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Abstract

A subset S C V in a graph G = (V, E) is called a [1, k]-set, if for every vertex v € V'\ S,
1 < [Ng(v) N S| < k. The [1, k]-domination number of G, denoted by 1 4)(G) is the size of
the smallest [1, k]-sets of G. A set S’ C V(G) is called a total [1, k]-set, if for every vertex
v eV, 1<|Ngw)nS| <k In this paper, we investigate the existence of [1,k]-sets in
lexicographic products G o H. Furthermore, we completely characterize graphs which their
lexicographic product has at least one total [1, k]-set. Finally, we show that finding smallest
total [1, k]-set is an N P-complete problem.

Keywords: Domination; Total Domination; [1, k]-set; Total [1, k]-set; Independent [1, k]-set;
Lexicographic Products.

1 Introduction and terminology

The concept of domination and dominating set is a well-studied topic in graph theory and has many
extensions and applications [8,9]. Many variants of dominations have been proposed and surveyed
in the literature such as total domination [10], efficient and open efficient dominations [1], k-tuple
domination [2] and others like [8]. Most of these problems are shown to be N P-hard. Recently,
Chellali et al. have studied [j, k]-sets [4], independent [1, k]-sets [3] and proposed total [j, k]-sets
in graphs. They have also pointed out a number of open problems on [1, 2]-dominating sets in [4].
Some of those problems are solved by X. Yang et al. [13] and AK. Goharshady et al. [5].

All graphs in this paper are assumed to be a simple graph, i.e., finite, undirected, loopless and
without multiple edges. For notation and terminology that are not defined here, we refer the reader
to [12]. For given simple graph G with vertex set V' (G) and edge set E(G), the degree of vertex
v € V(G) is denoted by dg(v), or simply d(v). We denote the minimum and maximum degrees of
vertices in G by §(G) and A(G), respectively. The open neighborhood N¢(v) of a vertex v € V(G)
equals {u : {u,v} € F(G)} and its closed neighborhood Ng[v] is defined Ng(v) U {v}. The open
(closed) neighborhood of S C V' is defined to be the union of open (closed) neighborhoods of
vertices in S and is denoted by N(S) (N[S]). A set D C V is called a dominating set of G if for
every v € V '\ D, there exists some vertex v € D such that v € N(u). The domination number of
G is the minimum number among cardinalities of all dominating sets of G and is denoted by +(G).
A set D C V is called a total dominating set of G if for every v € V, there exists some vertex



u € D such that v € N(u). Total domination number is the minimum number among cardinalities
of all total dominating sets of G and is denoted by 7;(G). For two given integers j and k such
that j < k, a subset D C V is called a [, k]-set (resp. total [j, k]-set) if for every vertex v € V'\ D
(resp. v € V), j < |N(v) N D| < k. Note that total [j, k]-sets might not exist for an arbitrary
graph. The family of all graphs like G which have at least one total [j, k|-set is denoted by ijyk].

Other types of dominating sets, that we are used in this work are summarized in Table 1.

Table 1: Some types of domination studied in this paper where S C V

Name veV\S vesS
1, k]-set IN(v)NS| € [1,k] -
Independent [1, k]-set IN(w)nS|€[l,k] |[Nw)nS|=0
j-dependent [1, k]-set IN(v)N S| €[1,k] |N(w)nS|e]o,r]
Total [1, k]-set IN(v)N S| €[1,k] |N(w)NS|e][l k]
j-dependent total [1,k]-set |N(v)NS|€[1,k] |[N(w)nS|el,y]

2 Total [1,2]-sets of Lexicographic Products of Graphs

The lexicographic product of graphs G and H, denoted by G o H is a graph with the vertex set
V(Go H)=V(G) x V(H) and two vertices (g, h) and (¢, h’) are adjacent in G o H if and only if
either {g,¢'} € E(G) or g = ¢ and {h,h'} € E(H).

Note that if G is not connected, then G o H is not connected, too. So in this section, we always
assume that G is a connected graph.

In this section, we investigate properties of graphs G and H such that G o H has a total [1, 2]-set.
Then we extend these results to total [1, k]-set. Note that, it is possible that G € Dfm], however

G o H ¢ Dy 4, or vice versa.

