Journal of Mathematical Extension Vol. 13, No. 3, (2019), 143-169

ISSN: 1735-8299

URL: http://www.ijmex.com

Some Fixed Point Theorems Via \widetilde{G} -Rational Contractive Mappings in Ordered Modified G-Metric Spaces

V. Parvaneh*

Gilan-E-Gharb Branch, Islamic Azad University

N. Hussain

King Abdulaziz University

S. J. Hosseini

Takestan Branch, Islamic Azad University

F. Golkarmanesh

Sanandaj Branch, Islamic Azad University

Abstract. In this paper, recalling the structure of modified G-metric spaces (as a generalization of both G-metric and G_b -metric spaces), we present the notions of \widetilde{G} -rational contractive mappings and investigate the existence of fixed point for such mappings. We also provide examples and an application to illustrate the results presented herein.

AMS Subject Classification: 47H10; 54H25

Keywords and Phrases: Rational contraction, complete metric space, ordered G-metric space

1. Introduction

principle via using different form of contractive conditions in generalized metric spaces. Some of such generalizations are obtained via contractive conditions expressed by rational terms (see, [31], [19], [4], [5], [16], [24] and [32]).

Received: October 2017; Accepted: July 2018

^{*}Corresponding author

Ran and Reurings initiated the study of fixed point results on partially ordered sets in [30]. Also, many researchers have focused on different contractive conditions in complete metric spaces endowed with a partial order. For more details we refer the reader to [25, 26].

Parvaneh and Ghoncheh in [28] introduced the concept of an extended b-metric space (p-metric space).

Definition 1.1. [28] Let X be a (nonempty) set. A function $\widetilde{d}: X \times X \to R^+$ is a p-metric iff there exists a strictly increasing continuous function $\Omega: [0, \infty) \to [0, \infty)$ with $\Omega^{-1}(x) \leqslant x \leqslant \Omega(x)$ and $\Omega^{-1}(0) \leqslant 0 \leqslant \Omega(0)$ such that for all $x, y, z \in X$, the following conditions hold:

$$(\widetilde{d}_1)$$
 $\widetilde{d}(x,y) = 0$ iff $x = y$,

$$(\widetilde{d}_2)$$
 $\widetilde{d}(x,y) = \widetilde{d}(y,x),$

$$(\widetilde{d}_3)$$
 $\widetilde{d}(x,z) \leq \Omega(\widetilde{d}(x,y) + \widetilde{d}(y,z)).$

In this case, the pair (X, \widetilde{d}) is called a p-metric space, or, an extended b-metric space.

A b-metric [6] is a p-metric, when $\Omega(x)=sx$ while a metric is a p-metric, when $\Omega(x)=x.$

We have the following proposition.

Proposition 1.2. [28] Let (X, d) be a metric space and let $\widetilde{d}(x, y) = \xi(d(x, y))$ where $\xi : [0, \infty) \to [0, \infty)$ is a strictly increasing function with $x \leq \xi(x)$ and $0 = \xi(0)$. In this case, \widetilde{d} is a p-metric with $\Omega(t) = \xi(t)$.

The above proposition constructs the following example:

Example 1.3. Let (X, d) be a metric space and let $\widetilde{d}(x, y) = e^{d(x, y)} \sec^{-1}(e^{d(x, y)})$. Then \widetilde{d} is a p-metric with $\Omega(t) = e^t \sec^{-1}(e^t)$.

The concept of a generalized metric space, or a G-metric space, was introduced by Mustafa and Sims. For more details in this field the reader can refer to [15, 12, 13]

Definition 1.4. [23] Let X be a nonempty set and $G: X \times X \times X \to R^+$ be a function satisfying the following properties:

(G1)
$$G(x, y, z) = 0$$
 iff $x = y = z$;

(G2)
$$0 < G(x, x, y)$$
, for all $x, y \in X$ with $x \neq y$;

(G3)
$$G(x, x, y) \leqslant G(x, y, z)$$
, for all $x, y, z \in X$ with $y \neq z$;

(G4) $G(x,y,z) = G(x,z,y) = G(y,z,x) = \cdots$, (symmetry in all three variables);

(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality).

Then, the function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

Aghajani et al. in [2] motivated by the concept of b-metric [6] introduced the concept of generalized b-metric spaces (G_b -metric spaces) and then they presented some basic properties of G_b -metric spaces.

The following is the definition of modified G-metric spaces which is a proper generalization of the notions of G-metric spaces and G_b -metric spaces.

