Some Fixed Point Theorems for Nonexpansive Self-Mappings and Multi-Valued Mappings in b-Metric Spaces

B. Mohammadi
Marand Branch, Islamic Azad University
F. Golkarmanesh
Sanandaj Branch, Islamic Azad University
V. Parvaneh*
Gilan-E-Gharb Branch, Islamic Azad University

Abstract

In this paper, motivated by [F. Vetro, Filomat, 29:9 (2015), 2011-2020] we present some fixed point results for a class of nonexpansive self-mappings and multi-valued mappings in the framework of b-metric spaces. Our results generalize and improve the consequences of [Khojasteh et al. Abstract and Applied Analysis, vol. 2014, Article ID 325840, 5 pages, 2014.] and [F. Vetro, Filomat, 29:9 (2015), 20112020]. Some examples are provided to illustrate our results.

AMS Subject Classification: 47H04; 47H10
Keywords and Phrases: Fixed point, multi-valued mappings, nonexpansive self-mapping, b-metric spaces

1. Introduction

Assume that (X, d) be a metric space and $f: X \rightarrow X$ be a single-valued mapping. Then, f is called a k-Lipscitz mapping if $d(f x, f y) \leqslant k d(x, y)$

Received: January 2018; Accepted: November 2018

* Corresponding author
for all $x, y \in X$, where $k \geqslant 0$. If $k \in[0,1)$, then it is called a contractive mapping and if $k=1, f$ is called a nonexpansive mapping. In [2] Banach proved a very important fixed point result for a contractive self-mapping. Obviously, any contractive mapping is nonexpansive, but the reverse is not true in general. Several researchers investigated fixed point theory for nonexpansive mappings such as [7, 8]. In [9] Khojasteh et al. investigated fixed point results for a new type of selfmappings and multivalued mappings. Then, Vetro in [17] extended their results for nonexpansive mappings using a binary relation on X, called f-invariant. Also, he established fixed point results for nonexpansive multi-valued mappings with a new type of contraction. On the other hand, fixed point theory for mappings on b-metric spaces as a generalization of metric spaces has attracted many researchers for many years (see $[1,3,4,5,6,10,12,13,14,15,16,18,19,20,21,22]$). In this paper, motivated by Vetro [17] we give some fixed point results for a class of nonexpansive self-mappings and multi-valued mappings on b-metric spaces. Our results generalize and improve the results of Khojasteh et al. [9] and Vetro [17]. Some examples are given to illustrate our results.

2. Preliminaries

In this section we give some notions and results that will be needed in the sequel.

Definition 2.1. [1] Let X be a nonempty set and $s \geqslant 1$ be a constant real number. The function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric on X if the following conditions hold:
(i) $d(x, y)=0$ iff $x=y$ for all $x, y \in X$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leqslant s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.

In this case, (X, d) is called a b-metric space with parameter s.
Denote by $C B(X)$ the set of all nonempty closed bounded subsets of X.

Assume that H be the Pompeiu-Hausdorff metric on $C B(X)$ defined by

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

for all $A, B \in C B(X)$, where $d(x, B)=\inf _{y \in B} d(x, y)$. An element $x \in$ X is said to be a fixed point of a multi-valued mapping $T: X \rightarrow$ $C B(X)$ whenever $x \in T x$. It is said that $T: X \rightarrow C B(X)$ is contractive whenever $H(T x, T y) \leqslant k d(x, y)$ for all $x, y \in X$, where $k \in[0,1)$. If $k=1$, then T is called a nonexpansive multivalued mapping. Nadler [11] proved the existence of fixed point for contractive multivalued mappings.

Lemma 2.2. [17] If $\left\{a_{n}\right\}$ be a nonincreasing sequence of nonnegative real numbers, then the sequence $\left\{\frac{a_{n}+a_{n+1}}{a_{n}+a_{n+1}+1}\right\}$ is nonincreasing too.

Corollary 2.3. Let (X, d) be a b-metric space and $f: X \rightarrow X$ be a nonexpansive mapping. If $x_{0} \in X$ and $\left\{x_{n}\right\}$ be a Picard sequence starting with x_{0}, that is, $x_{n}=f x_{n-1}$ for all $n \in \mathbb{N}$, then, the sequence

$$
\left\{\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1}\right\}
$$

is nonincreasing too.

