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Abstract

A subset S ⊆ V in a graph G = (V,E) is called a [1, k]-set, if for every vertex v ∈ V \ S,
1 ≤ |NG(v) ∩ S| ≤ k. The [1, k]-domination number of G, denoted by γ[1,k](G) is the size of
the smallest [1, k]-sets of G. A set S′ ⊆ V (G) is called a total [1, k]-set, if for every vertex
v ∈ V , 1 ≤ |NG(v) ∩ S| ≤ k. In this paper, we investigate the existence of [1, k]-sets in
lexicographic products G ◦ H. Furthermore, we completely characterize graphs which their
lexicographic product has at least one total [1, k]-set. Finally, we show that finding smallest
total [1, k]-set is an NP -complete problem.

Keywords: Domination; Total Domination; [1, k]-set; Total [1, k]-set; Independent [1, k]-set;
Lexicographic Products.

1 Introduction and terminology

The concept of domination and dominating set is a well-studied topic in graph theory and has many
extensions and applications [8,9]. Many variants of dominations have been proposed and surveyed
in the literature such as total domination [10], efficient and open efficient dominations [1], k-tuple
domination [2] and others like [8]. Most of these problems are shown to be NP -hard. Recently,
Chellali et al. have studied [j, k]-sets [4], independent [1, k]-sets [3] and proposed total [j, k]-sets
in graphs. They have also pointed out a number of open problems on [1, 2]-dominating sets in [4].
Some of those problems are solved by X. Yang et al. [13] and AK. Goharshady et al. [5].

All graphs in this paper are assumed to be a simple graph, i.e., finite, undirected, loopless and
without multiple edges. For notation and terminology that are not defined here, we refer the reader
to [12]. For given simple graph G with vertex set V (G) and edge set E(G), the degree of vertex
v ∈ V (G) is denoted by dG(v), or simply d(v). We denote the minimum and maximum degrees of
vertices in G by δ(G) and ∆(G), respectively. The open neighborhood NG(v) of a vertex v ∈ V (G)
equals {u : {u, v} ∈ E(G)} and its closed neighborhood NG[v] is defined NG(v) ∪ {v}. The open
(closed) neighborhood of S ⊆ V is defined to be the union of open (closed) neighborhoods of
vertices in S and is denoted by N(S) (N [S]). A set D ⊆ V is called a dominating set of G if for
every v ∈ V \D, there exists some vertex u ∈ D such that v ∈ N(u). The domination number of
G is the minimum number among cardinalities of all dominating sets of G and is denoted by γ(G).
A set D ⊆ V is called a total dominating set of G if for every v ∈ V , there exists some vertex
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u ∈ D such that v ∈ N(u). Total domination number is the minimum number among cardinalities
of all total dominating sets of G and is denoted by γt(G). For two given integers j and k such
that j ≤ k, a subset D ⊆ V is called a [j, k]-set (resp. total [j, k]-set) if for every vertex v ∈ V \D
(resp. v ∈ V ), j ≤ |N(v) ∩ D| ≤ k. Note that total [j, k]-sets might not exist for an arbitrary
graph. The family of all graphs like G which have at least one total [j, k]-set is denoted by Dt

[j,k].
Other types of dominating sets, that we are used in this work are summarized in Table 1.

Table 1: Some types of domination studied in this paper where S ⊆ V

Name v ∈ V \ S v ∈ S
[1, k]-set |N(v) ∩ S| ∈ [1, k] -
Independent [1, k]-set |N(v) ∩ S| ∈ [1, k] |N(v) ∩ S| = 0
j-dependent [1, k]-set |N(v) ∩ S| ∈ [1, k] |N(v) ∩ S| ∈ [0, j]
Total [1, k]-set |N(v) ∩ S| ∈ [1, k] |N(v) ∩ S| ∈ [1, k]
j-dependent total [1, k]-set |N(v) ∩ S| ∈ [1, k] |N(v) ∩ S| ∈ [1, j]

2 Total [1, 2]-sets of Lexicographic Products of Graphs

The lexicographic product of graphs G and H, denoted by G ◦ H is a graph with the vertex set
V (G ◦H) = V (G)× V (H) and two vertices (g, h) and (g′, h′) are adjacent in G ◦H if and only if
either {g, g′} ∈ E(G) or g = g′ and {h, h′} ∈ E(H).
Note that if G is not connected, then G ◦H is not connected, too. So in this section, we always
assume that G is a connected graph.
In this section, we investigate properties of graphs G and H such that G ◦H has a total [1, 2]-set.
Then we extend these results to total [1, k]-set. Note that, it is possible that G ∈ Dt

[1,2], however

G ◦H /∈ Dt
[1,2], or vice versa.

