \leqslant i<n$, and $S M_{\varphi}+M_{\varphi} S$ is compact, then $S=M_{h} C_{-z}$ for some $h \in H^{\infty}(\Omega)$.

Proof. By a the method used in the proof of Theorem 2.3, we can see that $S M_{\varphi^{2}}=M_{\varphi^{2}} S$. Again by the proof of Theorem 2.3, if $T=S M_{\varphi}+M_{\varphi} S$, then
$T M_{\varphi}=M_{\varphi} T$. Hence $T=M_{h}$ for some $h \in H^{\infty}(\Omega)$. Compactness of T implies that $h=0$. Thus $T=0$ and so $S M_{\varphi}=-M_{\varphi} S$. Now by Proposition 3 in [18], there exists $h \in H^{\infty}(\Omega)$ satisfying $S=M_{h} C_{-z}$. This completes the proof.

Theorem 2.6. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geqslant 3, S M_{\varphi^{n}}=M_{\varphi^{n}} S, M_{\varphi^{i}} S M_{\varphi}=M_{\varphi} S M_{\varphi^{i}}$ for $2 \leqslant i<n$, and $S M_{\varphi}-M_{\varphi} S$ is compact, then $S=M_{h}$ for some $h \in H^{\infty}(\Omega)$.

Proof. Clearly, we can see that $T_{1} M_{\varphi}=-M_{\varphi} T_{1}$ where

$$
T_{1}=S M_{\varphi^{n-1}}-M_{\varphi^{n-1}} S
$$

So by Proposition 3 in [17], $T_{1}=M_{h_{1}} C_{-z}$ for some h_{1} in $H^{\infty}(\Omega)$. Now we show that $M_{h_{1}}$ is compact. Note that we can write

$$
T_{1}=\left(S M_{\varphi}-M_{\varphi} S\right) M_{\varphi^{n-2}}+M_{\varphi^{n-2}}\left(S M_{\varphi}-M_{\varphi} S\right) .
$$

Therefore, T_{1} and so

$$
M_{h_{1}}=M_{h_{1}} C_{-z} \circ C_{-z}=T_{1} \circ C_{-z}
$$

is compact. By using the Fredholm Alternative Theorem, we get $h_{1}=0$. Hence $S M_{\varphi^{n-1}}=M_{\varphi^{n-1}} S$. By continuing this manner, we conclude that $S M_{\varphi}=$ $M_{\varphi} S$. Now, by Proposition 4.1 in [23], $S=M_{h}$ for some $h \in H^{\infty}(\Omega)$ and so the proof is complete.

References

[1] S. Biswas, D. K. Keshari, and G. Misra, Infinitely divisible and curvature inequalities for operators in the Cowen-Douglas class, London Mathematical Society, 88 (3) (2013), 941-956.
[2] L. Chen, On intertwining operators via reproducing kernels, Linear Algebra and it's Applications, 438 (9) (2013), 3661-3666.
[3] L. Chen, R. Douglas, and K. Guo, On the double commutant of CowenDouglas operators, J. Funct. Anal., 260 (2011), 1925-1943.
[4] J. B. Conway, The Theory of Subnormal Operators, vol. 36, American Mathematical Society, Providence, Rhode Island, 1991.
[5] M. Cowen and E. Douglas, Complex geometry and operator theory, Acta Math., 141 (1978), 187-261.
[6] P. Curto and N. Salinas, Generalized Bergman kernels and the CowenDouglas theory, Amer. J. Math., 106 (1984), 447-488.
[7] K. Guo and H. Huang, Reducing subspaces of multiplication operators on function spaces, Appl. Math. J. Chinese Univ., 28 (4) (2013), 395-404.
[8] P. Heiatian Naeini and B. Yousefi, On some properties of Cowen-Douglas class of operators, Journal of Function Spaces, Volume 2018, Article ID 6078594, 6 pages.
[9] K. Ji, C. Jiang, D. K. Keshari, and G. Misra, Flag structure for operators in the Cowen-Douglas class, Comptes Rendus Mathematique, 352 (6) (2014), 511-514.
[10] B. khani Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, Proc. Amer. Math. Soc., 129 (8) (2001), 2379-2383.
[11] A. Koranyi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Advances in Mathematics, 226 (2011), 5338-5380.
[12] L. Lin and Y. Zhang, The strong irreducibility of a class of Cowen-Douglas operators on Banach spaces, Bulletin of the Australian Mathematical Society, 94 (3) (2016), 479-488.
[13] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc., 304 (1987), 585-616.
[14] K. Seddighi and B. Yousefi, On the reflexivity of operators on function spaces, Proc. Amer. Math. Soc., 116 (1992), 45-52.
[15] K. Seddighi, Operators on spaces of analytic functions, Studia Math., 108 (1) (1994), 49-54.
[16] K. Seddighi, Von Neumann operators in $B_{1}(\Omega)$, Thesis, University of Indiana, 1981.
[17] A. Shields and L. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J., 20 (1971), 777-788.
[18] B. Yousefi and S. Foroutan, On the multiplication operators on spaces of analytic functions, Studia Math., 168 (2) (2005), 187-191.
[19] B. Yousefi, Multiplication operators on Hilbert spaces of analytic functions, Arch. Math., 83 (2004), 536-539.
[20] B. Yousefi and L. Bagheri, Intertwining multiplication operators on function spaces, Bulletin of the Polish Academy of Sciences Mathematics, 54 (3-4) (2006), 273-276.
[21] B. Yousefi, Sh. Khoshdel, and Y. Jahanshahi, Multiplication operators on invariant subspaces of function spaces, Acta Mathematica Scientia, 33B (5) (2013), 1463-1470.
[22] K. Zhu, Operators in Cowen-Douglas classes, Illinois J. Math., 44 (2000), 767-783.
[23] K. Zhu, Irreducible multiplication operators on spaces of analytic functions, Journal of Operator Theory, 51 (2004), 377-385.

Parastoo Heiatian Naeini

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University
P.O. Box 19395-3697

Tehran, Iran
E-mail: p.heiatian.n@gmail.com

Bahmann Yousefi

Professor of Mathematics
Department of Mathematics
Payame Noor University
P.O. Box 19395-3697

Tehran, Iran
E-mail: b_yousefi@pnu.ac.ir

Rahmat Soltani

Assistant professor of Mathematics
Department of Mathematics
Payame Noor University
P.O. Box 19395-3697

Tehran, Iran
E-mail: r_soltani@pnu.ac.ir

[^0]: Received: December 2017; Accepted: November 2018

 * Corresponding author

