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for all x, y ∈ X, where k  0. If k ∈ [0, 1), then it is called a con-
tractive mapping and if k = 1, f is called a nonexpansive mapping. In
[2] Banach proved a very important fixed point result for a contrac-
tive self-mapping. Obviously, any contractive mapping is nonexpansive,
but the reverse is not true in general. Several researchers investigated
fixed point theory for nonexpansive mappings such as [7, 8]. In [9]
Khojasteh et al. investigated fixed point results for a new type of self-
mappings and multivalued mappings. Then, Vetro in [17] extended their
results for nonexpansive mappings using a binary relation on X, called
f -invariant. Also, he established fixed point results for nonexpansive
multi-valued mappings with a new type of contraction. On the other
hand, fixed point theory for mappings on b-metric spaces as a general-
ization of metric spaces has attracted many researchers for many years
(see [1, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22 ]). In this pa-
per, motivated by Vetro [17] we give some fixed point results for a class
of nonexpansive self-mappings and multi-valued mappings on b-metric
spaces. Our results generalize and improve the results of Khojasteh et
al. [9] and Vetro [17]. Some examples are given to illustrate our results.

2. Preliminaries

In this section we give some notions and results that will be needed in
the sequel.

Definition 2.1. [1] Let X be a nonempty set and s  1 be a constant
real number. The function d : X × X → [0,∞) is called a b-metric on
X if the following conditions hold:

(i) d(x, y) = 0 iff x = y for all x, y ∈ X;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y)  s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

In this case, (X, d) is called a b-metric space with parameter s.

Denote by CB(X) the set of all nonempty closed bounded subsets of X.
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Assume that H be the Pompeiu-Hausdorff metric on CB(X) defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for all A,B ∈ CB(X), where d(x,B) = infy∈B d(x, y). An element x ∈
X is said to be a fixed point of a multi-valued mapping T : X →
CB(X) whenever x ∈ Tx. It is said that T : X → CB(X) is contractive
whenever H(Tx, Ty)  kd(x, y) for all x, y ∈ X, where k ∈ [0, 1). If
k = 1, then T is called a nonexpansive multivalued mapping. Nadler [11]
proved the existence of fixed point for contractive multivalued mappings.

Lemma 2.2. [17] If {an} be a nonincreasing sequence of nonnegative
real numbers, then the sequence { an+an+1

an+an+1+1
} is nonincreasing too.

Corollary 2.3. Let (X, d) be a b-metric space and f : X → X be a
nonexpansive mapping. If x0 ∈ X and {xn} be a Picard sequence starting
with x0, that is, xn = fxn−1 for all n ∈ N, then, the sequence

{ d(xn−1, xn) + d(xn, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

}

is nonincreasing too.

3. Fixed Point Results for Nonexpansive Self-
Mappings

We prove some results for single-valued mappings defined on a b-metric
space endowed with an arbitrary binary relation. Let X be a nonempty
set, f : X → X be a mapping and R be a binary relation on X, that is,
R is a subset of X × X. Then, R is Banach f -invariant if (fx, f2x) ∈
R, whenever (x, fx) ∈ R. Also, a subset Y of X is well ordered with
respect to R if for all x, y ∈ Y we have (x, y) ∈ R or (y, x) ∈ R. Let
Fix(f) = {x ∈ X : x = fx} denotes the set of all fixed points of f on X.

Theorem 3.1. Let (X, d) be a complete b-metric space with parameter
s > 1 endowed with a binary relation R on X and f : X → X be a
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nonexpansive mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y) (1)

for all (x, y) ∈ R, where k ∈ [0, 1). Also assume that

(a) R is Banach f -invariant,

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ R for all n ∈ N
and xn → z ∈ X as n→∞, then (xn−1, z) ∈ R, for all n ∈ N;

(c) Fix(f) is well ordered with respect to R.

Let there exists x0 ∈ X such that (x0, fx0) ∈ R and λs < 1, where

λ =
d(x0, fx0) + d(fx0; f2x0)

d(x0, fx0) + d(fx0; f2x0) + 1
+ k.

Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w)  s−k
2 .

