Journal of Mathematical Extension Vol. 13, No. 3, (2019), 99-108 ISSN: 1735-8299 URL: http://www.ijmex.com

Generalized Partial Metric Spaces With A Fixed Point Theorem

H. Aydi Imam Abdulrahman Bin Faisal University

E. Karapinar*

Atilim University

Abstract. In this paper, we introduce the notion of extended partial metric space and we present some fixed point theorems in generalized partial metric spaces involving linear and nonlinear contractions.

AMS Subject Classification: 46T99; 47H25; 54H10 **Keywords and Phrases:** Partial metric, generalized partial metric, nonlinear contraction, fixed point

1. Introduction and Preliminaries

Very recently, Aydi and Czerwik [2] proposed a new notion, generalized *b*-metric space and investigated the existence and uniqueness of a fixed point of certain mappings on this new space. In this paper, we introduce the generalized partial metric space inspired of the notion of a partial metric space was introduced by Matthews [18] in 1994 as a part to study the denotational semantics of dataflow networks which play an important role in constructing models in the theory of computation (see also e.g. ([1, 2, 5, 14, 19]).

Definition 1.1. (cf. [18]) A generalized partial metric on a nonempty set X is a function $p: X \times X \to [0, \infty]$ such that for all $x, y, z \in X$

(PM1) p(x,x) = p(x,y) = p(y,y), then x = y;

Received: November 2017; Accepted: September 2018

 $^{^{*}}$ Corresponding author

 $\begin{array}{ll} (PM2) & p(x,x) \leqslant p(x,y); \\ (PM3) & p(x,y) = p(y,x); \\ (PM4) & p(x,z) + p(y,y) \leqslant p(x,y) + p(y,z). \end{array}$

The pair (X, p) is then called a generalized partial metric space (gpms).

As usual, by \mathbb{N} , \mathbb{N}_0 , \mathbb{R}_+ we denote the set of all natural numbers, the set of all nonnegative integers or the set of all nonnegative real numbers, respectively. If $f: X \to X$, by f^n we denote the *n*-th iterate of f:

$$f^0(x) = x, \quad x \in X; \quad f^{n+1} = f \circ f^n.$$

Here the symbol $\varphi \circ f$ denotes the function $\varphi[f(x)]$ for $x \in X$.

As in [18], we may state the following definitions and remarks. If p is a generalized partial metric on X, then the function $d_p: X \times X \to [0, \infty]$ defined by

$$d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$$

for all $x, y \in X$, is a generalized metric on X (defined in [?] with s = 1). More precisely, for a nonempty set X, a function $d_p : X \times X \to [0, \infty]$ is called a generalized metric space if and only if for $x, y, z \in X$ the conditions are satisfied:

- (d_1) $d_p(x, y) = 0$ if and only if x = y, (self-distance)
- (d_2) $d_p(x,y) = d_p(y,x)$, (symmetry)
- $(d_3) \ d_p(x,y) \leq d_p(x,z) + d_p(z,y)$ (triangle inequality).

Note that if a sequence converges in a generalized partial metric space (X, p) with respect to the topology of d_p , then it converges with respect to the topology of p.

Also, a sequence $\{x_n\}$ is Cauchy in a generalized partial metric space (X, p) if and only if it is Cauchy in the generalized metric space (X, d_p) . Consequently, a generalized partial metric space (X, p) is complete if and only if the generalized metric space (X, d_p) is complete. Moreover, if $\{x_n\}$ is a sequence in a generalized partial metric space (X, p) and $x \in X$, one has that

$$\lim_{n \to \infty} d_p(x_n, x) = 0 \Leftrightarrow p(x, x) = \lim_{n \to \infty} p(x_n, x) = \lim_{n, m \to \infty} p(x_n, x_m).$$

Definition 1.2. Let (X, p) be a generalized partial metric space. We say that $T : X \to X$ is (sequentially) continuous if $p(x_n, x) \to p(x, x)$, then $p(Tx_n, Tx) \to p(Tx, Tx)$ as $n \to \infty$.