3. Fixed Point Results for Nonexpansive SelfMappings

We prove some results for single-valued mappings defined on a b-metric space endowed with an arbitrary binary relation. Let X be a nonempty set, $f: X \rightarrow X$ be a mapping and \mathcal{R} be a binary relation on X, that is, \mathcal{R} is a subset of $X \times X$. Then, \mathcal{R} is Banach f-invariant if $\left(f x, f^{2} x\right) \in$ \mathcal{R}, whenever $(x, f x) \in \mathcal{R}$. Also, a subset Y of X is well ordered with respect to \mathcal{R} if for all $x, y \in Y$ we have $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$. Let Fix $(f)=\{x \in X: x=f x\}$ denotes the set of all fixed points of f on X.

Theorem 3.1. Let (X, d) be a complete b-metric space with parameter $s>1$ endowed with a binary relation \mathcal{R} on X and $f: X \rightarrow X$ be a
nonexpansive mapping such that

$$
\begin{equation*}
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y) \tag{1}
\end{equation*}
$$

for all $(x, y) \in \mathcal{R}$, where $k \in[0,1)$. Also assume that
(a) \mathcal{R} is Banach f-invariant,
(b) if $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n-1}, x_{n}\right) \in \mathcal{R}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$, then $\left(x_{n-1}, z\right) \in \mathcal{R}$, for all $n \in \mathbb{N}$;
(c) Fix (f) is well ordered with respect to \mathcal{R}.

Let there exists $x_{0} \in X$ such that $\left(x_{0}, f x_{0}\right) \in \mathcal{R}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)+1}+k
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence of initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant \frac{s-k}{2}$.

Proof. Let $x_{0} \in X$ be such that $\left(x_{0}, f x_{0}\right) \in \mathcal{R}, \lambda s<1$ and let $\left\{x_{n}\right\}$ be a Picard sequence with initial point x_{0}. If $x_{n-1}=x_{n}$ for some $n \in \mathbb{N}$, then x_{n-1} is a fixed point of f and the existence of a fixed point is proved. Now, we suppose that $x_{n-1} \neq x_{n}$ for all $n \in \mathbb{N}$. From $\left(x_{0}, x_{1}\right)=$ $\left(x_{0}, f x_{0}\right) \in \mathcal{R}$, since \mathcal{R} is Banach f-invariant, we deduce that $\left(x_{1}, x_{2}\right)=$ $\left(f x_{0}, f^{2} x_{0}\right) \in \mathcal{R}$. This implies that $\left(x_{n-1}, x_{n}\right)=\left(f^{n-1} x_{0}, f^{n} x_{0}\right) \in \mathcal{R}$ for all $n \in \mathbb{N}$. Using the contractive condition (1) with $x=x_{n-1}$ and $y=x_{n}$, we get

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right)=d\left(f x_{n-1}, f x_{n}\right) & \leqslant\left(\frac{d\left(x_{n-1}, f x_{n}\right)+d\left(x_{n}, f x_{n-1}\right)}{s\left[d\left(x_{n-1}, f x_{n-1}\right)+d\left(x_{n}, f x_{n}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{r}\right. \\
& =\left(\frac{d\left(x_{n-1}, x_{n+1}\right)}{s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \\
& \leqslant\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \tag{2}
\end{align*}
$$

for all $n \in \mathbb{N}$. From (2), by Corollary 2.3, we get

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leqslant\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \\
& \leqslant\left(\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)}{\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \tag{3}\\
& =\lambda d\left(x_{n-1}, x_{n}\right),
\end{align*}
$$

for all $n \in \mathbb{N}$. Thus, for any $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{align*}
d\left(x_{n}, x_{m}\right) & \leqslant s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{m}\right)\right] \\
& \leqslant s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+\ldots+s^{m-n-1} d\left(x_{m-1}, x_{m}\right) \\
& =\sum_{i=1}^{m-n-1} s^{i} d\left(x_{n+i-1}, x_{n+i}\right) \leqslant \sum_{i=1}^{m-n-1} s^{i} \lambda^{i+n-1} d\left(x_{0}, x_{1}\right) \\
& =\lambda^{n-1} d\left(x_{0}, x_{1}\right) \sum_{i=1}^{m-n-1}(\lambda s)^{i} \\
& =\lambda^{n-1} d\left(x_{0}, x_{1}\right)(\lambda s)^{1-n} \sum_{i=n}^{m-1}(\lambda s)^{i} \\
& =d\left(x_{0}, x_{1}\right) s^{1-n} \sum_{i=n}^{m-1}(\lambda s)^{i} . \tag{4}
\end{align*}
$$

