Journal of Mathematical Extension Vol. 13, No. 3, (2019), 135-142 ISSN: 1735-8299 URL: http://www.ijmex.com

Multiplication Operators with Adjoint in a Cowen-Douglas Class Operator

P. Heiatian Naeini*

Payame Noor University

B. Yousefi Payame Noor University

R. Soltani Payame Noor University

Abstract. In this paper, we will consider multiplication operators on Hilbert spaces of analytic functions on a domain $\Omega \subset \mathbb{C}$. Also, we determine the commutants of certain multiplication operators with adjoints in a Cowen-Douglas class operator.

AMS Subject Classification: 47B38; 47A10 **Keywords and Phrases:** Hilbert space of analytic functions, commutant, cowen-douglas class of operators, fredholm alternative theorem.

1. Introduction

In this section we include some preparatory material which will be needed later.

For a positive integer n and a domain $U \subset \mathbb{C}$, the Cowen-Douglas class $B_n(U)$ consists of bounded linear operators T on any fixed separable infinite dimensional Hilbert space H with the following properties:

- (a) U is a subset of the spectrum of T.
- (b) $ran(\lambda T) = H$ for every $\lambda \in U$.
- (c) $Span\{ker(\lambda T) : \lambda \in U\} = H.$

Received: December 2017; Accepted: November 2018 *Corresponding author (d) $dim[ker(\lambda - T)] = n$ for every $\lambda \in U$.

Here Span denotes the closed linear span of a collection of sets in H. Conditions (a) and (b) insure that U is contained in the point spectrum of T and $T - \lambda$ is right invertible for $\lambda \in U$. Clearly, (d) implies (a), Also, note that condition (d) implies (a), and since (a) and (b) imply that $ker(\lambda - T)$ is constant, condition (d) imposes only that it is finite dimensional. Recall that if T is semi-Fredholm, then ran(T) is closed and at least one of $dim \ ker(T)$ and $dim \ ker(T^*)$ is finite. Now since $ind(T - \lambda)$ is continuous and $T - \lambda$ is right invertible, we can see that $ind(T - \lambda) = dim \ ker(T)$ is constant.

The classes $B_n(U)$ were introduced by Cowen and Douglas ([5]), and each element of $B_n(U)$ is called a Cowen-Douglas class operator. By B_n we mean $B_n(U)$ for some complex domain U. For the study of the Cowen-Douglas classes B_n , we mention [1, 5, 6, 16, 18, 22, 23].

Also, if X is a Banach space of functions analytic on a plane domain Ω , a complex-valued function φ on Ω for which $\varphi f \in X$ for every $f \in X$ is called a multiplier of X and the multiplier φ on X determines a multiplication operator M_{φ} on X by $M_{\varphi}f = \varphi f$, $f \in X$. The set of all multipliers of X is denoted by M(X). Clearly $M(X) \subset H^{\infty}(\Omega)$ where $H^{\infty}(\Omega)$ is the space of all bounded analytic functions on Ω . In fact $||\varphi||_{\infty} \leq ||M_{\varphi}||$ ([17]).

If X is a Banach space of functions analytic on a domain $\Omega \subset \mathbb{C}$ and X holds the axioms:

Axiom (1). Every point $w \in \Omega$ is a nonzero bounded linear functional on X,

Axiom (2). Every function $\varphi \in H^{\infty}(\Omega)$ is a multiplier of X,

Axiom (3). If $f \in X$ and $f(\lambda) = 0$, then there is a function $g \in X$ such that $(z - \lambda)g = f$,

then X is called a Banach space of analytic functions on Ω . Also, if X is a Hilbert space, it is called a *Hilbert space of analytic functions on* Ω ([13, 15, 19, 21, 23]). The Hardy and Bergman spaces are examples for Hilbert spaces of analytic functions on the open unit disk.

In this paper, we suppose that \mathcal{H} is a Hilbert space of functions analytic on a domain $\Omega \subset \mathbb{C}$. Here, we want to investigate the intertwining multiplication operators on B_n . For some other sources on these topics one can see [2, 3, 7, 8, 9, 10, 11, 12, 14, 17, 20].