Definition 2.1. Let H and G be graphs. The sets G™ = {(g,hy) € V(Go H) : g € V(G)} and
H% ={(go,h) € V(Go H): he V(H)} are called G_Layer and H_Layer respectively.

Lemma 2.2. Let v and v' be two adjacent vertices of G and u,u’ € V(H). Then

Neon((v,u)) U Ngor((v',1)) = Ngou((v,u)) U Ngon ((v', 1))
= NGOH((’U7U)) U NGOH((’U/,U’)).

Proof. We know that

Noor((v,w) = | V(H")U{(v,u5) : u; € Nu(u)},

v;€Ng(v)
T Noanl(0.) UNeon () = Unenein VIED) UL s € Na(whu
nENG (') V(HY))U{(v,u;) : uj € Ng(u')}.
It is easy to see that
{w.) ;€ Ny} SV, {(v)u) 05 € Nyg(w)} € V(HY) )



By hypotheses {v,v'} € E(G), we have

V(H") € Neon((v', ), V(H") € Neou((v,u)). (3)
So by Relations 1, 2 and 3, it is implied that

Neor((v,u)) U Neorr (W', u)) = | V(H").

viENg({v,v'})

The above equality shows that the union of neighbors of the vertices (v,u) and (v', ') is indepen-
dent from u and u’. Therefore, we have

Naon((v,u)) U Noor (v, 1)) = Neor (v, u') U Neou (v, ') = Neor (v, u)) U Neor (v, ).
[l

Lemma 2.3. Let D be a total [1,2]-set for Go H € Df1,2] which contains more than two vertices
of an H_Layer H". Then G = K| and H € Dfl,Q]'

Proof. Suppose D be a total [1,2]-set of G o H that contains vertices (z,v), (y,v) and (z,v) where
v € V(G) and z,y,z € V(H). If there exists a vertex v € V(G) such that {v,v'} € E(G), then
all vertices of H are dominated by three vertices (z,v), (y,v) and (z,v). This is a contradiction.
So there is not any vertex adjacent to v. Since G is a connected graph, G = K; = ({v},0) and
S ={u : (v,u) € D} is a total [1,2]-set for H and hence H € Dfm]. O

Let G be a nontrivial connected graph and G o H € Dfl,Z}' Then, every total [1,2]-set of
G o H has at most two vertices of each H_Layer. For a total [1,2]-set D, we define AP as
{(v,u) : [V(H*)ND| =1} and AP as {(v,u) : [V (H")N D| = 2}. The set D satisfies in one of the
following conditions:

1) AP =0,
2) AP # 0 and AP # 0,
3) AP = .

Lemma 2.4. Let D be a total [1,2]-set of GoH € wa] such that AP = 0. Then, S = {u: (u,v) €
D} is a total [1,2]-set for G. In addition, if there is a vertex w € S such that |N(u)NS| = 2; then
H contains an isolated vertex.

Proof. The proof is by contradiction. Assume D is a total [1,2]-set of G o H with A? = () and
S ={u: (u,v) € D} is not a total set of G. Then, we have three cases to consider.

1. There exists a vertex like u € S such that [N(u) NS| = 0. It means that there is no vertex
u' € Ng(u) such that v’ € S. The set D is a total [1,2]-set and u € S, so there exists a
vertex v € V/(H) such that (u,v) € D. Similarly there exists a vertex v" € V(H) such that
(u,v') € D. This is a contradiction against AY = ().

2. There exists a vertex like w € V(G) \ S such that |[Ng(w) N S| = 0. Then, there is no vertex
like v € V(H) such that (u,v) € D. Moreover, there is no vertex w’ € Ng(w) such that
w' € S. Therefore vertices of H* can not be dominated by any vertex in D, which is a
contradiction.



3. There exists a vertex like w € V(G) \ S such that |[N(w) N S| > 2. Then, there are at least
three distinct vertices w’, w”, w"” € Ng(w) NS. By the definition of S, there are vertices
V', 0" 0" € V(H) such that (w',v'), (w”,v"), (w”,v") € D. These vertices dominate all
vertices of H", which is a contradiction.