As $\lambda s<1$ and $s>1$, the last term in the above tends to zero, as $m, n \rightarrow \infty$. Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is complete, there exists $z \in X$ such that $x_{n} \rightarrow z$. Now we show that z is a fixed point of f. By assumption (b), we deduce that $\left(x_{n}, z\right) \in R$. So, by (1), we have

$$
\begin{align*}
d\left(x_{n+1}, f z\right)=d\left(f x_{n}, f z\right) & \leqslant\left(\frac{d\left(x_{n}, f z\right)+d\left(z, f x_{n}\right)}{s\left[d\left(x_{n}, f x_{n}\right)+d(z, f z)+1\right]}+k\right) d\left(x_{n}, z\right) \\
& =\left(\frac{d\left(x_{n}, f z\right)+d\left(z, x_{n+1}\right)}{s\left[d\left(x_{n}, x_{n+1}\right)+d(z, f z)+1\right]}+k\right) d\left(x_{n}, z\right) \tag{5}
\end{align*}
$$

Taking limit as $n \rightarrow \infty$, in the above inequality, we get $d(z, f z) \leqslant$ 0 . Thus, $d(z, f z)=0$, that is $z=f z$. Thus (i) and (ii) hold. Now, let z, w are two distinct fixed points of f. Then, we have

$$
d(z, w)=d(f z, f w) \leqslant\left(\frac{d(z, f w)+d(w, f z)+k}{s}\right) d(z, w)
$$

which implies that $d(z, w) \geqslant \frac{s-k}{2}$.
Also, we can prove the following result with a weaker contractive condition.

Theorem 3.2. Let (X, d) be a complete b-metric space with parameter $s>1$ endowed with a binary relation \mathcal{R} on X and $f: X \rightarrow X$ be a nonexpansive mapping such that

$$
\begin{equation*}
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y)+L d(y, f x) \tag{6}
\end{equation*}
$$

for all $(x, y) \in \mathcal{R}$, where $k \in[0,1)$ and L is a nonnegative real number. Also, assume that
(a) \mathcal{R} is Banach f-invariant,
(b) if $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n-1}, x_{n}\right) \in \mathcal{R}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$, then $\left(x_{n-1}, z\right) \in \mathcal{R}$, for all $n \in \mathbb{N}$;
(c) Fix (f) is well ordered with respect to \mathcal{R}.

Let there exists $x_{0} \in X$ such that $\left(x_{0}, f x_{0}\right) \in \mathcal{R}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)+1}+k
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence with initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant$ $\max \left\{\frac{s(1-L)-k}{2}, 0\right\}$.

Proof. Let $x_{0} \in X$ be such that $\left(x_{0}, f x_{0}\right) \in \mathcal{R}, \lambda s<1$ and let $\left\{x_{n}\right\}$ be a Picard sequence with initial point x_{0}. If $x_{n-1}=x_{n}$ for some $n \in \mathbb{N}$, then x_{n-1} is a fixed point of f and the existence of a fixed point is proved. Now, we suppose that $x_{n-1} \neq x_{n}$ for all $n \in \mathbb{N}$. From $\left(x_{0}, x_{1}\right)=$ $\left(x_{0}, f x_{0}\right) \in \mathcal{R}$, since \mathcal{R} is Banach f-invariant, we deduce $\left(x_{1}, x_{2}\right)=$ $\left(f x_{0}, f^{2} x_{0}\right) \in \mathcal{R}$. This implies that $\left(x_{n-1}, x_{n}\right)=\left(f^{n-1} x_{0}, f^{n} x_{0}\right) \in \mathcal{R}$
for all $n \in \mathbb{N}$. Using the contractive condition (6) with $x=x_{n-1}$ and $y=x_{n}$, we get

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)=d\left(f x_{n-1}, f x_{n}\right) & \leqslant\left(\frac{d\left(x_{n-1}, f x_{n}\right)+d\left(x_{n}, f x_{n-1}\right)}{s\left[d\left(x_{n-1}, f x_{n-1}\right)+d\left(x_{n}, f x_{n}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right)+L d\left(x_{n}, x_{n}\right) \\
& =\left(\frac{d\left(x_{n-1}, x_{n+1}\right)}{s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \\
& \leqslant\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. As in the proof of Theorem $3.1,\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is complete, there exists $z \in X$ such that $x_{n} \rightarrow z$. Now we show that z is a fixed point of f. By assumption (b), we deduce that $\left(x_{n}, z\right) \in \mathcal{R}$. So, by (6), we have

$$
\begin{align*}
d\left(x_{n+1}, f z\right)=d\left(f x_{n}, f z\right) & \leqslant\left(\frac{d\left(x_{n}, f z\right)+d\left(z, f x_{n}\right)}{s\left[d\left(x_{n}, f x_{n}\right)+d(z, f z)+1\right]}+k\right) d\left(x_{n}, z\right)+L d\left(x_{n}, z\right) \\
& =\left(\frac{d\left(x_{n}, f z\right)+d\left(z, x_{n+1}\right)}{s\left[d\left(x_{n}, x_{n+1}\right)+d(z, f z)+1\right]}+k\right) d\left(x_{n}, z\right)+L d\left(x_{n}, z\right) \tag{7}
\end{align*}
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we get $d(z, f z) \leqslant$ 0 . Thus, $d(z, f z)=0$, that is $z=f z$. Thus, (i) and (ii) hold. Now, let z, w are two distinct fixed points of f. Then, we have

