
Journal of Mathematical Extension
Vol. 13, No. 3, (2019), 135-142
ISSN: 1735-8299
URL: http://www.ijmex.com

Multiplication Operators with Adjoint in a
Cowen-Douglas Class Operator

P. Heiatian Naeini∗

Payame Noor University

B. Yousefi
Payame Noor University

R. Soltani
Payame Noor University

Abstract. In this paper, we will consider multiplication operators on
Hilbert spaces of analytic functions on a domain Ω ⊂C. Also, we deter-
mine the commutants of certain multiplication operators with adjoints
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1. Introduction

In this section we include some preparatory material which will be needed later.

For a positive integer n and a domain U ⊂C, the Cowen-Douglas class Bn(U)
consists of bounded linear operators T on any fixed separable infinite dimen-
sional Hilbert space H with the following properties:

(a) U is a subset of the spectrum of T .

(b) ran(λ− T ) = H for every λ ∈ U .

(c) Span{ker(λ− T ) : λ ∈ U} = H.
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(d) dim[ker(λ− T )] = n for every λ ∈ U .

Here Span denotes the closed linear span of a collection of sets in H. Conditions
(a) and (b) insure that U is contained in the point spectrum of T and T − λ is
right invertible for λ ∈ U . Clearly, (d) implies (a), Also, note that condition (d)
implies (a), and since (a) and (b) imply that ker(λ− T ) is constant, condition
(d) imposes only that it is finite dimensional. Recall that if T is semi-Fredholm,
then ran(T ) is closed and at least one of dim ker(T ) and dim ker(T ∗) is
finite. Now since ind(T − λ) is continuous and T − λ is right invertible, we can
see that ind(T − λ) = dim ker(T ) is constant.

The classes Bn(U) were introduced by Cowen and Douglas ([5]), and each
element of Bn(U) is called a Cowen-Douglas class operator. By Bn we mean
Bn(U) for some complex domain U . For the study of the Cowen-Douglas classes
Bn, we mention [1, 5, 6, 16, 18, 22, 23].

Also, if X is a Banach space of functions analytic on a plane domain Ω, a
complex-valued function ϕ on Ω for which ϕf ∈ X for every f ∈ X is called a
multiplier of X and the multiplier ϕ on X determines a multiplication operator
Mϕ on X by Mϕf = ϕf, f ∈ X. The set of all multipliers of X is denoted
by M(X). Clearly M(X) ⊂ H∞(Ω) where H∞(Ω) is the space of all bounded
analytic functions on Ω. In fact ||ϕ||∞ 6 ||Mϕ|| ([17]).

If X is a Banach space of functions analytic on a domain Ω ⊂ C and X holds
the axioms:

Axiom (1). Every point w ∈ Ω is a nonzero bounded linear functional on X,

Axiom (2). Every function ϕ ∈ H∞(Ω) is a multiplier of X,

Axiom (3). If f ∈ X and f(λ) = 0, then there is a function g ∈ X such that
(z − λ)g = f ,

then X is called a Banach space of analytic functions on Ω. Also, if X is a
Hilbert space, it is called a Hilbert space of analytic functions on Ω ([13, 15,
19, 21, 23]). The Hardy and Bergman spaces are examples for Hilbert spaces
of analytic functions on the open unit disk.

In this paper, we suppose that H is a Hilbert space of functions analytic on
a domain Ω ⊂ C. Here, we want to investigate the intertwining multiplication
operators on Bn. For some other sources on these topics one can see [2, 3, 7,
8, 9, 10, 11, 12, 14, 17, 20].
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2. Intertwining Multiplication Operators

By Propositions 3.1 and 5.2 in [23], K. Zhu gives sufficient conditions for the
adjoint of multiplication operators on Hilbert spaces of analytic functions be-
long to the Cowen-Douglas classes Bn for a positive integer n. Then in [18],
B. Yousefi and S. Foroutan investigate the converse of Zhu’s results. Also, in
[18, 23], the commutant of special multiplication operators with adjoints in a
Cowen-Douglas class operator, has been considered. Here, under Axioms (1),
(2), (3), we want to determine the commutants of certain multiplication oper-
ators with adjoints in a Cowen-Douglas class operator.