Definition 2.1. Let H and G be graphs. The sets Gh0 = {(g, h0) ∈ V (G ◦H) : g ∈ V (G)} and
Hg0 = {(g0, h) ∈ V (G ◦H) : h ∈ V (H)} are called G−Layer and H−Layer respectively.

Lemma 2.2. Let v and v′ be two adjacent vertices of G and u, u′ ∈ V (H). Then

NG◦H((v, u)) ∪NG◦H((v
′, u)) = NG◦H((v, u

′)) ∪NG◦H((v
′, u′))

= NG◦H((v, u)) ∪NG◦H((v
′, u′)).

Proof. We know that

NG◦H((v, u)) =
∪

vi∈NG(v)

V (Hvi) ∪ {(v, uj) : uj ∈ NH(u)},

so
NG◦H((v, u)) ∪NG◦H((v

′, u′)) = (
∪

vi∈NG(v) V (Hvi)) ∪ {(v, uj) : uj ∈ NH(u)}∪
(
∪

vi∈NG(v′) V (Hvi)) ∪ {(v′, uj) : uj ∈ NH(u
′)}. (1)

It is easy to see that

{(v, uj) : uj ∈ NH(u)} ⊆ V (Hv), {(v′, uj) : uj ∈ NH(u
′)} ⊆ V (Hv′). (2)
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By hypotheses {v, v′} ∈ E(G), we have

V (Hv) ⊆ NG◦H((v
′, u′)), V (Hv′) ⊆ NG◦H((v, u)). (3)

So by Relations 1, 2 and 3, it is implied that

NG◦H((v, u)) ∪NG◦H((v
′, u′)) =

∪
vi∈NG({v,v′})

V (Hvi).

The above equality shows that the union of neighbors of the vertices (v, u) and (v′, u′) is indepen-
dent from u and u′. Therefore, we have

NG◦H((v, u)) ∪NG◦H((v
′, u)) = NG◦H((v, u

′)) ∪NG◦H((v
′, u′)) = NG◦H((v, u)) ∪NG◦H((v

′, u′)).

Lemma 2.3. Let D be a total [1, 2]-set for G ◦H ∈ Dt
[1,2] which contains more than two vertices

of an H−Layer Hv. Then G = K1 and H ∈ Dt
[1,2].

Proof. Suppose D be a total [1, 2]-set of G ◦H that contains vertices (x, v), (y, v) and (z, v) where
v ∈ V (G) and x, y, z ∈ V (H). If there exists a vertex v′ ∈ V (G) such that {v, v′} ∈ E(G), then
all vertices of Hv′ are dominated by three vertices (x, v), (y, v) and (z, v). This is a contradiction.
So there is not any vertex adjacent to v. Since G is a connected graph, G = K1 = ({v}, ∅) and
S = {u : (v, u) ∈ D} is a total [1, 2]-set for H and hence H ∈ Dt

[1,2].

Let G be a nontrivial connected graph and G ◦ H ∈ Dt
[1,2]. Then, every total [1, 2]-set of

G ◦ H has at most two vertices of each H−Layer. For a total [1, 2]-set D, we define AD
1 as

{(v, u) : |V (Hv)∩D| = 1} and AD
2 as {(v, u) : |V (Hv)∩D| = 2}. The set D satisfies in one of the

following conditions:

1) AD
1 = ∅,

2) AD
1 ̸= ∅ and AD

2 ̸= ∅,

3) AD
2 = ∅.

Lemma 2.4. Let D be a total [1, 2]-set of G◦H ∈ Dt
[1,2] such that AD

2 = ∅. Then, S = {u : (u, v) ∈
D} is a total [1, 2]-set for G. In addition, if there is a vertex u ∈ S such that |N(u)∩S| = 2; then
H contains an isolated vertex.