$$
d(z, w)=d(f z, f w) \leqslant\left(\frac{d(z, f w)+d(w, f z)+k}{s}\right) d(z, w)+L d(z, w)
$$

which implies that $d(z, w) \geqslant \frac{s(1-L)-k}{2}$. Thus, (iii) holds.
Putting $\mathcal{R}=X \times X$ in Theorems 3.1 and 3.2, we obtain the following results in b-metric spaces:

Theorem 3.3. Let (X, d) be a complete b-metric space with parameter $s>1$ and let $f: X \rightarrow X$ be a nonexpansive mapping such that

$$
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y)
$$

for all $x, y \in X$, where $k \in[0,1)$. Assume that there exists $x_{0} \in X$ such that $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)+1}+k .
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence with initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant \frac{s-k}{2}$.

Theorem 3.4. Let (X, d) be a complete b-metric space with parameter $s>1$ and let $f: X \rightarrow X$ be a nonexpansive mapping such that

$$
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y)+L d(y, f x)
$$

for all $(x, y) \in X$, where $k \in[0,1)$ and L is a nonnegative real number. Let there exists $x_{0} \in X$ such that $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0}, f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0}, f^{2} x_{0}\right)+1}+k .
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence with initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant$ $\max \left\{\frac{s(1-L)-k}{2}, 0\right\}$.

Example 3.5. Let $X=[0,1] \cup\left[\frac{5}{2}, \infty\right)$ and $d: X \times X: \rightarrow[0, \infty)$ be defined by $d(x, y)=(x-y)^{2}$. Define $f: X \rightarrow X$ by $f x= \begin{cases}\frac{1}{2}+\frac{1}{2} x & \text { if } x \in[0,1], \\ \frac{5}{4}+\frac{1}{2} x & \text { if } x \in\left[\frac{5}{2}, \infty\right) .\end{cases}$ It is clear that (X, d) is a complete b-metric space with parameter $s=2$ and f is nonexpansive. Also, if $x, y \in[0,1]$ or $x, y \in\left[\frac{5}{2}, \infty\right)$, then

$$
d(f x, f y)=\frac{1}{4}(x-y)^{2} \leqslant \frac{1}{2}(x-y)^{2}=\frac{1}{2} d(x, y)
$$

If $x \in[0,1]$ and $y \in\left[\frac{5}{2}, \infty\right)$, then

$$
\begin{equation*}
\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]} \geqslant \frac{3}{4} \tag{8}
\end{equation*}
$$

In fact,

$$
\begin{align*}
& \frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]} \geqslant \frac{3}{4} \\
& \Longleftrightarrow \frac{\left(x-\frac{5}{4}-\frac{1}{2} y\right)^{2}+\left(y-\frac{1}{2}-\frac{1}{2} x\right)^{2}}{\left[\left(x-\frac{1}{2}-\frac{1}{2} x\right)^{2}+\left(y-\frac{5}{4}-\frac{1}{2} y\right)^{2}+1\right]} \geqslant \frac{3}{2} \\
& \Longleftrightarrow 2 x^{2}+2\left(\frac{5}{4}+\frac{1}{2} y\right)^{2}-4 x\left(\frac{5}{4}+\frac{1}{2} y\right)+2 y^{2}+2\left(\frac{1}{2}+\frac{1}{2} x\right)^{2}-4 y\left(\frac{1}{2}+\frac{1}{2} x\right) \\
& \geqslant 3 x^{2}+3\left(\frac{1}{2}+\frac{1}{2} x\right)^{2}-6 x\left(\frac{1}{2}+\frac{1}{2} x\right)+3 y^{2}+3\left(\frac{5}{4}+\frac{1}{2} y\right)^{2}-6 y\left(\frac{5}{4}+\frac{1}{2} y\right)+3 \\
& \Longleftrightarrow 7 x^{2}+7 y^{2}-16 x y-10 x+17 y \geqslant \frac{77}{4} \\
& \Longleftrightarrow 7(y-x)^{2}+17 y \geqslant \frac{63}{4}+\frac{14}{4}+2 x(y+5) \tag{9}
\end{align*}
$$