]

Lemma 2.5. Let Go H € wa} and H does not contain any isolated vertex. Then, there exists
either a 1-dependent total [1,2]-set for G or for each total [1,2]-set D of G, AP = {(v,u) :
[V(H°) N D| =1} # 0 and AP = {(v,u) : |V(H") N D| =2} # 0.

Proof. Let D be a total [1,2]-set of G o H which contains at most one vertex from each H_Layer.
Since H does not contain any isolated vertex then by Lemma 2.4 there is a 1-dependent total
[1,2]-set like S for G such that S = {v: (v,u) € D} and AP = 0. O

For a given graph G o H € D}, 5 and a total [1, 2]-set D of G'o H where AP £ (), we define the
set BP as BP = {{u/,u"} : (v,u), (v,u") € AP}.

Lemma 2.6. Let Go H € Df1,2} where H does not contain any isolated vertex and for any total
[1,2]-set D of Go H, AP # () and AP # 0. Then, the following conditions hold:

1) Every element of BP is a total [1,2]-set for H.

2) The set S" = {v: (v,u) € D} is a 1-dependent [1,2]-set for G.

3) If there is a vertexv € S’ such that [N (v)NS'| = 0 then distg(v,v") > 3 for every v’ € S"\{v}.
Proof. Let D be a total [1,2]-set of Go H € Dfmﬁ there are three cases to consider.

1) Suppose that S = {u*,u*} € B is not a total [1,2]-set for H. Then two cases occur and in
each case, we can establish a contradiction with D is a total [1, 2]-set.

— Let {u*,u*} ¢ E(H) and there is a (v/,u’) € D such that {(v,u*), (v',u')} € E(G o H).
Since H dose not contain any isolated vertex, so any vertex u” € Ny (u') is dominated
by (v';u'), (v,u*) and (v, u®).

— Let {u*,u*} does not dominate all vertices of V/(H). So, there is a vertex (v',u’) € D

such that {v,v'} € E(G) and (v',u') dominates all vertices of H". Then any vertex
u” € Ny (u') is dominated by (v/,u'), (v, u*) and (v, u®).

2) Suppose that S’ = {v : (v,u) € D} is not a 1-dependent [1,2]-set for G. Then, three cases
occur and in each case, we have a contradiction with D being a total [1, 2]-set.

— There is a vertex v € S’ that is dominated by at least two vertices v',v"” € S’. So there
are vertices u,u’,u” € V(H) such that (v,u), (v',u), (v",u") € D. Since H does not
contain any isolated vertex, there is a vertex u” € V(H) such that {u,v"} € E(H).
Then, (v,4”) is dominated by (v,u), (v',u'), (v",u").

— There is a vertex v € V(G) \ S’ such that |[Ng(v) NS’| = 0. So no vertex of H is
dominated by D.



— There is a vertex v € V(G)\ S’ such that |Ng(x)NS’| > 2. Then there are at least three
vertices distinct v',0” 0" € S’ to dominate v. By definition of S’ there are vertices
o', u” u" € V(H) such that (v/,u), (v",u"), (v",4") € D. These vertices dominate all
vertices of H".

3) Let v € S” such that |N(v) N S’| =0 and there is a vertex v € S” such that distg(v,v") = 2.
By |[N(v) NS’ = 0, there exist vertices u/,u” € V(H) such that (v,u’), (v,u”) € D and
{v',v"} € E(H). Suppose there is a vertex v' € S’ such that distg(v,v’") = 2. So, there is a
vertex v € V(G) such that {v,v"}, {v/,v"} € E(G). The vertices (v, u'), (v,u”) and (v, u)
dominate all vertices of H*". It is contradictory with D being a total [1,2]-set. So we have
distg(v,v') > 3.

]

Lemma 2.7. Let D be a total [1,2]-set of GoH € Df 5 such that AY = 0. Then "= {v: (v,u) €
D} is an efficient dominating set of G.

Proof. Since D be a total [1,2]-set of G o H, then there is a vertex v € S" such that the set D
contains (v, u’), (v,u”) for some vertex v’,u” € V(H). By Lemma 2.6, {u/,u"} is a total [1, 2]-set
for H. So for any vertex ' € Ng(v), none of vertices in H cannot be contained in D. Thus

distg(v,v") > 3 and S is an efficient dominating set of G.
[

In the sequel SD@-J}(G) is used to denote the set of all k-dependent [i, j]-set S of G such that
S satisfies in the following condition

(Vve S [Nw)nS|=0)— (Vo' € S\ {v} dv,v)>3).

