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1. Introduction and Preliminaries

Very recently, Aydi and Czerwik [2] proposed a new notion, generalized b-metric
space and investigated the existence and uniqueness of a fixed point of certain
mappings on this new space. In this paper, we introduce the generalized partial
metric space inspired of the notion of a partial metric space was introduced by
Matthews [18] in 1994 as a part to study the denotational semantics of dataflow
networks which play an important role in constructing models in the theory of
computation (see also e.g. ([1, 2, 5, 14, 19]).

Definition 1.1. (cf. [18]) A generalized partial metric on a nonempty set X
is a function p : X ×X → [0,∞] such that for all x, y, z ∈ X

(PM1) p(x, x) = p(x, y) = p(y, y), then x = y;
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(PM2) p(x, x)  p(x, y);

(PM3) p(x, y) = p(y, x);

(PM4) p(x, z) + p(y, y)  p(x, y) + p(y, z).

The pair (X, p) is then called a generalized partial metric space (gpms).

As usual, by N, N0, R+ we denote the set of all natural numbers, the set of all
nonnegative integers or the set of all nonnegative real numbers, respectively.
If f : X → X, by fn we denote the n-th iterate of f :

f0(x) = x, x ∈ X; fn+1 = f ◦ fn.
Here the symbol ϕ ◦ f denotes the function ϕ[f(x)] for x ∈ X.

As in [18], we may state the following definitions and remarks. If p is a gen-
eralized partial metric on X, then the function dp : X × X → [0,∞] defined
by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)
for all x, y ∈ X, is a generalized metric on X (defined in [?] with s = 1). More
precisely, for a nonempty set X, a function dp : X × X → [0,∞] is called
a generalized metric space if and only if for x, y, z ∈ X the conditions are
satisfied:

(d1) dp(x, y) = 0 if and only if x = y, (self-distance)

(d2) dp(x, y) = dp(y, x), (symmetry)

(d3) dp(x, y)  dp(x, z) + dp(z, y) (triangle inequality).

Note that if a sequence converges in a generalized partial metric space (X, p)
with respect to the topology of dp, then it converges with respect to the topology
of p.

Also, a sequence {xn} is Cauchy in a generalized partial metric space (X, p) if
and only if it is Cauchy in the generalized metric space (X, dp). Consequently,
a generalized partial metric space (X, p) is complete if and only if the gener-
alized metric space (X, dp) is complete. Moreover, if {xn} is a sequence in a
generalized partial metric space (X, p) and x ∈ X, one has that

lim
n→∞

dp(xn, x) = 0⇔ p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 1.2. Let (X, p) be a generalized partial metric space. We say that T :
X → X is (sequentially) continuous if p(xn, x) → p(x, x), then p(Txn, Tx) →
p(Tx, Tx) as n→∞.

Lemma 1.3. Let (X, p) be a generalized partial metric space. Then
(1) if p(x, y) = 0, we have x = y,
(2) if x = y, we have p(x, y) > 0.
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2. Linear Quasi-Contractions

We start with the following theorem

Theorem 2.1. Let (X, d) be a complete generalized partial metric space. As-
sume that T : X → X is continuous on (X, dp). If there exists an α ∈ [0, 1)
such that

p(T (x), T 2(x))  αp(x, T (x)), (1)

for x ∈ X withp(x, T (x)) < ∞, then, for an arbitrary fixed x ∈ X, one of the
following alternative holds : either

(A) for every nonnegative integer n ∈ N0,

p(Tn(x), Tn+1(x)) =∞,

or

(B) there exists an k ∈ N0 such that

p(T k(x), T k+1(x)) <∞.

If (B) holds, then, we also conclude the followings:

(i) the sequence {Tm(x)} is a Cauchy sequence in (X, p);

(ii) there exists a point u ∈ X such that

lim
m→∞

dp(Tm(x), u) = 0 and T (u) = u.