2. Intertwining Multiplication Operators

By Propositions 3.1 and 5.2 in [23], K. Zhu gives sufficient conditions for the adjoint of multiplication operators on Hilbert spaces of analytic functions belong to the Cowen-Douglas classes B_n for a positive integer n. Then in [18], B. Yousefi and S. Foroutan investigate the converse of Zhu's results. Also, in [18, 23], the commutant of special multiplication operators with adjoints in a Cowen-Douglas class operator, has been considered. Here, under Axioms (1), (2), (3), we want to determine the commutants of certain multiplication operators with adjoints in a Cowen-Douglas class operator.

Regarding the given axioms on \mathcal{H} , we note that a few comments are in order: Since by Axiom (2) every function $\varphi \in H^{\infty}(\Omega)$ is a pointwise multiplication of \mathcal{H} , so by the closed graph theorem, the operator of multiplication by φ , M_{φ} , is a bounded linear operator on \mathcal{H} . Also, Axiom (3) says that if $f \in \mathcal{H}$ and $f(\lambda) = 0$, then $f/(z - \lambda)$ is in \mathcal{H} . Thus, this condition implies that $\ker(M_z - \lambda)^* = \mathbb{C}e_{\lambda}$ for every λ in Ω ([13]). Now, we give an example satisfying Axioms (1), (2), (3):

Example 2.1. Consider the Hilbert Bergman space $L^2_a(\mathbb{D})$ where \mathbb{D} is the open unit disc in the complex domain. Then $L^2_a(\mathbb{D})$ holds in the Axioms (1), (2), (3) ([4, Theorem 8.5, page 67]).

The following characterization of the commutant $\{T\}'$ of T is given in Theorem 3.7 of [6], which is stated for the convenience of the reader. In the following K is the reproducing kernel for a coanalytic functional Hilbert space \mathcal{K} defined in [6].

Theorem 2.2. If S is in $B_n(\Omega)$ and the operator X commutes with S, then there exists an analytic function $\Phi : \Omega \to \mathcal{B}(\mathbb{C}^n)$ such that $XK(\lambda, .) = K(\lambda, .)\Phi(\lambda)$ (all $\lambda \in \Omega$) and for every $f \in \mathcal{K}$, $X^*f(.) = (\Phi(.))^*f(.)$.

In the following let Ω be such that if $\lambda \in \Omega$ then $-\lambda \in \Omega$. Also, we assume that the composition operator $C_{-z} : \mathcal{H} \to \mathcal{H}$ defined by $C_{-z}f = f(-z)$ is bounded.

Theorem 2.3. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geq 3$, $SM_{\varphi^n} = -M_{\varphi^n}S$, $M_{\varphi^i}SM_{\varphi} = -M_{\varphi}SM_{\varphi^i}$ for $2 \leq i < n$, and $SM_{\varphi} + M_{\varphi}S$ is compact, then $S = M_hC_{-z}$ for some $h \in H^{\infty}(\Omega)$.

Proof. First, note that by Proposition 2.2 in [23], the adjoint of the operator $M_{\varphi}: \mathcal{H} \to \mathcal{H}$ belongs to the Cowen-Douglas class $B_1(U)$, where

$$U = \{ \bar{z} : z \in V \}.$$

Clearly we can get $T_1 M_{\varphi} = -M_{\varphi} T_1$, where

$$T_1 = SM_{\varphi^{n-1}} + M_{\varphi^{n-1}}S.$$

Thus by Proposition 3 in [18], $T_1 = M_{h_1}C_{-z}$ for some h_1 in $H^{\infty}(\Omega)$. Note that $SM_{\varphi} + M_{\varphi}S$ is compact, so the operators

$$M_{\varphi}(SM_{\varphi} + M_{\varphi}S)$$

and

$$(SM_{\varphi} + M_{\varphi}S)M_{\varphi}$$

are also compact. By subtracting them, we conclude that $SM_{\varphi^2} - M_{\varphi^2}S$ is compact. This implies that the operators