Proof. Let x0 ∈ X be such that (x0, fx0) ∈ R, λs < 1 and let {xn} be
a Picard sequence with initial point x0. If xn−1 = xn for some n ∈ N,
then xn−1 is a fixed point of f and the existence of a fixed point is
proved. Now, we suppose that xn−1 = xn for all n ∈ N. From (x0, x1) =
(x0, fx0) ∈ R, since R is Banach f -invariant, we deduce that (x1, x2) =
(fx0, f2x0) ∈ R. This implies that (xn−1, xn) = (fn−1x0, fnx0) ∈ R
for all n ∈ N. Using the contractive condition (1) with x = xn−1 and
y = xn, we get

d(xn, xn+1) = d(fxn−1, fxn)  ( d(xn−1,fxn)+d(xn,fxn−1)
s[d(xn−1,fxn−1)+d(xn,fxn)+1]

+ k)d(xn−1, xn)

= ( d(xn−1,xn+1)
s[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

 ( d(xn−1,xn)+d(xn,xn+1)
[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)
(2)

for all n ∈ N. From (2), by Corollary 2.3, we get
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d(xn, xn+1)  ( d(xn−1,xn)+d(xn,xn+1)
[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

 ( d(x0,x1)+d(x1,x2)
[d(x0,x1)+d(x1,x2)+1]

+ k)d(xn−1, xn)

= λd(xn−1, xn),

(3)

for all n ∈ N. Thus, for any m,n ∈ N with m > n, we have

d(xn, xm)  s[d(xn, xn+1) + d(xn+1, xm)]

 sd(xn, xn+1) + s2d(xn+1, xn+2) + ...+ sm−n−1d(xm−1, xm)

=
m−n−1

i=1 sid(xn+i−1, xn+i) 
m−n−1

i=1 siλi+n−1d(x0, x1)

= λn−1d(x0, x1)
m−n−1

i=1 (λs)i

= λn−1d(x0, x1)(λs)1−n
m−1

i=n (λs)i

= d(x0, x1)s1−n
m−1

i=n (λs)i.

(4)
As λs < 1 and s > 1, the last term in the above tends to zero, as
m,n → ∞. Thus, {xn} is a Cauchy sequence. Since (X, d) is complete,
there exists z ∈ X such that xn → z. Now we show that z is a fixed
point of f . By assumption (b), we deduce that (xn, z) ∈ R. So, by (1),
we have

d(xn+1, fz) = d(fxn, fz)  ( d(xn,fz)+d(z,fxn)
s[d(xn,fxn)+d(z,fz)+1]

+ k)d(xn, z)

= ( d(xn,fz)+d(z,xn+1)
s[d(xn,xn+1)+d(z,fz)+1]

+ k)d(xn, z).

(5)
Taking limit as n → ∞, in the above inequality, we get d(z, fz) 
0. Thus, d(z, fz) = 0, that is z = fz. Thus (i) and (ii) hold. Now, let
z, w are two distinct fixed points of f . Then, we have

d(z, w) = d(fz, fw)  (
d(z, fw) + d(w, fz) + k

s
)d(z, w),

which implies that d(z, w)  s−k
2 . 

Also, we can prove the following result with a weaker contractive condi-
tion.
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Theorem 3.2. Let (X, d) be a complete b-metric space with parameter
s > 1 endowed with a binary relation R on X and f : X → X be a
nonexpansive mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y) + Ld(y, fx) (6)

for all (x, y) ∈ R, where k ∈ [0, 1) and L is a nonnegative real num-
ber. Also, assume that

(a) R is Banach f-invariant,

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ R for all n ∈ N
and xn → z ∈ X as n→∞, then (xn−1, z) ∈ R, for all n ∈ N;

(c) Fix(f) is well ordered with respect to R.

Let there exists x0 ∈ X such that (x0, fx0) ∈ R and λs < 1, where

λ =
d(x0, fx0) + d(fx0; f2x0)

d(x0, fx0) + d(fx0; f2x0) + 1
+ k.

Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence with initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w) 
max{ s(1−L)−k2 , 0}.