Proof. From (1) we get (in case (B))

p(T k+1(x), T k+2(x))  αp(T k(x), T k+1(x)) <∞

and by induction

p(T k+n(x), T k+n+1(x))  αnp(T k(x), T k+1(x)), n = 0, 1, 2, . . . . (2)
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Consequently, for n, v ∈ N0, by (2) we obtain

p(T k+n(x), T k+n+v(x))  p(T k+n(x), T k+n+1(x)) + . . .+ p(T k+n+v−2(x), T k+n+v−1(x))
+ p(T k+n+v−1(x), T k+n+v(x))
 αnp(T k(x), T k+1(x)) + . . .+ αn+v−2p(T k(x), T k+1(x))
+ αn+v−1p(T k(x), T k+1(x))
 αn[1 + sα+ . . .+ (α)v−1]p(T k(x), T k+1(x))

 αn
∞

m=0

(α)mp(T k(x), T k+1(x))

 αn

1− α
p(T k(x), T k+1(x)).

Finally, we derive that

p(T k+n(x), T k+n+v(x))  αn

1− α
p(T k(x), T k+1(x)) (3)

for n, v ∈ N0. By (3) it follows that {Tn(x)} is a Cauchy sequence in (X, p),
which is complete, so there exists u ∈ X such that

lim
n→∞

p(Tn(x), u) = p(u, u) = lim
n,m→∞

p(Tn(x), Tm(x)) = 0.

We have limn→∞ dp(Tn(x), u) = 0. Since T is continuous on (X, dp), we have

lim
n→∞

dp(Tn+1(x), Tu) = lim
n→∞

dp(T (Tn(x)), Tu) = 0.

Moreover, limn→∞ dp(Tn+1(x), Tu) = dp(u, Tu). By uniqueness of limit, we
get T (u) = u. and u is a fixed point of T , which ends the proof. 

Remark 2.2. Theorem 2.1 extends the results of Aydi and Czerwik ([2] with
s = 1), Diaz and Margolis [4], Luxemburg [15, 16] and Banach ([3] to general-
ized partial metric spaces.

3. Nonlinear Contractions

In this section, we present the following result.

Theorem 3.1. Assume that (X, p) is a complete generalized partial space. Sup-
pose that T : X → X satisfies the condition

p(T (x), T (y))  ϕ[p(x, y)] (4)
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for x, y ∈ X, p(x, y) <∞, where ϕ : [0,∞)→ [0,∞) is nondecreasing and

lim
n→∞

ϕn(z) = 0 for z > 0. (5)

Let x ∈ X be arbitrarily fixed. Then the following alternative holds: either

(C) for every nonnegative integer n ∈ N0

p(Tn(x), Tn+1(x)) =∞,

or

(D) there exists an k ∈ N0 such that

p(T k(x), T k+1(x)) <∞.

In (D), T has a unique fixed point in A := {t ∈ X : dp(T k(x), t) <∞}.

Proof. First, take x ∈ X and ε > 0. Take n ∈ N such that

ϕn(ε) <
ε

2
.

Put α = ϕn and xm = Tm+n(x) for m ∈ N. Then for all x, y ∈ X such that
p(x, y) <∞, one gets

p(Tn(x), Tn(y))  ϕn[p(x, y)] = α[p(x, y)]. (6)

Consider the following set

B := {t ∈ X : p(T k(x), t) <∞}.

Clearly, B ⊂ A and T k(x), T k+1(x) ∈ B.

Now we observe that T : B → B. Indeed, if t ∈ B, i.e., p(T k(x), t) <∞, then

p(T k(x), T (t))  p(T k(x), T k+1(x)) + p(T k+1(x), T (t))]
 ε1 + ϕ[p(T k(x), t)]
 ε1 + ε2 <∞,

where ε1 and ε2 are some positive numbers. Consequently, Tn : B → B. Put
Tn = F . We have F : B → B. We rewrite (6) as

p(F (x), F (y))  ϕn[p(x, y)] = α[p(x, y)]. (7)

For t ∈ B, we have {Fm(t)} ⊂ B, for all m ∈ N0. We verify that {Fm(t)} is a
Cauchy sequence. In fact, putting ym = Fm(t), m ∈ N0, we get

p(F (t), F 2(t)) = p(Tn(t), Tn+1(t))  α[p(t, Tn(t))].
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By induction, we get

p(Fm(t), Fm+1(t))  αm[p(t, F (t))],

that is equivalent to

p(ym, ym+1)  αm[p(t, F (t))].