Since $(y-x) \geqslant \frac{3}{2}$, thus $7(y-x)^{2} \geqslant \frac{63}{4}$. It is sufficient to show that $17 y \geqslant \frac{14}{4}+2 x(y+5)$. Now, since $x \leqslant 1$, it is sufficient to show $17 y \geqslant$ $\frac{14}{4}+2(y+5)$ or equally $y \geqslant \frac{54}{60}$ which is desired. Thus, (7) holds. Now

$$
\begin{align*}
d(f x, f y) & =\left(\frac{5}{4}+\frac{1}{2} y-\frac{1}{2}-\frac{1}{2} x\right)^{2} \\
& =\left(\frac{3}{4}+\frac{1}{2}(y-x)\right)^{2} \leqslant\left(\frac{3}{4}+\frac{1}{4}\right)(y-x)^{2} \tag{10}\\
& \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+\frac{1}{4}\right) d(x, y) .
\end{align*}
$$

Also, for $k=\frac{1}{4}$ and $x_{0}=\frac{1}{8}$, we have

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0}, f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0}, f^{2} x_{0}\right)+1}+k=\frac{245}{1269}+\frac{1}{4}
$$

Therefore, $\lambda s=\left(\frac{245}{1269}+\frac{1}{4}\right) 2=\frac{490}{1269}+\frac{1}{2}<1$. Thus, all of the conditions of Theorem 3.3 are satisfied and so T has a fixed point. Here, $z=1$ and $w=\frac{5}{2}$ are two fixed points of f. Also,

$$
d(z, w)=\left(1-\frac{5}{2}\right)^{2}=\frac{9}{4} \geqslant \frac{7}{8}=\frac{2-\frac{1}{4}}{2}=\frac{s-k}{2}
$$

Note that f is not a contraction. In fact, $d\left(f 1, f \frac{5}{2}\right)=d\left(1, \frac{5}{2}\right)$.

Let (X, d) be a b-metric space and \preceq be an order on X. Then, the triple (X, d, \preceq) is called a partial ordered b-metric space. Then, two elements $x, y \in X$ are called comparable if $x \preceq y$ or $y \preceq x$. Also, (X, d, \preceq) is called regular if for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$, then $x_{n} \preceq z$, for all $n \in \mathbb{N}$. Note that $\mathcal{R}=\{(x, y): x \preceq y\}$ is a binary relation on X. Also, if $f: X \rightarrow X$ be nondecreasing, then \mathcal{R} is Banach f-invariant.

Theorem 3.6. Let (X, d, \preceq) be a complete ordered b-metric space with parameter $s>1$ and $f: X \rightarrow X$ be a nonexpansive nondecreasing mapping such that

$$
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y)
$$

for all comparable elements $x, y \in X$, where $k \in[0,1)$. Also assume that
(a) (X, d, \preceq) is regular,
(b) Fix (f) is well ordered with respect to \preceq.

Let there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)+1}+k
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence with initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant \frac{s-k}{2}$.

Theorem 3.7. Let (X, d, \preceq) be a complete ordered b-metric space with parameter $s>1$ and $f: X \rightarrow X$ be a nonexpansive nondecreasing mapping such that

$$
d(f x, f y) \leqslant\left(\frac{d(x, f y)+d(y, f x)}{s[d(x, f x)+d(y, f y)+1]}+k\right) d(x, y)+L d(x, y)
$$

for all comparable elements $x, y \in X$, where $k \in[0,1)$ and L is a nonnegative real number. Also assume that
(a) (X, d, \preceq) is regular,
(b) Fix (f) is well ordered with respect to \preceq.

Let there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)}{d\left(x_{0}, f x_{0}\right)+d\left(f x_{0} ; f^{2} x_{0}\right)+1}+k
$$

Then,
(i) f has at least one fixed point $z \in X$,
(ii) the Picard sequence with initial point $x_{0} \in X$ converges to a fixed point of f,
(iii) if $z, w \in X$ are two distinct fixed points of f, then $d(z, w) \geqslant$ $\frac{s(1-L)-k}{2}$.