$$M_{\varphi}(SM_{\varphi^2} - M_{\varphi^2}S)$$

and

$$(SM_{\varphi^2} - M_{\varphi^2}S)M_{\varphi}$$

are also compact. Again by subtracting them and using the fact that

$$M_{\varphi^2}SM_{\varphi} = -M_{\varphi}SM_{\varphi^2},$$

we obtain that the operator $SM_{\varphi^3} + M_{\varphi^3}S$ is compact. By repeating this method, we can see that $SM_{\varphi^i} + M_{\varphi^i}S$ is compact for $3 \leq i < n$. Now, if i = n - 1, then T_1 is compact. But $T_1 = M_{h_1}C_{-z}$, thus

$$T_1 \circ C_{-z} = M_{h_1} \circ C_{-z} \circ C_{-z} = M_{h_1}.$$

Hence M_{h_1} is also compact. By the Fredholm Alternative Theorem, we show that $h_1 = 0$. For this suppose that λ is an arbitrary nonzero element of \mathbb{C} . Then by the Fredholm Alternative Theorem, $ran(M_{h_1-\lambda})$ is closed and

$$dimker(M_{h_1-\lambda}) = dimker(M_{h_1-\lambda})^* < \infty.$$

Clearly, $M_{h_1-\lambda}$ is injective. This implies that $(M_{h_1-\lambda})^*$ is also injective and so $ran(M_{h_1})$ is dense in \mathcal{H} . But $ran(M_{h_1})$ is closed, thus $M_{h_1} - \lambda$ is surjective. Therefore, $M_{h_1-\lambda}$ is invertible for all $\lambda \neq 0$. Hence, $h_1 - \lambda$ is nonvanishing on Ω for all $\lambda \neq 0$, and so $h_1(z) \neq \lambda$ for all $z \in \Omega$ and all $\lambda \in \mathbb{C} \setminus \{0\}$. Now, clearly it should be $h_1 = 0$ on Ω from which we conclude that $T_1 = 0$. Thus

$$SM_{\omega^{n-1}} = -M_{\omega^{n-1}}S.$$

By continuing this way, we conclude that $SM_{\varphi^3} = -M_{\varphi^3}S$ which implies that

$$(SM_{\varphi^2} - M_{\varphi^2}S)M_{\varphi} = M_{\varphi}(SM_{\varphi^2} - M_{\varphi^2}S).$$

138

139

Now by Proposition 4.1 in [23], we can write $SM_{\varphi^2} - M_{\varphi^2}S = M_g$ for some g in $H^{\infty}(\Omega)$. Now, by the same method used earlier, by applying the Fredholm Alternative Theorem, we see that g = 0. Thus, $SM_{\varphi^2} = M_{\varphi^2}S$ and so $T_2M_{\varphi} = M_{\varphi}T_2$ where

$$T_2 = SM_{\varphi} + M_{\varphi}S.$$

Hence $T_2 = M_{h_2}$ for some $h_1 \in H^{\infty}(\Omega)$. But by the hypothesis T_2 is compact, so M_{h_2} is also compact. Therefore, $h_2 = 0$ and so $T_2 = 0$. This implies that $SM_{\varphi} = -M_{\varphi}S$ and now by Proposition 3 in [18], we get $S = M_h C_{-z}$ for some $h \in H^{\infty}(\Omega)$. Thus the proof is complete. \Box

Theorem 2.4. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. Let for some integer $n \ge 3$, $SM_{\varphi^n} = -M_{\varphi^n}S$ and $M_{\varphi^i}SM_{\varphi} = -M_{\varphi}SM_{\varphi^i}$ for $2 \le i < n$. If $SM_{\varphi} - M_{\varphi}S$ is compact, then $S = M_h$ for some $h \in H^{\infty}(\Omega)$.

Proof. First note that since

$$(SM_{\varphi^{n-1}} + M_{\varphi^{n-1}}S)M_{\varphi} = -M_{\varphi}(SM_{\varphi^{n-1}} + M_{\varphi^{n-1}}S)$$

thus there exists $h_1 \in H^{\infty}(\Omega)$ such that $SM_{\varphi^{n-1}} + M_{\varphi^{n-1}}S = M_{h_1}C_{-z}$. Now compactness of $SM_{\varphi} - M_{\varphi}S$ implies that the operator