Proof. Let x0 ∈ X be such that (x0, fx0) ∈ R, λs < 1 and let {xn} be
a Picard sequence with initial point x0. If xn−1 = xn for some n ∈ N,
then xn−1 is a fixed point of f and the existence of a fixed point is
proved. Now, we suppose that xn−1 = xn for all n ∈ N. From (x0, x1) =
(x0, fx0) ∈ R, since R is Banach f -invariant, we deduce (x1, x2) =
(fx0, f2x0) ∈ R. This implies that (xn−1, xn) = (fn−1x0, fnx0) ∈ R
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for all n ∈ N. Using the contractive condition (6) with x = xn−1 and
y = xn, we get
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+ k)d(xn−1, xn) + Ld(xn, xn)

= ( d(xn−1,xn+1)
s[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

 ( d(xn−1,xn)+d(xn,xn+1)
[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

for all n ∈ N. As in the proof of Theorem 3.1, {xn} is a Cauchy sequence.
Since (X, d) is complete, there exists z ∈ X such that xn → z. Now we
show that z is a fixed point of f . By assumption (b), we deduce that
(xn, z) ∈ R. So, by (6), we have

d(xn+1, fz) = d(fxn, fz)  ( d(xn,fz)+d(z,fxn)
s[d(xn,fxn)+d(z,fz)+1]

+ k)d(xn, z) + Ld(xn, z)

= ( d(xn,fz)+d(z,xn+1)
s[d(xn,xn+1)+d(z,fz)+1]

+ k)d(xn, z) + Ld(xn, z).

(7)
Taking limit as n → ∞ in the above inequality, we get d(z, fz) 
0. Thus, d(z, fz) = 0, that is z = fz. Thus, (i) and (ii) hold. Now,
let z, w are two distinct fixed points of f . Then, we have

d(z, w) = d(fz, fw)  (
d(z, fw) + d(w, fz) + k

s
)d(z, w) + Ld(z, w),

which implies that d(z, w)  s(1−L)−k
2 . Thus, (iii) holds. 

Putting R = X ×X in Theorems 3.1 and 3.2, we obtain the following
results in b-metric spaces:

Theorem 3.3. Let (X, d) be a complete b-metric space with parameter
s > 1 and let f : X → X be a nonexpansive mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y)

for all x, y ∈ X, where k ∈ [0, 1). Assume that there exists x0 ∈ X such
that λs < 1, where

λ =
d(x0, fx0) + d(fx0; f2x0)

d(x0, fx0) + d(fx0; f2x0) + 1
+ k.
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Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence with initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w)  s−k
2 .

Theorem 3.4. Let (X, d) be a complete b-metric space with parameter
s > 1 and let f : X → X be a nonexpansive mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y) + Ld(y, fx)

for all (x, y) ∈ X, where k ∈ [0, 1) and L is a nonnegative real number.

Let there exists x0 ∈ X such that λs < 1, where

λ =
d(x0, fx0) + d(fx0, f2x0)

d(x0, fx0) + d(fx0, f2x0) + 1
+ k.

Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence with initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w) 
max{ s(1−L)−k2 , 0}.

Example 3.5. LetX = [0, 1]∪[52 ,∞) and d : X×X :→ [0,∞) be defined

by d(x, y) = (x−y)2. Define f : X → X by fx =


1
2 +

1
2x if x ∈ [0, 1],

5
4 +

1
2x if x ∈ [52 ,∞).

It is clear that (X, d) is a complete b-metric space with parameter s = 2
and f is nonexpansive. Also, if x, y ∈ [0, 1] or x, y ∈ [52 ,∞), then

d(fx, fy) =
1
4
(x− y)2  1

2
(x− y)2 =

1
2
d(x, y).
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If x ∈ [0, 1] and y ∈ [52 ,∞), then

d(x, fy) + d(y, fx)
s[d(x, fx) + d(y, fy) + 1]

 3
4
. (8)

In fact,

d(x,fy)+d(y,fx)
s[d(x,fx)+d(y,fy)+1] 

3
4

⇐⇒ (x− 5
4
− 1

2
y)2+(y− 1

2
− 1

2
x)2

[(x− 1
2
− 1

2
x)2+(y− 5

4
− 1

2
y)2+1]

 3
2

⇐⇒ 2x2 + 2(54 +
1
2y)

2 − 4x(54 +
1
2y) + 2y2 + 2(12 +

1
2x)

2 − 4y(12 +
1
2x)

 3x2 + 3(12 +
1
2x)

2 − 6x(12 +
1
2x) + 3y2 + 3(54 +

1
2y)