Proof. The proof is by contradiction. Assume D is a total [1, 2]-set of G ◦ H with AD
2 = ∅ and

S = {u : (u, v) ∈ D} is not a total set of G. Then, we have three cases to consider.

1. There exists a vertex like u ∈ S such that |N(u) ∩ S| = 0. It means that there is no vertex
u′ ∈ NG(u) such that u′ ∈ S. The set D is a total [1, 2]-set and u ∈ S, so there exists a
vertex v ∈ V (H) such that (u, v) ∈ D. Similarly there exists a vertex v′ ∈ V (H) such that
(u, v′) ∈ D. This is a contradiction against AD

2 = ∅.

2. There exists a vertex like w ∈ V (G) \ S such that |NG(w)∩ S| = 0. Then, there is no vertex
like v ∈ V (H) such that (u, v) ∈ D. Moreover, there is no vertex w′ ∈ NG(w) such that
w′ ∈ S. Therefore vertices of Hw can not be dominated by any vertex in D, which is a
contradiction.
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3. There exists a vertex like w ∈ V (G) \ S such that |N(w) ∩ S| > 2. Then, there are at least
three distinct vertices w′, w′′, w′′′ ∈ NG(w) ∩ S. By the definition of S, there are vertices
v′, v′′, v′′′ ∈ V (H) such that (w′, v′), (w′′, v′′), (w′′′, v′′′) ∈ D. These vertices dominate all
vertices of Hw, which is a contradiction.

Lemma 2.5. Let G ◦ H ∈ Dt
[1,2] and H does not contain any isolated vertex. Then, there exists

either a 1-dependent total [1, 2]-set for G or for each total [1, 2]-set D of G, AD
1 = {(v, u) :

|V (Hv) ∩D| = 1} ̸= ∅ and AD
2 = {(v, u) : |V (Hv) ∩D| = 2} ̸= ∅.

Proof. Let D be a total [1, 2]-set of G ◦H which contains at most one vertex from each H−Layer.
Since H does not contain any isolated vertex then by Lemma 2.4 there is a 1-dependent total
[1, 2]-set like S for G such that S = {v : (v, u) ∈ D} and AD

2 = ∅.

For a given graph G ◦H ∈ Dt
[1,2] and a total [1, 2]-set D of G ◦H where AD

2 ̸= ∅, we define the

set BD as BD = {{u′, u′′} : (v, u′), (v, u′′) ∈ AD
2 }.

Lemma 2.6. Let G ◦ H ∈ Dt
[1,2] where H does not contain any isolated vertex and for any total

[1, 2]-set D of G ◦H, AD
1 ̸= ∅ and AD

2 ̸= ∅. Then, the following conditions hold:

1) Every element of BD is a total [1, 2]-set for H.

2) The set S ′ = {v : (v, u) ∈ D} is a 1-dependent [1, 2]-set for G.

3) If there is a vertex v ∈ S ′ such that |N(v)∩S ′| = 0 then distG(v, v
′) ≥ 3 for every v′ ∈ S ′\{v}.

Proof. Let D be a total [1, 2]-set of G ◦H ∈ Dt
[1,2]; there are three cases to consider.

1) Suppose that S = {u⋆, u•} ∈ B is not a total [1, 2]-set for H. Then two cases occur and in
each case, we can establish a contradiction with D is a total [1, 2]-set.

– Let {u⋆, u•} /∈ E(H) and there is a (v′, u′) ∈ D such that {(v, u⋆), (v′, u′)} ∈ E(G ◦H).
Since H dose not contain any isolated vertex, so any vertex u′′ ∈ NH(u

′) is dominated
by (v′, u′), (v, u⋆) and (v, u•).

– Let {u⋆, u•} does not dominate all vertices of V (H). So, there is a vertex (v′, u′) ∈ D
such that {v, v′} ∈ E(G) and (v′, u′) dominates all vertices of Hv. Then any vertex
u′′ ∈ NH(u

′) is dominated by (v′, u′), (v, u⋆) and (v, u•).

2) Suppose that S ′ = {v : (v, u) ∈ D} is not a 1-dependent [1, 2]-set for G. Then, three cases
occur and in each case, we have a contradiction with D being a total [1, 2]-set.