Corollary 2.8. Let G be a connected nontrivial graph and D be a total [1,2]-set of Go H € DfLQ]’
one of the following cases holds:

o If AP = {(u,v):|V(H*)ND| =1} =0, then there is a total [1,2]-set S = {u*,u*} in H and
an efficient dominating set S” in G such that D' = S’ x S is a total [1, 2]-set for G o H and
D = |D'[ =257,

o If AP = {(u,v): |V(H")ND|=2} =0 and H contains an isolated vertex v. Then there is
a total [1,2]-set S in G where D' = S x {v} and D’ is a total [1, 2]-set for G o H. Moreover,
we have |D| = |D'| = |S|.

o If AL = {(u,v): |[V(H")ND| =2} =0 and H does not contain any isolated vertex, then for
every vertex v € V(H) there is a 1-dependent total [1,2]-set S in G such that D' =S x {v}
and D' is a total [1,2]-set for G o H. Clearly, |D| = |D'| =|S].

o If AP #£ () and AP # (), then there is a total [1,2]-set S = {u*,u*} in H and a 1-dependent
total [1, 2]-set S’ in G such that for any vertex v € S and u € X where X = {x : [Ng(z)NS’'| =
0}, dist(v,u) > 3. Moreover D' = ((X x S)U (S’ \ X) x {u*}) is a total [1, 2]-set of size |D|
in Go H and |D| = |D'| = |5'| + | X].

Proof. This corollary is a direct result of Lemma 2.2, 2.4, 2.6 and 2.7.



Theorem 2.9. Let G and H be two graphs. Then, GoH & Df1,2] if and only if one of the following
conditions holds:

1. G=K, and H € D[tm];

2. G has a total [1,2]-set S such that if S has a vertex v where |[N(v) N S| =2 then H has an
1solated vertex;

8. G is an efficient domination graph and v 9(H) = 2;

4. SD[lLQ](G) # 0 and yip9(H) = 2.

Proof. Suppose that D be a total [1,2]-set of Go H € Dﬁ,z]- If D contains more than two vertices
of an H_Layer, then by Lemma 2.3, G = K; and H € Dfm]. If D contains at most two vertices of
each H_Layer, then there is a total [1,2]-set D’ for G o H such that |D’| = |D| and vertices of D’
have been chosen from two G_Layers as G*" and G*". Without loss of generality we consider that
S=A{v:(v,u) € D'} and " = {u*,u*}. Then, the set D’ satisfies one of the following conditions:

a) By Lemma 2.4, D = {(v,u*) : v € S}, so S is a total [1,2]-set for G and if there exists a
vertex v € D such that |[N(v) NS| = 2, then H has an isolated vertex.

b) D' =

{(v,u*) :v € S and u € S'}, by Corollary 2.8, S is an efficient dominating set of G and

S’ is a total [1,2]-set for H.

c) There is a vertex w € S such that (w,u*) € D’ but (w,u*) ¢ D’. By Lemma 2.6, we have
S e SD[ILQ}(G) and S’ is a total [1, 2]-set for H.

Now, we show the other side as follows:

1. If G = K, and H has a total [1,2]-set S, then it is easy to see that Go H = H and S’ is a
total [1,2]-set of G o H.

2. Assume that S is a total [1,2]-set of G and u* € V(H). We define D as S x {u*}. Since
every vertex of G*" is dominated by at least one of vertices of D, then every vertex of other
GG_Layers is dominated by D. So, for any vertex (v, u’) € GoH, we have |[N((v',u"))ND| > 1.
Now, it is sufficient to show that |N((v',u")) N D| < 2. To this end, we consider two cases:

a)

For every vertex v € S, |[N(v)N S| = 1: So, it is clear that for any vertex (v', u*) of G*,