4. Fixed Point Results for Nonexpansive MultiValued Mappings

In this section, we give some fixed point results for nonexpansive multivalued mappings in b-metric spaces. Let (X, d) be a b-metric space and $K(X)$ be the set of all nonempty compact subsets of X.
Definition 4.1. Let \mathcal{R} be a binary relation on X. Then, \mathcal{R} is called Banach T-invariant if for any $x \in X$ and $y \in T x$ with $(x, y) \in \mathcal{R}$, then we have $(y, z) \in \mathcal{R}$ for all $z \in T y$.
Note that if T be a single-valued mapping, then Definition 4.1 reduces to the definition of f-invariant for single-valued mappings.
Theorem 4.2. Let (X, d) be a complete b-metric space with parameter $s>1$ endowed with a binary relation \mathcal{R} on X and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
\begin{equation*}
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y) \tag{11}
\end{equation*}
$$

for all $(x, y) \in \mathcal{R}$, where $k \in[0,1)$. Also, assume that
(a) \mathcal{R} is Banach T-invariant,
(b) if $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n-1}, x_{n}\right) \in \mathcal{R}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$, then $\left(x_{n-1}, z\right) \in \mathcal{R}$, for all $n \in \mathbb{N}$;

Let there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\left(x_{0}, x_{1}\right) \in \mathcal{R}, d\left(x_{0}, x_{1}\right)=$ $d\left(x_{0}, T x_{0}\right)$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k .
$$

Then, T has at least one fixed point $z \in X$.
Proof. Let $x_{0} \in X$ and $x_{1} \in T x_{0}$ be such that $\left(x_{0}, x_{1}\right) \in \mathcal{R}, d\left(x_{0}, x_{1}\right)=$ $d\left(x_{0}, T x_{0}\right)$ and $\lambda s<1$. Since $T x_{1}$ is compact, there exists $x_{2} \in T x_{1}$ such that $d\left(x_{1}, x_{2}\right)=d\left(x_{1}, T x_{1}\right)$.
From $\left(x_{0}, x_{1}\right) \in \mathcal{R}$, since \mathcal{R} is Banach T-invariant, we get $\left(x_{1}, x_{2}\right) \in$ \mathcal{R}. Continuing this process, we have a sequence $\left\{x_{n}\right\}$ in X, such that $\left(x_{n-1}, x_{n}\right) \in \mathcal{R}, x_{n} \in T x_{n-1}$ and $d\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, T x_{n-1}\right)$ for all $n \in \mathbb{N}$. Since T is nonexpansine, we have $d\left(x_{n}, x_{n+1}\right)=d\left(x_{n}, T x_{n}\right) \leqslant$ $H\left(T x_{n-1}, T x_{n}\right) \leqslant d\left(x_{n-1}, x_{n}\right)$. Thus, by Corollary 2.3,

$$
\left\{\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1}\right\}
$$

is nonincreasing. Using the contractive condition (11) with $x=x_{n-1}$ and $y=x_{n}$, we get

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(x_{n}, T x_{n}\right) \leqslant H\left(T x_{n-1}, T x_{n}\right) \\
& \leqslant\left(\frac{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{s\left[d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \\
& =\left(\frac{d\left(x_{n-1}, x_{n+1}\right)}{s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \tag{12}\\
& \leqslant\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right)
\end{align*}
$$

for all $n \in \mathbb{N}$. Thus, we get

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leqslant\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \\
& \leqslant\left(\frac{d\left(x_{0}, x_{1}+d\left(x_{1}, x_{2}\right)\right.}{\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+1\right]}+k\right) d\left(x_{n-1}, x_{n}\right) \tag{13}\\
& =\lambda d\left(x_{n-1}, x_{n}\right)
\end{align*}
$$

for all $n \in \mathbb{N}$. Thus, as in Theorem 3.1, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is complete, there exists $z \in X$ such that $x_{n} \rightarrow z$. Now, we show that z is a fixed point of T. By assumption (b), we deduce that $\left(x_{n}, z\right) \in \mathcal{R}$. So, by (11), we have

$$
\begin{align*}
d(z, T z) & \leqslant s\left[d\left(z, x_{n+1}\right)+d\left(x_{n+1}, T z\right)\right] \\
& \leqslant s d\left(z, x_{n+1}\right)+s H\left(T x_{n}, T z\right) \\
& \leqslant s d\left(z, x_{n+1}\right)+\left(\frac{d\left(x_{n}, T z\right)+d\left(z, T x_{n}\right)}{\left[d\left(x_{n}, T x_{n}+d(z, T z)+1\right]\right.}+k\right) d\left(x_{n}, z\right) \tag{14}\\
& =s d\left(z, x_{n+1}+\left(\frac{d\left(x_{n}, T z\right)+d\left(z, x_{n+1}\right)}{\left[d\left(x_{n}, x_{n+1}\right)+d(z, T z)+1\right]}+k\right) d\left(x_{n}, z\right)\right.
\end{align*}
$$

Taking limit as $n \rightarrow \infty$, in the above inequality, we get $d(z, T z) \leqslant$ 0 . Thus, $d(z, T z)=0$, that is, $z \in T z$.
Also, we can prove the following result for nonexpansive multi-valued mapping with a weaker contractive condition.