– There is a vertex v ∈ S ′ that is dominated by at least two vertices v′, v′′ ∈ S ′. So there
are vertices u, u′, u′′ ∈ V (H) such that (v, u), (v′, u′), (v′′, u′′) ∈ D. Since H does not
contain any isolated vertex, there is a vertex u′′′ ∈ V (H) such that {u, u′′′} ∈ E(H).
Then, (v, u′′′) is dominated by (v, u), (v′, u′), (v′′, u′′).

– There is a vertex v ∈ V (G) \ S ′ such that |NG(v) ∩ S ′| = 0. So no vertex of Hv is
dominated by D.
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– There is a vertex v ∈ V (G)\S ′ such that |NG(x)∩S ′| > 2. Then there are at least three
vertices distinct v′, v′′, v′′′ ∈ S ′ to dominate v. By definition of S ′, there are vertices
u′, u′′, u′′′ ∈ V (H) such that (v′, u′), (v′′, u′′), (v′′′, u′′′) ∈ D. These vertices dominate all
vertices of Hv.

3) Let v ∈ S ′ such that |N(v) ∩ S ′| = 0 and there is a vertex v′ ∈ S ′ such that distG(v, v
′) = 2.

By |N(v) ∩ S ′| = 0, there exist vertices u′, u′′ ∈ V (H) such that (v, u′), (v, u′′) ∈ D and
{u′, u′′} ∈ E(H). Suppose there is a vertex v′ ∈ S ′ such that distG(v, v

′) = 2. So, there is a
vertex v′′ ∈ V (G) such that {v, v′′}, {v′, v′′} ∈ E(G). The vertices (v, u′), (v, u′′) and (v′, u′)
dominate all vertices of Hv′′ . It is contradictory with D being a total [1, 2]-set. So we have
distG(v, v

′) ≥ 3.

Lemma 2.7. Let D be a total [1, 2]-set of G◦H ∈ Dt
[1,2] such that AD

1 = ∅. Then S ′ = {v : (v, u) ∈
D} is an efficient dominating set of G.

Proof. Since D be a total [1, 2]-set of G ◦ H, then there is a vertex v ∈ S ′ such that the set D
contains (v, u′), (v, u′′) for some vertex u′, u′′ ∈ V (H). By Lemma 2.6, {u′, u′′} is a total [1, 2]-set
for H. So for any vertex v′ ∈ NG(v), none of vertices in Hv′ cannot be contained in D. Thus
distG(v, v

′) ≥ 3 and S is an efficient dominating set of G.

In the sequel SDk
[i,j](G) is used to denote the set of all k-dependent [i, j]-set S of G such that

S satisfies in the following condition

(∀v ∈ S |N(v) ∩ S| = 0) → (∀v′ ∈ S \ {v} d(v, v′) ≥ 3).

Corollary 2.8. Let G be a connected nontrivial graph and D be a total [1, 2]-set of G◦H ∈ Dt
[1,2],

one of the following cases holds:

• If AD
1 = {(u, v) : |V (Hv)∩D| = 1} = ∅, then there is a total [1, 2]-set S = {u⋆, u•} in H and

an efficient dominating set S ′ in G such that D′ = S ′ × S is a total [1, 2]-set for G ◦H and
|D| = |D′| = 2|S ′|.

• If AD
2 = {(u, v) : |V (Hv) ∩D| = 2} = ∅ and H contains an isolated vertex v. Then there is

a total [1, 2]-set S in G where D′ = S × {v} and D′ is a total [1, 2]-set for G ◦H. Moreover,
we have |D| = |D′| = |S|.

• If AD
2 = {(u, v) : |V (Hv)∩D| = 2} = ∅ and H does not contain any isolated vertex, then for

every vertex v ∈ V (H) there is a 1-dependent total [1, 2]-set S in G such that D′ = S × {v}
and D′ is a total [1, 2]-set for G ◦H. Clearly, |D| = |D′| = |S|.

• If AD
1 ̸= ∅ and AD

2 ̸= ∅, then there is a total [1, 2]-set S = {u⋆, u•} in H and a 1-dependent
total [1, 2]-set S ′ inG such that for any vertex v ∈ S and u ∈ X whereX = {x : |NG(x)∩S ′| =
0}, dist(v, u) ≥ 3. Moreover D′ = ((X × S) ∪ (S ′ \X)× {u⋆}) is a total [1, 2]-set of size |D|
in G ◦H and |D| = |D′| = |S ′|+ |X|.