IN((v/,u*)) N D] < 2. If v # u*, we need to show that |N((v',u)) N D] < 2. Then,

following cases can happen:

al) (v',u*) € D and {v,u*} € E(H); for every v" € S adjacent to v/, (v',u') is
dominated by (v/,v*) and (v”,u*). Since (v',u*) € D and v' € S, so [N(v')NS| =2
and [N((v/,u'))ND|=|N@)NS|+1=2.

a2) (v,u*) € D and {v/,u*} ¢ E(H); if v" € S and {v/,v"} € E(G) then (v',u') is
dominated by (v”,u*). So |[N((v',u")) N D|=|N@")NS|=1.

a3) (v',u*) ¢ D; for every v € S and {v',v"} € E(G), (v',u') is dominated by (v”, u*).
Since (v',u*) ¢ D, v' ¢ S. We have|N((v',v')) N D| = |N(»')NS| < 2.

There is a vertex v € S such that |N(v) N.S| = 2 and w* is an isolated vertex in H. For

every vertex v” € S and {v',v"} € E(G), (v/,u') is dominated by (v”,u*). So it is the

case that |[N((v',u'))ND|=|N(@)NS|<2.
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3. Let S be an efficient dominating set of G, S = {u*,u®} is a total [1,2]-set for H and
D ={(v,u):v e Sandu € S'}. It is easy to see that D is a total dominating set of G o H.
If v/ € S, then every (v/,u') € V(H"") are dominated by either (¢v/,u*) or (v/,u®). Since S is
an efficient dominating set of G, then Ng(v') NS = and (v',u’) is not dominated by any
other vertices. If v/ ¢ S, then there is exactly one vertex v” € S such that {v',v"} € E(G)
and every (v, u/) € V(H") are dominated by either (v”,u*) and (v”,u®). So, D is a total
[1,2]-set for G o H.

4. Suppose that S € S’D[ILQ}, S" = {u*,u*} is a total [1,2]-set for H and
D = {(v,u"), (v,u®) :v € Sand [IN(v)NS| =0} U{(v,u*):v e Sand |N(v)NS|=1}.

By definition of D, It is easy to see that for any vertex (v, u) € D, there is a vertex (v',u’) € D
such that {(v,u), (v',v')} € E(Go H). So, D is a total set of G o H. Now, we must show
that D dominates all vertices of G o H at least one and at most two times. It is clear
S ={v: (v,u*) € D} € SD%M]. We consider three kinds of vertices and we will show
vertices of each H_Layer are dominated by at least one and two vertices of D.

a) v € S and [N(v)N S| =0: Since S’ = {u*,u} is a total [1,2]-set for Go H, (v,u*) € D
and (v,u®) € D. Then, all of the vertices of H” are dominated by (v,u*) and (v, u®).
Since |[N(v) NS| = 0. So, any other vertex cannot dominate vertices of H". Therefore
1 <|N(v,u)NnD| < 2.

b) v € S and |[N(v) N S| = 1: So, there is a vertex v" € S such that {v,v'} € E(G),
(v', u*) dominates all of the vertices of H" and these vertices can also be dominated by
(v,u*). Since S is a 1-dependent [1,2]-set for G, then there is not any other vertex in
the neighborhood of v in S, so 1 < |N(v,u) N D| < 2.

c) v ¢ S: Since S is a 1-dependent [1,2]-set for G, it is easy to see that there is a vertex
v" € S such that {v,v'} € E(G). So, all of the vertices of H” are dominated by (v, u*).
If IN(v)NS| =0, then (v',u®) dominates vertices of H” and any other vertices can not
dominate them. If there exist a v” € S such that {v,v"} € E(G) and it is contradicting
to distg(v',v") > 3. If |[N(v') N S| = 0, there maybe exists a vertex (v”,u*) € D such
that | N (v)NS| # 0 and there is no vertex in H*" and other H_Layers dominate vertices
of H".

]

In the sequel, we express necessary and sufficient conditions for the given graphs G and H such
that Go H has a total [1, k]-set. The Lemma 2.3, 2.4, 2.6 and Corollary 2.8 are generalized to total
[1, k]-set. Since proofs in this section can be similarly obtained from the case on total [1,2]-sets,
we omit them.