2 − 6y(54 +
1
2y) + 3

⇐⇒ 7x2 + 7y2 − 16xy − 10x+ 17y  77
4

⇐⇒ 7(y − x)2 + 17y  63
4 + 14

4 + 2x(y + 5).
(9)

Since (y − x)  3
2 , thus 7(y − x)2  63

4 . It is sufficient to show that
17y  14

4 + 2x(y + 5). Now, since x  1, it is sufficient to show 17y 
14
4 + 2(y + 5) or equally y  54

60 which is desired. Thus, (7) holds. Now

d(fx, fy) = (54 +
1
2y −

1
2 −

1
2x)

2

= (34 +
1
2(y − x))2  (34 +

1
4)(y − x)2

 ( d(x,fy)+d(y,fx)
s[d(x,fx)+d(y,fy)+1] +

1
4)d(x, y).

(10)

Also, for k = 1
4 and x0 = 1

8 , we have

λ =
d(x0, fx0) + d(fx0, f2x0)

d(x0, fx0) + d(fx0, f2x0) + 1
+ k =

245
1269

+
1
4
.

Therefore, λs = ( 2451269 +
1
4)2 = 490

1269 +
1
2 < 1. Thus, all of the conditions

of Theorem 3.3 are satisfied and so T has a fixed point. Here, z = 1 and
w = 5

2 are two fixed points of f . Also,

d(z, w) = (1− 5
2
)2 =

9
4
 7

8
=

2− 1
4

2
=
s− k

2
.

Note that f is not a contraction. In fact, d(f1, f 52) = d(1, 52).
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Let (X, d) be a b-metric space and  be an order on X. Then, the
triple (X, d,) is called a partial ordered b-metric space. Then, two
elements x, y ∈ X are called comparable if x  y or y  x. Also,
(X, d,) is called regular if for any nondecreasing sequence {xn} in X
such that xn → z ∈ X as n→∞, then xn  z, for all n ∈ N. Note that
R = {(x, y) : x  y} is a binary relation on X. Also, if f : X → X be
nondecreasing, then R is Banach f -invariant.

Theorem 3.6. Let (X, d,) be a complete ordered b-metric space with
parameter s > 1 and f : X → X be a nonexpansive nondecreasing
mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y)

for all comparable elements x, y ∈ X, where k ∈ [0, 1). Also assume that

(a) (X, d,) is regular,

(b) Fix(f) is well ordered with respect to .

Let there exists x0 ∈ X such that x0  fx0 and λs < 1, where

λ =
d(x0, fx0) + d(fx0; f2x0)

d(x0, fx0) + d(fx0; f2x0) + 1
+ k.

Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence with initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w)  s−k
2 .

Theorem 3.7. Let (X, d,) be a complete ordered b-metric space with
parameter s > 1 and f : X → X be a nonexpansive nondecreasing
mapping such that

d(fx, fy)  (
d(x, fy) + d(y, fx)

s[d(x, fx) + d(y, fy) + 1]
+ k)d(x, y) + Ld(x, y)



SOME FIXED POINT THEOREMS FOR ... 11

for all comparable elements x, y ∈ X, where k ∈ [0, 1) and L is a non-
negative real number. Also assume that

(a) (X, d,) is regular,

(b) Fix(f) is well ordered with respect to .

Let there exists x0 ∈ X such that x0  fx0 and λs < 1, where

λ =
d(x0, fx0) + d(fx0; f2x0)

d(x0, fx0) + d(fx0; f2x0) + 1
+ k.

Then,

(i) f has at least one fixed point z ∈ X,

(ii) the Picard sequence with initial point x0 ∈ X converges to a fixed
point of f ,

(iii) if z, w ∈ X are two distinct fixed points of f , then d(z, w) 
s(1−L)−k

2 .

4. Fixed Point Results for Nonexpansive Multi-
Valued Mappings

In this section, we give some fixed point results for nonexpansive multi-
valued mappings in b-metric spaces. Let (X, d) be a b-metric space and
K(X) be the set of all nonempty compact subsets of X.

Definition 4.1. Let R be a binary relation on X. Then, R is called
Banach T -invariant if for any x ∈ X and y ∈ Tx with (x, y) ∈ R, then
we have (y, z) ∈ R for all z ∈ Ty.
Note that if T be a single-valued mapping, then Definition 4.1 reduces
to the definition of f -invariant for single-valued mappings.