Proof. This corollary is a direct result of Lemma 2.2, 2.4, 2.6 and 2.7.
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Theorem 2.9. Let G and H be two graphs. Then, G◦H ∈ Dt
[1,2] if and only if one of the following

conditions holds:

1. G = K1 and H ∈ Dt
[1,2];

2. G has a total [1, 2]-set S such that if S has a vertex v where |N(v) ∩ S| = 2 then H has an
isolated vertex;

3. G is an efficient domination graph and γt[1,2](H) = 2;

4. SD1
[1,2](G) ̸= ∅ and γt[1,2](H) = 2.

Proof. Suppose that D be a total [1, 2]-set of G ◦H ∈ Dt
[1,2]. If D contains more than two vertices

of an H−Layer, then by Lemma 2.3, G = K1 and H ∈ Dt
[1,2]. If D contains at most two vertices of

each H−Layer, then there is a total [1, 2]-set D′ for G ◦H such that |D′| = |D| and vertices of D′

have been chosen from two G−Layers as G
u⋆

and Gu•
. Without loss of generality we consider that

S = {v : (v, u) ∈ D′} and S ′ = {u⋆, u•}. Then, the set D′ satisfies one of the following conditions:

a) By Lemma 2.4, D = {(v, u⋆) : v ∈ S}, so S is a total [1, 2]-set for G and if there exists a
vertex v ∈ D such that |N(v) ∩ S| = 2, then H has an isolated vertex.

b) D′ = {(v, u⋆) : v ∈ S and u ∈ S ′}, by Corollary 2.8, S is an efficient dominating set of G and
S ′ is a total [1, 2]-set for H.

c) There is a vertex w ∈ S such that (w, u⋆) ∈ D′ but (w, u•) /∈ D′. By Lemma 2.6, we have
S ∈ SD1

[1,2](G) and S ′ is a total [1, 2]-set for H.

Now, we show the other side as follows:

1. If G = K1 and H has a total [1, 2]-set S ′, then it is easy to see that G ◦H = H and S ′ is a
total [1, 2]-set of G ◦H.

2. Assume that S is a total [1, 2]-set of G and u⋆ ∈ V (H). We define D as S × {u⋆}. Since
every vertex of Gu⋆

is dominated by at least one of vertices of D, then every vertex of other
G−Layers is dominated byD. So, for any vertex (v′, u′) ∈ G◦H, we have |N((v′, u′))∩D| ≥ 1.
Now, it is sufficient to show that |N((v′, u′)) ∩D| ≤ 2. To this end, we consider two cases:

a) For every vertex v ∈ S, |N(v)∩S| = 1: So, it is clear that for any vertex (v′, u⋆) of Gu⋆
,

|N((v′, u⋆)) ∩ D| ≤ 2. If u′ ̸= u⋆, we need to show that |N((v′, u′)) ∩ D| ≤ 2. Then,
following cases can happen:

a1) (v′, u⋆) ∈ D and {u′, u⋆} ∈ E(H); for every v′′ ∈ S adjacent to v′, (v′, u′) is
dominated by (v′, u⋆) and (v′′, u⋆). Since (v′, u⋆) ∈ D and v′ ∈ S, so |N(v′)∩S| = 2
and |N((v′, u′)) ∩D| = |N(v′) ∩ S|+ 1 = 2.

a2) (v′, u⋆) ∈ D and {u′, u⋆} /∈ E(H); if v′′ ∈ S and {v′, v′′} ∈ E(G) then (v′, u′) is
dominated by (v′′, u⋆). So |N((v′, u′)) ∩D| = |N(v′) ∩ S| = 1.

a3) (v′, u⋆) /∈ D; for every v′′ ∈ S and {v′, v′′} ∈ E(G), (v′, u′) is dominated by (v′′, u⋆).
Since (v′, u⋆) /∈ D, v′ /∈ S. We have|N((v′, u′)) ∩D| = |N(v′) ∩ S| ≤ 2.