Regarding the given axioms on H, we note that a few comments are in order:
Since by Axiom (2) every function ϕ ∈ H∞(Ω) is a pointwise multiplication of
H, so by the closed graph theorem, the operator of multiplication by ϕ, Mϕ, is a
bounded linear operator onH. Also, Axiom (3) says that if f ∈ H and f(λ) = 0,
then f/(z − λ) is in H. Thus, this condition implies that ker(Mz − λ)∗ = Ceλ

for every λ in Ω ([13]). Now, we give an example satisfying Axioms (1), (2),
(3):

Example 2.1. Consider the Hilbert Bergman space L2
a(D) where D is the

open unit disc in the complex domain. Then L2
a(D) holds in the Axioms (1),

(2), (3) ([4, Theorem 8.5, page 67]).

The following characterization of the commutant {T}′ of T is given in Theorem
3.7 of [6], which is stated for the convenience of the reader. In the following K
is the reproducing kernel for a coanalytic functional Hilbert space K defined in
[6].

Theorem 2.2. If S is in Bn(Ω) and the operator X commutes with S, then
there exists an analytic function Φ : Ω → B(Cn) such that XK(λ, .) = K(λ, .)Φ
(λ) ( all λ ∈ Ω) and for every f ∈ K, X∗f(.) = (Φ(.))∗f(.).

In the following let Ω be such that if λ ∈ Ω then −λ ∈ Ω. Also, we assume that
the composition operator C−z : H → H defined by C−zf = f(−z) is bounded.

Theorem 2.3. Suppose that ϕ ∈ H∞(Ω) is odd and there exists a domain
V ⊂ ϕ(Ω) such that Ω ∩ ϕ−1(w) is a singleton for every w ∈ V . If for some
integer n > 3, SMϕn = −MϕnS, MϕiSMϕ = −MϕSMϕi for 2 6 i < n, and
SMϕ +MϕS is compact, then S = MhC−z for some h ∈ H∞(Ω).

Proof. First, note that by Proposition 2.2 in [23], the adjoint of the operator
Mϕ : H → H belongs to the Cowen-Douglas class B1(U), where

U = {z̄ : z ∈ V }.
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Clearly we can get T1Mϕ = −MϕT1, where

T1 = SMϕn−1 +Mϕn−1S.

Thus by Proposition 3 in [18], T1 = Mh1C−z for some h1 in H∞(Ω). Note that
SMϕ +MϕS is compact, so the operators

Mϕ(SMϕ +MϕS)

and
(SMϕ +MϕS)Mϕ

are also compact. By subtracting them, we conclude that SMϕ2 − Mϕ2S is
compact. This implies that the operators

Mϕ(SMϕ2 −Mϕ2S)

and
(SMϕ2 −Mϕ2S)Mϕ

are also compact. Again by subtracting them and using the fact that

Mϕ2SMϕ = −MϕSMϕ2 ,

we obtain that the operator SMϕ3 + Mϕ3S is compact. By repeating this
method, we can see that SMϕi + MϕiS is compact for 3 6 i < n. Now, if
i = n− 1, then T1 is compact. But T1 = Mh1C−z, thus

T1 ◦ C−z = Mh1 ◦ C−z ◦ C−z = Mh1 .

Hence Mh1 is also compact. By the Fredholm Alternative Theorem, we show
that h1 = 0. For this suppose that λ is an arbitrary nonzero element of C. Then
by the Fredholm Alternative Theorem, ran(Mh1−λ) is closed and

dimker(Mh1−λ) = dimker(Mh1−λ)∗ <∞.

Clearly, Mh1−λ is injective. This implies that (Mh1−λ)∗ is also injective and
so ran(Mh1) is dense in H. But ran(Mh1) is closed, thus Mh1 − λ is surjec-
tive. Therefore, Mh1−λ is invertible for all λ 6= 0. Hence, h1−λ is nonvanishing
on Ω for all λ 6= 0, and so h1(z) 6= λ for all z ∈ Ω and all λ ∈ C\{0}. Now,
clearly it should be h1 = 0 on Ω from which we conclude that T1 = 0. Thus

SMϕn−1 = −Mϕn−1S.

By continuing this way, we conclude that SMϕ3 = −Mϕ3S which implies that

(SMϕ2 −Mϕ2S)Mϕ = Mϕ(SMϕ2 −Mϕ2S).
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Now by Proposition 4.1 in [23], we can write SMϕ2 −Mϕ2S = Mg for some g
in H∞(Ω). Now, by the same method used earlier, by applying the Fredholm
Alternative Theorem, we see that g = 0. Thus, SMϕ2 = Mϕ2S and so T2Mϕ =
MϕT2 where

T2 = SMϕ +MϕS.