Definition 1.5. [29] Let X be a nonempty set and $\Omega: [0,\infty) \to [0,\infty)$ be a strictly increasing continuous function such that $\Omega^{-1}(x) \leq x \leq \Omega(x)$ for all x > 0 and $\Omega^{-1}(0) = 0 = \Omega(0)$. Suppose that a mapping $\widetilde{G}: X \times X \times X \to \mathbb{R}^+$ satisfies:

$$(\widetilde{G}1)$$
 $\widetilde{G}(x, y, z) = 0$ if $x = y = z$,

- $(\widetilde{G}2)$ $0 < \widetilde{G}(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
- $(\widetilde{G}3) \ \widetilde{G}(x,x,y) \leqslant \widetilde{G}(x,y,z) \ \text{for all } x,y,z \in X \ \text{with } y \neq z,$
- $(\widetilde{G}4)$ $\widetilde{G}(x,y,z) = \widetilde{G}(p\{x,y,z\})$, where p is a permutation of x,y,z (symmetry),
- $(\widetilde{G}5) \ G(x,y,z) \leqslant \Omega[\widetilde{G}(x,a,a) + \widetilde{G}(a,y,z)] \ for \ all \ x,y,z,a \in X \ (rectangle \ inequality).$

Then \widetilde{G} is called a modified G-metric and the pair (X,\widetilde{G}) is called a modified G-metric space or a \widetilde{G} -metric space.

Each G-metric space is a \widetilde{G} -metric space with $\Omega(t)=t$ and every G_b -metric space is a \widetilde{G} -metric space with $\Omega(t)=st$.

Proposition 1.6. [29] Let (X,G) be a G_b -metric space with coefficient $s \ge 1$ and let $\widetilde{G}(x,y,z) = \xi(G(x,y,z))$ where $\xi : [0,\infty) \to [0,\infty)$ is a strictly increasing function with $x \le \xi(x)$ for all x > 0 and $\xi(0) = 0$. Then, show that \widetilde{G} is a modified G-metric with $\Omega(t) = \xi(st)$.

For each $x, y, z, a \in X$,

$$\begin{split} \widetilde{G}(x,y,z) \\ &= \xi(G(x,y,z)) \leqslant \xi(sG(x,a,a) + sG(a,y,z)) \\ &\leqslant \xi(s\xi(G(x,a,a)) + s\xi(G(a,y,z)) \\ &= \xi(s\widetilde{G}(x,a,a) + s\widetilde{G}(a,y,z)) \\ &= \Omega(\widetilde{G}(x,a,a) + \widetilde{G}(a,y,z)). \end{split}$$

So, \widetilde{G} is a modified G-metric with $\Omega(t) = \xi(st)$.

The above proposition constructs the following examples:

Example 1.7. [27] Let (X,G) be a G_b -metric space with coefficient $s \ge 1$. Then,

- 1. $\widetilde{G}(x,y,z) = e^{G(x,y,z)} \sec^{-1}(e^{G(x,y,z)})$ is a \widetilde{G} -metric with $\Omega(t) = e^{st} \sec^{-1}(e^{st})$.
- 2. $\widetilde{G}(x,y,z)=[G(x,y,z)+1]\sec^{-1}([G(x,y,z)+1])$ is a \widetilde{G} -metric with $\Omega(t)=[st+1]\sec^{-1}([st+1])$.
- 3. $\widetilde{G}(x,y,z)=e^{G(x,y,z)}\tan^{-1}(e^{G(x,y,z)}-1)$ is a \widetilde{G} -metric with $\Omega(t)=e^{st}\tan^{-1}(e^{st}-1)$.
- 4. $\widetilde{G}(x,y,z) = G(x,y,z) \cosh(G(x,y,z))$ is a \widetilde{G} -metric with $\Omega(t) = st \cosh(st)$.
- 5. $\widetilde{G}(x,y,z) = e^{G(x,y,z)} \ln(1+G(x,y,z))$ is a \widetilde{G} -metric with $\Omega(t) = e^{st} \ln(1+st)$.
- 6. $\widetilde{G}(x,y,z)=G(x,y,z)+\ln(1+G(x,y,z))$ is a \widetilde{G} -metric with $\Omega(t)=st+\ln(1+st)$.

Definition 1.8. A \widetilde{G} -metric \widetilde{G} is said to be symmetric if $\widetilde{G}(x,y,y) = \widetilde{G}(y,x,x)$, for all $x,y \in X$.

Proposition 1.9. [29] Let X be a \widetilde{G} -metric space. Then for each $x, y, z, a \in X$ it follows that:

- (1) if $\widetilde{G}(x, y, z) = 0$ then x = y = z,
- (2) $\widetilde{G}(x, y, z) \leq \Omega(\widetilde{G}(x, x, y) + \widetilde{G}(x, x, z)),$
- (3) $\widetilde{G}(x, y, y) \leqslant \Omega[2\widetilde{G}(y, x, x)],$
- (4) $\widetilde{G}(x, y, z) \leq \Omega(\widetilde{G}(x, a, z) + \widetilde{G}(a, y, z)).$

Recall that a function f is super-additive if

$$f(x+y) \geqslant f(x) + f(y)$$

for all $x, y \in D(f)$.