Lemma 1.3. Let (X, p) be a generalized partial metric space. Then (1) if p(x, y) = 0, we have x = y, (2) if $x \neq y$, we have p(x, y) > 0.

100

2. Linear Quasi-Contractions

We start with the following theorem

Theorem 2.1. Let (X, d) be a complete generalized partial metric space. Assume that $T: X \to X$ is continuous on (X, d_p) . If there exists an $\alpha \in [0, 1)$ such that

$$p(T(x), T^2(x)) \leqslant \alpha p(x, T(x)), \tag{1}$$

for $x \in X$ with $p(x, T(x)) < \infty$, then, for an arbitrary fixed $x \in X$, one of the following alternative holds : either

(A) for every nonnegative integer $n \in \mathbb{N}_0$,

$$p(T^n(x), T^{n+1}(x)) = \infty,$$

or

(B) there exists an $k \in \mathbb{N}_0$ such that

$$p(T^k(x), T^{k+1}(x)) < \infty.$$

If (B) holds, then, we also conclude the followings:

- (i) the sequence $\{T^m(x)\}$ is a Cauchy sequence in (X, p);
- (ii) there exists a point $u \in X$ such that

$$\lim_{m \to \infty} d_p(T^m(x), u) = 0 \quad and \quad T(u) = u$$

Proof. From (1) we get (in case (B))

$$p(T^{k+1}(x), T^{k+2}(x)) \leq \alpha p(T^k(x), T^{k+1}(x)) < \infty$$

and by induction

$$p(T^{k+n}(x), T^{k+n+1}(x)) \leq \alpha^n p(T^k(x), T^{k+1}(x)), \quad n = 0, 1, 2, \dots$$
 (2)

Consequently, for $n, v \in \mathbb{N}_0$, by (2) we obtain

$$\begin{array}{lll} p(T^{k+n}(x),T^{k+n+v}(x)) &\leqslant & p(T^{k+n}(x),T^{k+n+1}(x)) + \ldots + p(T^{k+n+v-2}(x),T^{k+n+v-1}(x)) \\ &+ & p(T^{k+n+v-1}(x),T^{k+n+v}(x)) \\ &\leqslant & \alpha^n p(T^k(x),T^{k+1}(x)) + \ldots + \alpha^{n+v-2} p(T^k(x),T^{k+1}(x)) \\ &+ & \alpha^{n+v-1} p(T^k(x),T^{k+1}(x)) \\ &\leqslant & \alpha^n [1+s\alpha+\ldots+(\alpha)^{v-1}] p(T^k(x),T^{k+1}(x)) \\ &\leqslant & \alpha^n \sum_{m=0}^{\infty} (\alpha)^m p(T^k(x),T^{k+1}(x)) \\ &\leqslant & \frac{\alpha^n}{1-\alpha} p(T^k(x),T^{k+1}(x)). \end{array}$$

Finally, we derive that

$$p(T^{k+n}(x), T^{k+n+\nu}(x)) \leqslant \frac{\alpha^n}{1-\alpha} p(T^k(x), T^{k+1}(x))$$
(3)

for $n, v \in \mathbb{N}_0$. By (3) it follows that $\{T^n(x)\}$ is a Cauchy sequence in (X, p), which is complete, so there exists $u \in X$ such that

$$\lim_{n \to \infty} p(T^n(x), u) = p(u, u) = \lim_{n, m \to \infty} p(T^n(x), T^m(x)) = 0.$$

We have $\lim_{n\to\infty} d_p(T^n(x), u) = 0$. Since T is continuous on (X, d_p) , we have

$$\lim_{n \to \infty} d_p(T^{n+1}(x), Tu) = \lim_{n \to \infty} d_p(T(T^n(x)), Tu) = 0.$$

Moreover, $\lim_{n\to\infty} d_p(T^{n+1}(x), Tu) = d_p(u, Tu)$. By uniqueness of limit, we get T(u) = u. and u is a fixed point of T, which ends the proof. \Box

Remark 2.2. Theorem 2.1 extends the results of Aydi and Czerwik ([2] with s = 1), Diaz and Margolis [4], Luxemburg [15, 16] and Banach ([3] to generalized partial metric spaces.