Consequently, p(ym, ym+1)→ 0 as m→∞. Let m be such that

p(ym, ym+1) <
ε

2
.

Then for every z ∈ K(ym, ε) := {y ∈ X : p(ym, y)  ε}, we obtain

p(F (z), F (ym))  α[p(z, ym)]  α(ε) = ϕn(ε) <
ε

2
.

Also, we know that

p(F (ym), ym) = p(ym+1, ym) <
ε

2
.

Thus we have

p(Tn(z), ym) = p(F (z), ym)  p(F (z), F (ym)) + p(F (ym), ym) <
ε

2
+
ε

2
= ε,

which means that F = Tn maps K(ym, ε) into itself. Therefore

p(yr, yl)  2ε for r, l  m,

so {yr} = {F r(t)}r is a Cauchy sequence in B. Since B ⊂ A, {yr} = {F r(t)}r
is a Cauchy sequence in A. Since (X, p) is complete, (X, dp) is also com-
plete. Clearly, (A, dp) is closed, so it is complete. Hence there exists u ∈ A ⊂ X
such that

lim
r→∞

dp(yr, u) = 0.

We deduce that

p(u, u) = lim
r→∞

p(yr, u) = lim
r,j→∞

p(yr, yj) = 0. (8)

Thus, for a large r,
p(yr, u) <∞. (9)

Also, we have
lim
r→∞

dp(yr+1, Fu) = dp(u, F (u)). (10)
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Moreover, by (7) and (9),

p(yr+1, F (u)) = p(F (yr), F (u))  α[p(yr, u)] (11)

letting r →∞ in (11), due to (8), we get

lim
r→∞

p(yr+1, F (u)) = 0. (12)

Consequently, we find
lim
r→∞

dp(yr+1, F (u)) = 0. (13)

Comparing (10) to (13) yields that dp(u, F (u)) = 0, i.e., u = F (u), that is, u
is a fixed point of F . Suppose there are two different fixed points u and v of F
in A. Then

dp(u, v)  dp(u, Tn(x)) + dp(Tn(x), v) <∞.

Now, applying (4),

p(u, v) = p(F (u), F (v))  α[p(u, v)].

Taking into consideration that α(t) = ϕn(t) < t for any t > 0, we get a
contradiction. Thus, F has exactly one fixed point in A. Now, we shall show
that u is also a fixed point of T . Applying (4) and (9),

p(T (u), T (yr))  ϕ(p(yr, u).

In view of (8),
lim
r→∞

p(T (u), T (yr)) = 0. (14)

On the other hand,

p(T (u), T yr) = p(T (u), T (F r(t))) = p(T (u), F r(T (t)))→ p(T (u), u). 

By comparison, we deduce that p(u, T (u)) = 0, so u = T (u), hence u is a fixed
point of T . Again, obviously by (4) such point is the unique fixed point of T
in A.
If X is a partial metric space, then B = A = X and we have from Theorem
3.1.

Corollary 3.2. Let (X, d) be a complete partial space. Suppose that T : X → X
satisfies

p(T (x), T (y))  ϕ[p(x, y)], x, y ∈ X,

where ϕ : R+ → R+ is nondecreasing function such that limn→∞ ϕn(t) = 0 for
each t > 0. Then T has exactly one fixed point u ∈ X.
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Remark 3.3. Corollary 3.2 corresponds to Corollary 1 of Romaguera [19],
which a Matkowski type result [17]. Theorem 2.1 extended the main result of
Aydi and Czerwik [2] to generalized partial matric spaces.
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