Theorem 2.10. Let D be a total [1, k|-set for G o H.
a) If D contains more than k vertices of an H_Layer, then G = K, and H € Dﬁ,k}'

b) If D contains at most one vertex of every H_Layers, then S = {v € V(G) : (v,u) € D}
is a (k — 1)-dependent total [1,k|-set of G. Moreover if there is a vertexr v € S such that
|IN(v) N S| =k, then H contains an isolated vertex.



c) If H does not contain any isolated vertex and S = {v € V(G) : (v,u) € D} is not a total set
of G, then D contains at most k vertices of each HY and satisfies the following conditions:

cl) The set 8" = {u € V(H) : (v,u) € D} is a total [1,k]-set of H with cardinality to at
most k and there is a vertex x € S such that 1 < |DNV(H")| < |5'|;

c2) S is a (k — 1)-dependent 1, k]-set for G;

c3) If there exist a vertex v € S such that |[N(v) N S| =0, then 1 < |DNV(H")| < |k/2]
or for any vertex v’ € S — {v}, we have distg(v,v") > 3.

Theorem 2.11. Let G and H be two graphs. Go H € Dﬁ’k} if and only if G and H satisfy one of
the following conditions

1. G=K, and H € Dﬁ,k}f

2. G has a total [1,k]-set S and if S has a vertex v such that |[N(v) N S| = k then H has an
1solated vertex;

3. G is an efficient domination graph and v g (H) < k;

4. G has a (k—1)-dependent [1, k]-set S and if S € SDﬁjkl](G) then v (H) < k and otherwise
Ve (H) < k/2.

3 Complexity

In this section, we will show that the decision problem for total [1,2]-set is N P-complete. We will
do this by reduction the N P-complete problem, Exact 3-Cover, to Total [1, 2]-Set.

Exact 3-cover problem:
The input of this problem is a finite set X = {1, za, ...., x3,} with |X| = 3¢ and a collection C' of
3-element subsets of X such as C; = {x;,,z;,,x;,}. our goal is to understand is there a ' C C
such that every element of X appears in exactly one element of C'?

Total [1,2]-set problem:
Input of this problem is a graph G = (V, E)) and a positive integer & < |V|. We want to investigate
is there any total [1,2]-set of cardinality at most k for G.

Theorem 3.1. Total [1, 2]-SET is N P-complete for bipartite graphs.

Proof. Let D C V is given, we verify D is a total [1,2]-set. For any vertex v € D, we check
neighborhood of each vertex and compute span number of any vertex v € V. If there is a vertex v
with span number more than 2, this set is not a total [1, 2]-set for G. It is obvious this algorithm is
done in polynomial time and total [1, 2]-set is a N P problem. Now for a set X, and a collection C
of 3-element subsets of X, we build a graph and transform EXACT 3-COVER into a total [1, 2]-set
problem. Let X = {x,x,...,x3,} and C = {C1, (s, ...,C;}. For each C; € C, we build a cycle
Cy with a vertex u;. we add new vertices {vy,,v1,, V14, V2, Usy, V2g, vy Uy, Uty, Uty b and connect all
vertices v;1, Vi2, Vg to u;. Then add some other vertices {x1, x9, ..., x3,} and edges z;v;,, x;v;, and
xv,,, if v; € C;. G is a bipartite graph. Let k = 2t + ¢ and suppose that C’ is a solution for
set X and collection C' of EXACT 3-COVER. We build a set D of vertices of G contain every u;,
1 < ¢ <t, and another vertex of Cy adjacent to u; and one of the v;,, v;, or v;, for each C; € C".
If C” exists, then it’s cardinality is precisely q, and so |D| = 2t + g = k. We can check easily that

8



D is a [1, 2]-total set of G.

Conversely, suppose that G has a total [1,2]-set D with |D| < 2t + ¢ = k. Then D must contain
two vertices of every (Y4, in the best case we select u; and one of the vertices in that adjacency
in Cy. We select 2t vertices that dominate all vertices of cycles and all vertices of form v;,, v;,
or vy for 1 <4 < t. Since each v;, dominates only three vertices of {z1, %2, ..., 3, We have to
select exactly g vertices of them, i.e. we select ¢ 3-element subsets of form {v;,, v;,, v, } and one
element of each of them. Each of this v;; corresponds to a C; and union of them is an exact cover

for C. O]
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