3. Nonlinear Contractions

In this section, we present the following result.

Theorem 3.1. Assume that (X, p) is a complete generalized partial space. Suppose that $T: X \to X$ satisfies the condition

$$p(T(x), T(y)) \leqslant \varphi[p(x, y)] \tag{4}$$

for $x, y \in X$, $p(x, y) < \infty$, where $\varphi \colon [0, \infty) \to [0, \infty)$ is nondecreasing and

$$\lim_{n \to \infty} \varphi^n(z) = 0 \quad for \ z > 0.$$
⁽⁵⁾

Let $x \in X$ be arbitrarily fixed. Then the following alternative holds: either (C) for every nonnegative integer $n \in \mathbb{N}_0$

$$p(T^n(x), T^{n+1}(x)) = \infty,$$

or

(D) there exists an $k \in \mathbb{N}_0$ such that

$$p(T^k(x), T^{k+1}(x)) < \infty.$$

In (D), T has a unique fixed point in $A := \{t \in X : d_p(T^k(x), t) < \infty\}.$

Proof. First, take $x \in X$ and $\varepsilon > 0$. Take $n \in \mathbb{N}$ such that

$$\varphi^n(\varepsilon) < \frac{\varepsilon}{2}.$$

Put $\alpha = \varphi^n$ and $x_m = T^{m+n}(x)$ for $m \in \mathbb{N}$. Then for all $x, y \in X$ such that $p(x, y) < \infty$, one gets

$$p(T^{n}(x), T^{n}(y)) \leqslant \varphi^{n}[p(x, y)] = \alpha[p(x, y)].$$
(6)

Consider the following set

$$B := \{t \in X \colon p(T^k(x), t) < \infty\}.$$

Clearly, $B \subset A$ and $T^k(x)$, $T^{k+1}(x) \in B$. Now we observe that $T: B \to B$. Indeed, if $t \in B$, i.e., $p(T^k(x), t) < \infty$, then

$$p(T^{k}(x), T(t)) \leqslant p(T^{k}(x), T^{k+1}(x)) + p(T^{k+1}(x), T(t))]$$

$$\leqslant \varepsilon_{1} + \varphi[p(T^{k}(x), t)]$$

$$\leqslant \varepsilon_{1} + \varepsilon_{2} < \infty,$$

where ε_1 and ε_2 are some positive numbers. Consequently, $T^n \colon B \to B$. Put $T^n = F$. We have $F \colon B \to B$. We rewrite (6) as

$$p(F(x), F(y)) \leqslant \varphi^n[p(x, y)] = \alpha[p(x, y)].$$
(7)

For $t \in B$, we have $\{F^m(t)\} \subset B$, for all $m \in \mathbb{N}_0$. We verify that $\{F^m(t)\}$ is a Cauchy sequence. In fact, putting $y_m = F^m(t), m \in \mathbb{N}_0$, we get

$$p(F(t), F^{2}(t)) = p(T^{n}(t), T^{n+1}(t)) \leq \alpha[p(t, T^{n}(t))].$$

By induction, we get

$$p(F^m(t), F^{m+1}(t)) \leq \alpha^m [p(t, F(t))],$$

that is equivalent to

$$p(y_m, y_{m+1}) \leqslant \alpha^m [p(t, F(t))]$$

Consequently, $p(y_m, y_{m+1}) \to 0$ as $m \to \infty$. Let m be such that

$$p(y_m, y_{m+1}) < \frac{\varepsilon}{2}.$$

Then for every $z \in K(y_m, \varepsilon) := \{y \in X : p(y_m, y) \leq \varepsilon\}$, we obtain

$$p(F(z), F(y_m)) \leq \alpha[p(z, y_m)] \leq \alpha(\varepsilon) = \varphi^n(\varepsilon) < \frac{\varepsilon}{2}.$$