$$SM_{\varphi^2} - M_{\varphi^2} = M_{\varphi}(SM_{\varphi} - M_{\varphi}S) + (SM_{\varphi} - M_{\varphi}S)M_{\varphi}$$

is compact. Hence

$$SM_{\varphi^{3}} + M_{\varphi^{3}} = (SM_{\varphi^{2}} - M_{\varphi^{2}}S)M_{\varphi} - M_{\varphi}(SM_{\varphi^{2}} - M_{\varphi^{2}}S)M_{\varphi}$$

is also compact. Finally by continuing this method, we can see that $SM_{\varphi^{n-1}} + M_{\varphi^{n-1}}S$ and so $M_{h_1}C_{-z}$ is compact. Thus it should be $h_1 = 0$ on Ω which implies that $SM_{\varphi^{n-1}} = -M_{\varphi^{n-1}}S$. Now, by a similar method used in the proof of Theorem 2.3, we have $SM_{\varphi^2} = M_{\varphi^2}S$. Put $W = SM_{\varphi} - M_{\varphi}S$. Clearly, $WM_{\varphi} = M_{\varphi}W$ and so $W = M_g$ for some $g \in H^{\infty}(\Omega)$. By compactness of W, we get g = 0 on Ω . Hence $SM_{\varphi} = M_{\varphi}S$ and by Proposition 4.1 in [23], there exists $h \in H^{\infty}(\Omega)$ such that $S = M_h$. \Box

Theorem 2.5. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geq 3$, $SM_{\varphi^n} = M_{\varphi^n}S$, $M_{\varphi^i}SM_{\varphi} = M_{\varphi}SM_{\varphi^i}$ for $2 \leq i < n$, and $SM_{\varphi} + M_{\varphi}S$ is compact, then $S = M_h C_{-z}$ for some $h \in H^{\infty}(\Omega)$.

Proof. By a the method used in the proof of Theorem 2.3, we can see that $SM_{\varphi^2} = M_{\varphi^2}S$. Again by the proof of Theorem 2.3, if $T = SM_{\varphi} + M_{\varphi}S$, then

 $TM_{\varphi} = M_{\varphi}T$. Hence $T = M_h$ for some $h \in H^{\infty}(\Omega)$. Compactness of T implies that h = 0. Thus T = 0 and so $SM_{\varphi} = -M_{\varphi}S$. Now by Proposition 3 in [18], there exists $h \in H^{\infty}(\Omega)$ satisfying $S = M_h C_{-z}$. This completes the proof. \Box

Theorem 2.6. Suppose that $\varphi \in H^{\infty}(\Omega)$ is odd and there exists a domain $V \subset \varphi(\Omega)$ such that $\Omega \cap \varphi^{-1}(w)$ is a singleton for every $w \in V$. If for some integer $n \geq 3$, $SM_{\varphi^n} = M_{\varphi^n}S$, $M_{\varphi^i}SM_{\varphi} = M_{\varphi}SM_{\varphi^i}$ for $2 \leq i < n$, and $SM_{\varphi} - M_{\varphi}S$ is compact, then $S = M_h$ for some $h \in H^{\infty}(\Omega)$.

Proof. Clearly, we can see that $T_1M_{\varphi} = -M_{\varphi}T_1$ where

$$T_1 = SM_{\varphi^{n-1}} - M_{\varphi^{n-1}}S.$$

So by Proposition 3 in [17], $T_1 = M_{h_1}C_{-z}$ for some h_1 in $H^{\infty}(\Omega)$. Now we show that M_{h_1} is compact. Note that we can write

$$T_1 = (SM_{\varphi} - M_{\varphi}S)M_{\varphi^{n-2}} + M_{\varphi^{n-2}}(SM_{\varphi} - M_{\varphi}S).$$

Therefore, T_1 and so

$$M_{h_1} = M_{h_1} C_{-z} \circ C_{-z} = T_1 \circ C_{-z}$$

is compact. By using the Fredholm Alternative Theorem, we get $h_1 = 0$. Hence $SM_{\varphi^{n-1}} = M_{\varphi^{n-1}}S$. By continuing this manner, we conclude that $SM_{\varphi} = M_{\varphi}S$. Now, by Proposition 4.1 in [23], $S = M_h$ for some $h \in H^{\infty}(\Omega)$ and so the proof is complete. \Box