Theorem 4.3. Let (X, d) be a complete b-metric space with parameter $s>1$ endowed with a binary relation \mathcal{R} on X and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
\begin{equation*}
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y)+L d(x, y) \tag{15}
\end{equation*}
$$

for all $(x, y) \in \mathcal{R}$, where $k \in[0,1)$ and L is a nonnegative real number. Also, assume that
(a) \mathcal{R} is Banach T-invariant,
(b) if $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n-1}, x_{n}\right) \in \mathcal{R}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$, then $\left(x_{n-1}, z\right) \in \mathcal{R}$, for all $n \in \mathbb{N}$;

Let there exists $x_{0} \in X, x_{1} \in T x_{0}$ such that $\left(x_{0}, x_{1}\right) \in \mathcal{R}, d\left(x_{0}, x_{1}\right)=$ $d\left(x_{0}, T x_{0}\right)$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k
$$

Then, T has at least one fixed point $z \in X$.
Putting $\mathcal{R}=X \times X$ in Theorems 4.2 and 4.3, we obtain the following results in b-metric spaces:

Theorem 4.4. Let (X, d) be a complete b-metric space with parameter $s>1$ and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y)
$$

for all $x, y \in X$, where $k \in[0,1)$. Assume that there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $d\left(x_{0}, x_{1}\right)=d\left(x_{0}, T x_{0}\right)$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k .
$$

Then, T has at least one fixed point $z \in X$.
Theorem 4.5. Let (X, d) be a complete b-metric space with parameter $s>1$ and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y)+L d(x, y)
$$

for all $x, y \in X$, where $k \in[0,1)$ and L is a nonnegative real number. Assume that there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $d\left(x_{0}, x_{1}\right)=$ $d\left(x_{0}, T x_{0}\right)$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k .
$$

Then, T has at least one fixed point $z \in X$.
Example 4.6. Let $X=[0,1] \cup\left[\frac{5}{2}, \infty\right)$ and let $d: X \times X: \rightarrow[0, \infty)$ be defined by $d(x, y)=(x-y)^{2}$. Define $T: X \rightarrow K(X)$ by

$$
T x=\left\{\begin{array}{l}
{\left[\frac{1}{2}+\frac{1}{2} x, 1\right], \text { if } x \in[0,1]} \\
{\left[\frac{5}{2}, \frac{5}{4}+\frac{1}{2} x\right], \text { if } x \in\left[\frac{5}{2}, \infty\right) .}
\end{array}\right.
$$

It is clear that (X, d) is a complete b-metric space with parameter $s=2$ and T is nonexpansive. Also, if $x, y \in[0,1]$ or $x, y \in\left[\frac{5}{2}, \infty\right)$, then

$$
H(T x, T y)=\frac{1}{4}(x-y)^{2} \leqslant \frac{1}{2}(x-y)^{2}=\frac{1}{2} d(x, y) .
$$

If $x \in[0,1]$ and $y \in\left[\frac{5}{2}, \infty\right)$, then

$$
\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]} \geqslant \frac{3}{4}
$$

Now,

$$
\begin{aligned}
H(T x, T y) & \left.=\max \left\{\frac{5}{2}-\frac{1}{2}-\frac{1}{2} x, 1+\frac{1}{2} y-1\right\}\right)^{2} \\
& \left.=\max \left\{2-\frac{1}{2} x, \frac{1}{2} y\right\}\right)^{2} \leqslant\left(\frac{3}{4}+\frac{1}{4}\right)(y-x)^{2} \\
& \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+\frac{1}{4}\right) d(x, y) .
\end{aligned}
$$

Also, for $k=\frac{1}{4}$ and $x_{0}=\frac{1}{8}, d\left(x_{0}, T x_{0}\right)=d\left(\frac{1}{8}, \frac{3}{16}\right)$. Thus, with $x_{1}=\frac{3}{16}$ we have

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k=\frac{245}{1269}+\frac{1}{4}
$$

Therefore, $\lambda s=\left(\frac{245}{1269}+\frac{1}{4}\right) 2=\frac{490}{1269}+\frac{1}{2}<1$. Thus, all of the conditions of Theorem 4.4 are satisfied and so T has a fixed point. Here, $z=1$ and $w=\frac{5}{2}$ are two fixed points of T. Also,

$$
d(z, w)=\left(1-\frac{5}{2}\right)^{2}=\frac{9}{4} \geqslant \frac{7}{8}=\frac{2-\frac{1}{4}}{2}=\frac{s-k}{2}
$$