b) There is a vertex v ∈ S such that |N(v)∩S| = 2 and u⋆ is an isolated vertex in H. For
every vertex v′′ ∈ S and {v′, v′′} ∈ E(G), (v′, u′) is dominated by (v′′, u⋆). So it is the
case that |N((v′, u′)) ∩D| = |N(v′) ∩ S| ≤ 2.
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3. Let S be an efficient dominating set of G, S ′ = {u⋆, u•} is a total [1, 2]-set for H and
D = {(v, u) : v ∈ S and u ∈ S ′}. It is easy to see that D is a total dominating set of G ◦H.
If v′ ∈ S, then every (v′, u′) ∈ V (Hv′) are dominated by either (v′, u⋆) or (v′, u•). Since S is
an efficient dominating set of G, then NG(v

′) ∩ S = ∅ and (v′, u′) is not dominated by any
other vertices. If v′ /∈ S, then there is exactly one vertex v′′ ∈ S such that {v′, v′′} ∈ E(G)
and every (v′, u′) ∈ V (Hv′) are dominated by either (v′′, u⋆) and (v′′, u•). So, D is a total
[1, 2]-set for G ◦H.

4. Suppose that S ∈ SD1
[1,2], S

′ = {u⋆, u•} is a total [1, 2]-set for H and

D = {(v, u⋆), (v, u•) : v ∈ S and |N(v) ∩ S| = 0} ∪ {(v, u⋆) : v ∈ S and |N(v) ∩ S| = 1}.

By definition ofD, It is easy to see that for any vertex (v, u) ∈ D, there is a vertex (v′, u′) ∈ D
such that {(v, u), (v′, u′)} ∈ E(G ◦ H). So, D is a total set of G ◦ H. Now, we must show
that D dominates all vertices of G ◦ H at least one and at most two times. It is clear
S = {v : (v, u⋆) ∈ D} ∈ SD1

[1,2]. We consider three kinds of vertices and we will show
vertices of each H−Layer are dominated by at least one and two vertices of D.

a) v ∈ S and |N(v)∩ S| = 0: Since S ′ = {u⋆, u•} is a total [1, 2]-set for G ◦H, (v, u⋆) ∈ D
and (v, u•) ∈ D. Then, all of the vertices of Hv are dominated by (v, u⋆) and (v, u•).
Since |N(v) ∩ S| = 0. So, any other vertex cannot dominate vertices of Hv. Therefore
1 ≤ |N(v, u) ∩D| ≤ 2.

b) v ∈ S and |N(v) ∩ S| = 1: So, there is a vertex v′ ∈ S such that {v, v′} ∈ E(G),
(v′, u⋆) dominates all of the vertices of Hv and these vertices can also be dominated by
(v, u⋆). Since S is a 1-dependent [1, 2]-set for G, then there is not any other vertex in
the neighborhood of v in S, so 1 ≤ |N(v, u) ∩D| ≤ 2.

c) v /∈ S: Since S is a 1-dependent [1, 2]-set for G, it is easy to see that there is a vertex
v′ ∈ S such that {v, v′} ∈ E(G). So, all of the vertices of Hv are dominated by (v′, u⋆).
If |N(v′)∩S| = 0, then (v′, u•) dominates vertices of Hv and any other vertices can not
dominate them. If there exist a v′′ ∈ S such that {v, v′′} ∈ E(G) and it is contradicting
to distG(v

′, v′′) ≥ 3. If |N(v′) ∩ S| = 0, there maybe exists a vertex (v′′, u⋆) ∈ D such
that |N(v′)∩S| ̸= 0 and there is no vertex in Hv′′ and other H−Layers dominate vertices
of Hv.

In the sequel, we express necessary and sufficient conditions for the given graphs G and H such
that G◦H has a total [1, k]-set. The Lemma 2.3, 2.4, 2.6 and Corollary 2.8 are generalized to total
[1, k]-set. Since proofs in this section can be similarly obtained from the case on total [1, 2]-sets,
we omit them.