References

- S. Biswas, D. K. Keshari, and G. Misra, Infinitely divisible and curvature inequalities for operators in the Cowen-Douglas class, *London Mathematical Society*, 88 (3) (2013), 941-956.
- [2] L. Chen, On intertwining operators via reproducing kernels, *Linear Algebra and it's Applications*, 438 (9) (2013), 3661-3666.
- [3] L. Chen, R. Douglas, and K. Guo, On the double commutant of Cowen-Douglas operators, J. Funct. Anal., 260 (2011), 1925-1943.
- [4] J. B. Conway, The Theory of Subnormal Operators, vol. 36, American Mathematical Society, Providence, Rhode Island, 1991.
- [5] M. Cowen and E. Douglas, Complex geometry and operator theory, Acta Math., 141 (1978), 187-261.
- [6] P. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory, Amer. J. Math., 106 (1984), 447-488.

- [7] K. Guo and H. Huang, Reducing subspaces of multiplication operators on function spaces, Appl. Math. J. Chinese Univ., 28 (4) (2013), 395-404.
- [8] P. Heiatian Naeini and B. Yousefi, On some properties of Cowen-Douglas class of operators, *Journal of Function Spaces*, Volume 2018, Article ID 6078594, 6 pages.
- [9] K. Ji, C. Jiang, D. K. Keshari, and G. Misra, Flag structure for operators in the Cowen-Douglas class, *Comptes Rendus Mathematique*, 352 (6) (2014), 511-514.
- [10] B. khani Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, *Proc. Amer. Math. Soc.*, 129 (8) (2001), 2379-2383.
- [11] A. Koranyi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Advances in Mathematics, 226 (2011), 5338-5380.
- [12] L. Lin and Y. Zhang, The strong irreducibility of a class of Cowen-Douglas operators on Banach spaces, Bulletin of the Australian Mathematical Society, 94 (3) (2016), 479-488.
- [13] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc., 304 (1987), 585-616.
- [14] K. Seddighi and B. Yousefi, On the reflexivity of operators on function spaces, Proc. Amer. Math. Soc., 116 (1992), 45-52.
- [15] K. Seddighi, Operators on spaces of analytic functions, *Studia Math.*, 108 (1) (1994), 49-54.
- [16] K. Seddighi, Von Neumann operators in $B_1(\Omega)$, Thesis, University of Indiana, 1981.
- [17] A. Shields and L. Wallen, The commutants of certain Hilbert space operators, *Indiana Univ. Math. J.*, 20 (1971), 777-788.
- [18] B. Yousefi and S. Foroutan, On the multiplication operators on spaces of analytic functions, *Studia Math.*, 168 (2) (2005), 187-191.
- [19] B. Yousefi, Multiplication operators on Hilbert spaces of analytic functions, Arch. Math., 83 (2004), 536-539.
- [20] B. Yousefi and L. Bagheri, Intertwining multiplication operators on function spaces, Bulletin of the Polish Academy of Sciences Mathematics, 54 (3-4) (2006), 273-276.

- [21] B. Yousefi, Sh. Khoshdel, and Y. Jahanshahi, Multiplication operators on invariant subspaces of function spaces, *Acta Mathematica Scientia*, 33B (5) (2013), 1463-1470.
- [22] K. Zhu, Operators in Cowen-Douglas classes, Illinois J. Math., 44 (2000), 767-783.
- [23] K. Zhu, Irreducible multiplication operators on spaces of analytic functions, Journal of Operator Theory, 51 (2004), 377-385.

Parastoo Heiatian Naeini

Assistant Professor of Mathematics Department of Mathematics Payame Noor University P.O. Box 19395-3697 Tehran, Iran E-mail: p.heiatian.n@gmail.com

Bahmann Yousefi

Professor of Mathematics Department of Mathematics Payame Noor University P.O. Box 19395-3697 Tehran, Iran E-mail: b_yousefi@pnu.ac.ir

Rahmat Soltani

Assistant professor of Mathematics Department of Mathematics Payame Noor University P.O. Box 19395-3697 Tehran, Iran E-mail: r_soltani@pnu.ac.ir