Note that T is not a contraction. In fact, $H\left(T 1, T \frac{5}{2}\right)=d\left(1, \frac{5}{2}\right)$.
Theorem 4.7. Let (X, d, \preceq) be a complete ordered b-metric space with parameter $s>1$ and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y)
$$

for all comparable elements $x, y \in X$, where $k \in[0,1)$. Also, assume that
(a) for any $x \in X$ and $y \in T x$ with $x \preceq y$, then we have $y \preceq z$ for all $z \in T y$.
(b) (X, d, \preceq) is regular,

Let there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $d\left(x_{0}, T x_{0}\right)=d\left(x_{0}, x_{1}\right)$, $x_{0} \preceq x_{1}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k .
$$

Then, T has at least one fixed point $z \in X$.
Theorem 4.8. Let (X, d, \preceq) be a complete ordered b-metric space with parameter $s>1$ and $T: X \rightarrow K(X)$ be a nonexpansive multi-valued mapping such that

$$
H(T x, T y) \leqslant\left(\frac{d(x, T y)+d(y, T x)}{s[d(x, T x)+d(y, T y)+1]}+k\right) d(x, y)+L d(x, y)
$$

for all comparable elements $x, y \in X$, where $k \in[0,1)$ and L is a nonnegative real number. Also, assume that
(a) for any $x \in X$ and $y \in T x$ with $x \preceq y$, then we have $y \preceq z$ for all $z \in T y$,
(b) (X, d, \preceq) is regular.

Let there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $d\left(x_{0}, T x_{0}\right)=d\left(x_{0}, x_{1}\right)$, $x_{0} \preceq x_{1}$ and $\lambda s<1$, where

$$
\lambda=\frac{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)}{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right)+1}+k .
$$

Then, T has at least one fixed point $z \in X$.

References

[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, (Russian) Func. Anal., Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 30 (1989), 26-37.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181.
[3] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babes-Bolyai Math., 54 (2009), 3-14.
[4] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4 (2009), 285-301.
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
[6] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
[7] M. Edelstein, On nonexpansive mappings, Proc. Amer. Math. Soc., 15 (1964), 689-695.
[8] M. A. Khamsi and S. Reich, Nonexpansive mappings and semigroups in hyperconvex spaces, Math. Japonica, 35 (1990), 467-471.
[9] F. Khojasteh, M. Abbas, and S. Costache, Two new types of fixed point theorems in complete metric spaces, Abstract and Applied Analysis, 2014 (2014), Article ID 325840, 5 pages.
[10] Z. Mustafa, J. R. Roshan, V. Parvaneh, and Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., (2013), 26 pages.
[11] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[12] J. J. Nieto and R. Rodrsguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239.
[13] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, An. Univ. Vest Timis. Ser. Mat.-Inform., 48 (2010), 125-137.
[14] V. Parvaneh, J. R. Roshan, and S. Radenović, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl., (2013), 19 pages.
[15] A. M. C. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
[16] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, and W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., (2013), 23 pages.
[17] F. Vetro, Fixed point results for nonexpansive mappings on metric spaces, Filomat, 29 (2015), 2011-2020.
[18] S. Chandok, M. Jovanovic, and S. Radenovic, Ordered b-metric spaces and Geraghty type contractive mappings, Vojnotehnicki glasnik/Military Technical Courier, 65 (2) (2017), 331-345.
[19] Z. Kadelburg, Lj. Paunović, and S. Radenović, A note on fixed point theorems for weakly T-Kannan and weakly T-Chatterjea contractions in b-metric spaces, Gulf J. Math., 3 (3) (2015), 57-67.
[20] T. Dosenović, M. Pavlović, and S. Radenović, Contractive conditions in b-metric spaces, Vojnotehnicki glasnik/Military Technical Courier, 65 (4) (2017), 851-865.
[21] S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl., (2018), 20:147, https://doi.org/10.1007/s11784-018-0626-2.
[22] S. Aleksić, T. Do.enović, Z. D. Mitrović, and S. Radenović, Remarks on common fixed point results for generalized $\alpha-\psi$-contraction multivalued mappings in b-metric spaces, to appear in Adv. Fixed Point Theory, 9 (1) (2019), 1-16.

Babak Mohammadi

Assistant Professor of Mathematics
Department of Mathematics
Marand Branch, Islamic Azad University
Marand, Iran
E-mail: bmohammadi@marandiau.ac.ir

Farhan Golkarmanesh

Assistant Professor of Mathematics
Department of Mathematics
Sanandaj Branch, Islamic Azad University
Sanandaj, Iran
E-mail: Fgolkarmanesh@yahoo.com
Vahid Parvaneh
Assistant Professor of Mathematics
Department of Mathematics
Gilan-E-Gharb Branch, Islamic Azad University
Gilan-E-Gharb, Iran