Also, we know that

$$p(F(y_m), y_m) = p(y_{m+1}, y_m) < \frac{\varepsilon}{2}.$$

Thus we have

$$p(T^{n}(z), y_{m}) = p(F(z), y_{m}) \leqslant p(F(z), F(y_{m})) + p(F(y_{m}), y_{m}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which means that $F = T^n$ maps $K(y_m, \varepsilon)$ into itself. Therefore

$$p(y_r, y_l) \leqslant 2\varepsilon \quad for \quad r, l \geqslant m,$$

so $\{y_r\} = \{F^r(t)\}_r$ is a Cauchy sequence in *B*. Since $B \subset A$, $\{y_r\} = \{F^r(t)\}_r$ is a Cauchy sequence in *A*. Since (X, p) is complete, (X, d_p) is also complete. Clearly, (A, d_p) is closed, so it is complete. Hence there exists $u \in A \subset X$ such that

$$\lim_{r \to \infty} d_p(y_r, u) = 0$$

We deduce that

$$p(u, u) = \lim_{r \to \infty} p(y_r, u) = \lim_{r, j \to \infty} p(y_r, y_j) = 0.$$
 (8)

Thus, for a large r,

$$p(y_r, u) < \infty. \tag{9}$$

Also, we have

$$\lim_{r \to \infty} d_p(y_{r+1}, Fu) = d_p(u, F(u)).$$
(10)

Moreover, by (7) and (9),

$$p(y_{r+1}, F(u)) = p(F(y_r), F(u)) \le \alpha[p(y_r, u)]$$
(11)

letting $r \to \infty$ in (11), due to (8), we get

$$\lim_{r \to \infty} p(y_{r+1}, F(u)) = 0.$$
 (12)

Consequently, we find

$$\lim_{r \to \infty} d_p(y_{r+1}, F(u)) = 0.$$
(13)

Comparing (10) to (13) yields that $d_p(u, F(u)) = 0$, i.e., u = F(u), that is, u is a fixed point of F. Suppose there are two different fixed points u and v of F in A. Then

$$d_p(u,v) \leqslant d_p(u,T^n(x)) + d_p(T^n(x),v) < \infty.$$

Now, applying (4),

$$p(u, v) = p(F(u), F(v)) \leqslant \alpha[p(u, v)].$$

Taking into consideration that $\alpha(t) = \varphi^n(t) < t$ for any t > 0, we get a contradiction. Thus, F has exactly one fixed point in A. Now, we shall show that u is also a fixed point of T. Applying (4) and (9),

$$p(T(u), T(y_r)) \leq \varphi(p(y_r, u).$$

In view of (8),

$$\lim_{r \to \infty} p(T(u), T(y_r)) = 0.$$
 (14)

On the other hand,

$$p(T(u), Ty_r) = p(T(u), T(F^r(t))) = p(T(u), F^r(T(t))) \to p(T(u), u). \quad \Box$$

By comparison, we deduce that p(u, T(u)) = 0, so u = T(u), hence u is a fixed point of T. Again, obviously by (4) such point is the unique fixed point of T in A.

If X is a partial metric space, then B = A = X and we have from Theorem 3.1.

Corollary 3.2. Let (X, d) be a complete partial space. Suppose that $T: X \to X$ satisfies

$$p(T(x), T(y)) \leq \varphi[p(x, y)], \quad x, y \in X,$$

where $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing function such that $\lim_{n\to\infty} \varphi^n(t) = 0$ for each t > 0. Then T has exactly one fixed point $u \in X$.