Theorem 2.10. Let D be a total [1, k]-set for G ◦H.

a) If D contains more than k vertices of an H−Layer, then G = K1 and H ∈ Dt
[1,k].

b) If D contains at most one vertex of every H−Layers, then S = {v ∈ V (G) : (v, u) ∈ D}
is a (k − 1)-dependent total [1, k]-set of G. Moreover if there is a vertex v ∈ S such that
|N(v) ∩ S| = k, then H contains an isolated vertex.
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c) If H does not contain any isolated vertex and S = {v ∈ V (G) : (v, u) ∈ D} is not a total set
of G, then D contains at most k vertices of each Hv and satisfies the following conditions:

c1) The set S ′ = {u ∈ V (H) : (v, u) ∈ D} is a total [1, k]-set of H with cardinality to at
most k and there is a vertex x ∈ S such that 1 < |D ∩ V (Hx)| ≤ |S ′|;

c2) S is a (k − 1)-dependent [1, k]-set for G;

c3) If there exist a vertex v ∈ S such that |N(v) ∩ S| = 0, then 1 < |D ∩ V (Hv)| ≤ ⌊k/2⌋
or for any vertex v′ ∈ S − {v}, we have distG(v, v

′) ≥ 3.

Theorem 2.11. Let G and H be two graphs. G ◦H ∈ Dt
[1,k] if and only if G and H satisfy one of

the following conditions

1. G = K1 and H ∈ Dt
[1,k];

2. G has a total [1, k]-set S and if S has a vertex v such that |N(v) ∩ S| = k then H has an
isolated vertex;

3. G is an efficient domination graph and γt[1,k](H) ≤ k;

4. G has a (k−1)-dependent [1, k]-set S and if S ∈ SDk−1
[1,k](G) then γt[1,k](H) ≤ k and otherwise

γt[1,k](H) ≤ k/2.

3 Complexity

In this section, we will show that the decision problem for total [1, 2]-set is NP -complete. We will
do this by reduction the NP -complete problem, Exact 3-Cover, to Total [1, 2]-Set.

Exact 3-cover problem:
The input of this problem is a finite set X = {x1, x2, ...., x3q} with |X| = 3q and a collection C of
3-element subsets of X such as Ci = {xi1 , xi2 , xi3}. our goal is to understand is there a C ′ ⊆ C
such that every element of X appears in exactly one element of C ′?

Total [1, 2]-set problem:
Input of this problem is a graph G = (V,E) and a positive integer k ≤ |V |. We want to investigate
is there any total [1, 2]-set of cardinality at most k for G.

Theorem 3.1. Total [1, 2]-SET is NP -complete for bipartite graphs.

Proof. Let D ⊆ V is given, we verify D is a total [1, 2]-set. For any vertex v ∈ D, we check
neighborhood of each vertex and compute span number of any vertex v ∈ V . If there is a vertex v
with span number more than 2, this set is not a total [1, 2]-set for G. It is obvious this algorithm is
done in polynomial time and total [1, 2]-set is a NP problem. Now for a set X, and a collection C
of 3-element subsets of X, we build a graph and transform EXACT 3-COVER into a total [1, 2]-set
problem. Let X = {x1, x2, ..., x3q} and C = {C1, C2, ..., Ct}. For each Ci ∈ C, we build a cycle
C4 with a vertex ui. we add new vertices {v11 , v12 , v13 , v21 , v22 , v23 , ..., vt1 , vt2 , vt3} and connect all
vertices vi1, vi2, vi3 to ui. Then add some other vertices {x1, x2, ..., x3q} and edges xivj1 , xivj2 and
xivj3 , if xi ∈ Cj. G is a bipartite graph. Let k = 2t + q and suppose that C ′ is a solution for
set X and collection C of EXACT 3-COVER. We build a set D of vertices of G contain every ui,
1 ≤ i ≤ t, and another vertex of C4 adjacent to ui and one of the vj1 , vj2 or vj3 for each Cj ∈ C ′.
If C ′ exists, then it’s cardinality is precisely q, and so |D| = 2t+ q = k. We can check easily that
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D is a [1, 2]-total set of G.
Conversely, suppose that G has a total [1, 2]-set D with |D| ≤ 2t + q = k. Then D must contain
two vertices of every C4, in the best case we select ui and one of the vertices in that adjacency
in C4. We select 2t vertices that dominate all vertices of cycles and all vertices of form vi1 , vi2
or vi3 for 1 ≤ i ≤ t. Since each vij dominates only three vertices of {x1, x2, ..., x3q} We have to
select exactly q vertices of them, i.e. we select q 3-element subsets of form {vi1 , vi2 , vi3} and one
element of each of them. Each of this vij corresponds to a Ci and union of them is an exact cover
for C.
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