Theorem 4.2. Let (X, d) be a complete b-metric space with parameter
s > 1 endowed with a binary relation R on X and T : X → K(X) be a
nonexpansive multi-valued mapping such that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y) (11)

for all (x, y) ∈ R, where k ∈ [0, 1). Also, assume that
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(a) R is Banach T -invariant,

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ R for all n ∈ N
and xn → z ∈ X as n→∞, then (xn−1, z) ∈ R, for all n ∈ N;

Let there exists x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ R, d(x0, x1) =
d(x0, Tx0) and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.

Proof. Let x0 ∈ X and x1 ∈ Tx0 be such that (x0, x1) ∈ R, d(x0, x1) =
d(x0, Tx0) and λs < 1. Since Tx1 is compact, there exists x2 ∈ Tx1 such
that d(x1, x2) = d(x1, Tx1).

From (x0, x1) ∈ R, since R is Banach T -invariant, we get (x1, x2) ∈
R. Continuing this process, we have a sequence {xn} in X, such that
(xn−1, xn) ∈ R, xn ∈ Txn−1 and d(xn−1, xn) = d(xn−1, Txn−1) for all
n ∈ N. Since T is nonexpansine, we have d(xn, xn+1) = d(xn, Txn) 
H(Txn−1, Txn)  d(xn−1, xn). Thus, by Corollary 2.3,

{ d(xn−1, xn) + d(xn, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

}

is nonincreasing. Using the contractive condition (11) with x = xn−1
and y = xn, we get

d(xn, xn+1) = d(xn, Txn)  H(Txn−1, Txn)

 ( d(xn−1,Txn)+d(xn,Txn−1)
s[d(xn−1,Txn−1)+d(xn,Txn)+1]

+ k)d(xn−1, xn)

= ( d(xn−1,xn+1)
s[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

 ( d(xn−1,xn)+d(xn,xn+1)
[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

(12)

for all n ∈ N. Thus, we get

d(xn, xn+1)  ( d(xn−1,xn)+d(xn,xn+1)
[d(xn−1,xn)+d(xn,xn+1)+1]

+ k)d(xn−1, xn)

 ( d(x0,x1)+d(x1,x2)
[d(x0,x1)+d(x1,x2)+1]

+ k)d(xn−1, xn)
= λd(xn−1, xn),

(13)
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for all n ∈ N. Thus, as in Theorem 3.1, {xn} is a Cauchy sequence. Since
(X, d) is complete, there exists z ∈ X such that xn → z. Now, we
show that z is a fixed point of T . By assumption (b), we deduce that
(xn, z) ∈ R. So, by (11), we have

d(z, Tz)  s[d(z, xn+1) + d(xn+1, T z)]
 sd(z, xn+1) + sH(Txn, T z)
 sd(z, xn+1) + ( d(xn,T z)+d(z,Txn)

[d(xn,Txn)+d(z,Tz)+1]
+ k)d(xn, z)

= sd(z, xn+1 + ( d(xn,T z)+d(z,xn+1)
[d(xn,xn+1)+d(z,Tz)+1]

+ k)d(xn, z).

(14)

Taking limit as n → ∞, in the above inequality, we get d(z, Tz) 
0. Thus, d(z, Tz) = 0, that is, z ∈ Tz. 
Also, we can prove the following result for nonexpansive multi-valued
mapping with a weaker contractive condition.

Theorem 4.3. Let (X, d) be a complete b-metric space with parameter
s > 1 endowed with a binary relation R on X and T : X → K(X) be a
nonexpansive multi-valued mapping such that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y) + Ld(x, y) (15)

for all (x, y) ∈ R, where k ∈ [0, 1) and L is a nonnegative real num-
ber. Also, assume that

(a) R is Banach T -invariant,

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ R for all n ∈ N
and xn → z ∈ X as n→∞, then (xn−1, z) ∈ R, for all n ∈ N;

Let there exists x0 ∈ X, x1 ∈ Tx0 such that (x0, x1) ∈ R, d(x0, x1) =
d(x0, Tx0) and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.