Hence T2 = Mh2 for some h1 ∈ H∞(Ω). But by the hypothesis T2 is compact,
so Mh2 is also compact. Therefore, h2 = 0 and so T2 = 0. This implies that
SMϕ = −MϕS and now by Proposition 3 in [18], we get S = MhC−z for some
h ∈ H∞(Ω). Thus the proof is complete. �

Theorem 2.4. Suppose that ϕ ∈ H∞(Ω) is odd and there exists a domain
V ⊂ ϕ(Ω) such that Ω ∩ ϕ−1(w) is a singleton for every w ∈ V . Let for some
integer n > 3, SMϕn = −MϕnS and MϕiSMϕ = −MϕSMϕi for 2 6 i < n. If
SMϕ −MϕS is compact, then S = Mh for some h ∈ H∞(Ω).

Proof. First note that since

(SMϕn−1 +Mϕn−1S)Mϕ = −Mϕ(SMϕn−1 +Mϕn−1S),

thus there exists h1 ∈ H∞(Ω) such that SMϕn−1 +Mϕn−1S = Mh1C−z. Now
compactness of SMϕ −MϕS implies that the operator

SMϕ2 −Mϕ2 = Mϕ(SMϕ −MϕS) + (SMϕ −MϕS)Mϕ

is compact. Hence

SMϕ3 +Mϕ3 = (SMϕ2 −Mϕ2S)Mϕ −Mϕ(SMϕ2 −Mϕ2S)Mϕ

is also compact. Finally by continuing this method, we can see that SMϕn−1 +
Mϕn−1S and so Mh1C−z is compact. Thus it should be h1 = 0 on Ω which
implies that SMϕn−1 = −Mϕn−1S. Now, by a similar method used in the proof
of Theorem 2.3, we have SMϕ2 = Mϕ2S. Put W = SMϕ − MϕS. Clearly,
WMϕ = MϕW and so W = Mg for some g ∈ H∞(Ω). By compactness of W ,
we get g = 0 on Ω. Hence SMϕ = MϕS and by Proposition 4.1 in [23], there
exists h ∈ H∞(Ω) such that S = Mh. �

Theorem 2.5. Suppose that ϕ ∈ H∞(Ω) is odd and there exists a domain
V ⊂ ϕ(Ω) such that Ω ∩ ϕ−1(w) is a singleton for every w ∈ V . If for some
integer n > 3, SMϕn = MϕnS, MϕiSMϕ = MϕSMϕi for 2 6 i < n, and
SMϕ +MϕS is compact, then S = MhC−z for some h ∈ H∞(Ω).

Proof. By a the method used in the proof of Theorem 2.3, we can see that
SMϕ2 = Mϕ2S. Again by the proof of Theorem 2.3, if T = SMϕ +MϕS, then
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TMϕ = MϕT . Hence T = Mh for some h ∈ H∞(Ω). Compactness of T implies
that h = 0. Thus T = 0 and so SMϕ = −MϕS. Now by Proposition 3 in [18],
there exists h ∈ H∞(Ω) satisfying S = MhC−z. This completes the proof. �

Theorem 2.6. Suppose that ϕ ∈ H∞(Ω) is odd and there exists a domain
V ⊂ ϕ(Ω) such that Ω ∩ ϕ−1(w) is a singleton for every w ∈ V . If for some
integer n > 3, SMϕn = MϕnS, MϕiSMϕ = MϕSMϕi for 2 6 i < n, and
SMϕ −MϕS is compact, then S = Mh for some h ∈ H∞(Ω).

Proof. Clearly, we can see that T1Mϕ = −MϕT1 where

T1 = SMϕn−1 −Mϕn−1S.

So by Proposition 3 in [17], T1 = Mh1C−z for some h1 in H∞(Ω). Now we show
that Mh1 is compact. Note that we can write

T1 = (SMϕ −MϕS)Mϕn−2 +Mϕn−2(SMϕ −MϕS).

Therefore, T1 and so

Mh1 = Mh1C−z ◦ C−z = T1 ◦ C−z

is compact. By using the Fredholm Alternative Theorem, we get h1 = 0. Hence
SMϕn−1 = Mϕn−1S. By continuing this manner, we conclude that SMϕ =
MϕS. Now, by Proposition 4.1 in [23], S = Mh for some h ∈ H∞(Ω) and so
the proof is complete. �
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