H. AYDI AND E. KARAPINAR

Remark 3.3. Corollary 3.2 corresponds to Corollary 1 of Romaguera [19], which a Matkowski type result [17]. Theorem 2.1 extended the main result of Aydi and Czerwik [2] to generalized partial matric spaces.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgements

The authors thanks to anonymous referees for their remarkable comments, suggestion and ideas that helps to improve this paper.

References

- T. Abdeljawad, E. Karapınar, and K. Tas, Existence and Uniqueness of a Common Fixed Point on Partial Metric Spaces, *Appl. Math. Lett.*, 24 (11) (2011), 1894-1899.
- [2] H. Aydi and S. Czerwik, Fixed point theorems in generalized b-metric spaces, Modern Discrete Mathematics and Analysis (Springer), (2017).
- [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fund. Math.*, 3 (1922), 133-181.
- [4] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, *Bull. Amer. Math. Soc.*, 74 (1968), 305-309.
- [5] I. M. Erhan, E. Karapınar, and A. D. Turkoglu, Different types Meir-Keeler contractions on partial metric spaces, J. Comput. Anal. Appl., 14 (6) (2012), 1000-1005.
- [6] S. Gülyaz and E. Karapınar, Coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat., 42 (4) (2013), 347-357.
- [7] E. Karapınar, A note on common fixed point theorems in partial metric spaces, *Miskolc Math. Notes*, 12 (2) (2011), 185-191.
- [8] E. Karapınar and İ. M. Erhan, Fixed Point Theorems for Operators on Partial Metric Spaces, Appl.Math.Lett., 24 (11) (2011) 1900-1904.

106

- [9] E. Karapınar, I. M. Erhan, and A. Ozturk, Fixed point theorems on quasipartial metric spaces, *Mathematical and Computer Modelling*, 57 (9-10) (2013), 2442-2448.
- [10] E. Karapınar, I. M. Erhan, and A. Y. Ulus, Fixed Point Theorem for Cyclic Maps on Partial Metric Spaces, *Appl. Math. Inf. Sci.*, 6 (1) (2012), 239-244.
- [11] E. Karapınar and I. M. Erhan, Cyclic Contractions and Fixed Point Theorems, *Filomat*, 26 (4) (2012), 777-782.
- [12] E. Karapınar and I. S. Yuce, Fixed point theory for cyclic generalized weak φ-contraction on partial metric spaces, Abstr. Appl. Anal., 2012 (2012), 491-542.
- [13] E. Karapınar and V. Rakocevic, On cyclic generalized weakly Ccontractions on partial metric spaces, Abstract and Applied Analysis, (2013), 491-831.
- [14] E. Karapınar, "Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces", *Fixed Point Theory Appl.*, 4 (2011).
- [15] W. A. J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, II, Koninkl, Nederl. Akademie van Wetenschappen, Amsterdam, Proc. Ser. A (5) 61, and Indag. Math., 5 (20) (1958), 540-546.
- [16] W. A. J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, III, *Nieuw. Arch. Wisk.*, 3 (6) (1958), 93-98.
- [17] J. Matkowski, Integrable solutions of functional equations, *Dissertationes Math.*, 127 (1975) 1-68.
- [18] S. G. Matthews, *Partial Metric Topology*, Proceedings of the 8th Summer Conference on General Topology and Applications, 728 (1994), 183-197.
- [19] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, *Topology and its Applications*, 159 (1) (2012), 194-199.

H. AYDI AND E. KARAPINAR

Hassen AYDI

Professor of Mathematics Department of Mathematics Imam Abdulrahman Bin Faisal University Jubail, Saudi Arabia E-mail: hmaydi@uod.edu.sa

Erdal Karapınar

Professor of Mathematics Department of Mathematics Atilim University Ankara, Turkey E-mail: erdalkarapinar@gmail.com

108