Putting R = X ×X in Theorems 4.2 and 4.3, we obtain the following
results in b-metric spaces:
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Theorem 4.4. Let (X, d) be a complete b-metric space with parameter
s > 1 and T : X → K(X) be a nonexpansive multi-valued mapping such
that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y)

for all x, y ∈ X, where k ∈ [0, 1). Assume that there exists x0 ∈ X and
x1 ∈ Tx0 such that d(x0, x1) = d(x0, Tx0) and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.

Theorem 4.5. Let (X, d) be a complete b-metric space with parameter
s > 1 and T : X → K(X) be a nonexpansive multi-valued mapping such
that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y) + Ld(x, y)

for all x, y ∈ X, where k ∈ [0, 1) and L is a nonnegative real num-
ber. Assume that there exists x0 ∈ X and x1 ∈ Tx0 such that d(x0, x1) =
d(x0, Tx0) and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.

Example 4.6. Let X = [0, 1] ∪ [52 ,∞) and let d : X ×X :→ [0,∞) be
defined by d(x, y) = (x− y)2. Define T : X → K(X) by

Tx =
 

1
2 +

1
2x, 1


, if x ∈ [0, 1],

5
2 ,

5
4 +

1
2x


, if x ∈ [52 ,∞).

It is clear that (X, d) is a complete b-metric space with parameter s = 2
and T is nonexpansive. Also, if x, y ∈ [0, 1] or x, y ∈ [52 ,∞), then

H(Tx, Ty) =
1
4
(x− y)2  1

2
(x− y)2 =

1
2
d(x, y).
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If x ∈ [0, 1] and y ∈ [52 ,∞), then

d(x, Ty) + d(y, Tx)
s[d(x, Tx) + d(y, Ty) + 1]

 3
4
.

Now,

H(Tx, Ty) = max{52 −
1
2 −

1
2x, 1 +

1
2y − 1})2

= max{2− 1
2x,

1
2y})

2  (34 +
1
4)(y − x)2

 ( d(x,Ty)+d(y,Tx)
s[d(x,Tx)+d(y,Ty)+1] +

1
4)d(x, y).

Also, for k = 1
4 and x0 = 1

8 , d(x0, Tx0) = d(18 ,
3
16). Thus, with x1 = 3

16

we have

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k =

245
1269

+
1
4
.

Therefore, λs = ( 2451269 +
1
4)2 = 490

1269 +
1
2 < 1. Thus, all of the conditions

of Theorem 4.4 are satisfied and so T has a fixed point. Here, z = 1 and
w = 5

2 are two fixed points of T . Also,

d(z, w) = (1− 5
2
)2 =

9
4
 7

8
=

2− 1
4

2
=
s− k

2
.

Note that T is not a contraction. In fact, H(T1, T 5
2) = d(1, 52).

Theorem 4.7. Let (X, d,) be a complete ordered b-metric space with
parameter s > 1 and T : X → K(X) be a nonexpansive multi-valued
mapping such that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y)

for all comparable elements x, y ∈ X, where k ∈ [0, 1). Also, assume that

(a) for any x ∈ X and y ∈ Tx with x  y, then we have y  z for all
z ∈ Ty.

(b) (X, d,) is regular,
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Let there exists x0 ∈ X and x1 ∈ Tx0 such that d(x0, Tx0) = d(x0, x1),
x0  x1 and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.

Theorem 4.8. Let (X, d,) be a complete ordered b-metric space with
parameter s > 1 and T : X → K(X) be a nonexpansive multi-valued
mapping such that

H(Tx, Ty)  (
d(x, Ty) + d(y, Tx)

s[d(x, Tx) + d(y, Ty) + 1]
+ k)d(x, y) + Ld(x, y)

for all comparable elements x, y ∈ X, where k ∈ [0, 1) and L is a non-
negative real number. Also, assume that

(a) for any x ∈ X and y ∈ Tx with x  y, then we have y  z for all
z ∈ Ty,

(b) (X, d,) is regular.

Let there exists x0 ∈ X and x1 ∈ Tx0 such that d(x0, Tx0) = d(x0, x1),
x0  x1 and λs < 1, where

λ =
d(x0, x1) + d(x1, Tx1)

d(x0, x1) + d(x1, Tx1) + 1
+ k.

Then, T has at least one fixed point z ∈ X.
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