Definition 1.10. Let X be a \widetilde{G} -metric space with a super-additive function Ω . We define $\widetilde{d}_{\widetilde{G}}(x,y) = \widetilde{G}(x,y,y) + \widetilde{G}(x,x,y)$, for all $x,y \in X$. It is easy to see that $\widetilde{d}_{\widetilde{G}}$ defines a p-metric \widetilde{d} on X, which we call it the \widetilde{d} -metric associated with \widetilde{G} .

Definition 1.11. Let X be a \widetilde{G} -metric space. A sequence $\{x_n\}$ in X is said to be:

- (1) \widetilde{G} -Cauchy if, for each $\varepsilon > 0$ there exists a positive integer n_0 such that for all $m, n, l \ge n_0, \widetilde{G}(x_n, x_m, x_l) < \varepsilon$;
- (2) \widetilde{G} -convergent to a point $x \in X$ if, for each $\varepsilon > 0$ there exists a positive integer n_0 such that for all $m, n \ge n_0, \widetilde{G}(x_n, x_m, x) < \varepsilon$.
- (3) A \widetilde{G} -metric space X is called \widetilde{G} -complete, if every \widetilde{G} -Cauchy sequence is \widetilde{G} -convergent in X.

Proposition 1.12. Let X be a \widetilde{G} -metric space. Then the following are equivalent:

- (1) the sequence $\{x_n\}$ is \widetilde{G} -Cauchy.
- (2) for any $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $\widetilde{G}(x_n, x_m, x_m) < \varepsilon$ for all $m, n \ge n_0$.

Proposition 1.13. Let X be a \widetilde{G} -metric space. The following are equivalent:

- (1) $\{x_n\}$ is \widetilde{G} -convergent to x.
- (2) $\widetilde{G}(x_n, x_n, x) \to 0$, as $n \to \infty$.
- (3) $\widetilde{G}(x_n, x, x) \to 0$, as $n \to \infty$.

In general, a G_b -metric function G(x, y, z) for s > 1 and so a modified G-metric function $\widetilde{G}(x, y, z)$ with nontrivial function Ω is not jointly continuous in all its variables (see [20]).

We will apply the following simple lemma about the \widetilde{G} -convergent sequences.

Lemma 1.14. [29] Let (X, \widetilde{G}) be a \widetilde{G} -metric space.

1. Suppose that $\{x_n\}, \{y_n\}$ and $\{z_n\}$ are \widetilde{G} -convergent to x, y and z, respectively. Then we have

$$(\Omega^{-1})^3 [\widetilde{G}(x,y,z)] \leqslant \liminf_{n \to \infty} \widetilde{G}(x_n,y_n,z_n) \leqslant \limsup_{n \to \infty} \widetilde{G}(x_n,y_n,z_n) \leqslant \Omega^3 [\widetilde{G}(x,y,z)].$$

2. Suppose that $\{x_n\}$ and $\{y_n\}$ are \widetilde{G} -convergent to x and y, respectively. Then we have

$$(\Omega^{-1})^2[\widetilde{G}(x,y,\alpha)] \leqslant \liminf_{n \to \infty} \widetilde{G}(x_n,y_n,\alpha) \leqslant \limsup_{n \to \infty} \widetilde{G}(x_n,y_n,\alpha) \leqslant \Omega^2[\widetilde{G}(x,y,\alpha)].$$

3. If $\{x_n\}$ be \widetilde{G} -convergent to x, then

$$(\Omega^{-1})[\widetilde{G}(x,\alpha,\beta)] \leqslant \liminf_{n \to \infty} \widetilde{G}(x_n,\alpha,\beta) \leqslant \limsup_{n \to \infty} \widetilde{G}(x_n,\alpha,\beta) \leqslant \Omega[\widetilde{G}(x,\alpha,\beta)].$$

In particular, if x = y = z, then we have $\lim_{n \to \infty} \widetilde{G}(x_n, y_n, z_n) = 0$.

Proof. 1. Using the rectangle inequality in a \widetilde{G} -metric space it is easy to see that,

$$\widetilde{G}(x,y,z) \leqslant \Omega \left[\widetilde{G}(x,x_n,x_n) + \Omega \big[\widetilde{G}(y,y_n,y_n) + \Omega \big[\widetilde{G}(z,z_n,z_n) + \widetilde{G}(x_n,y_n,z_n) \big] \right]$$

and

$$\widetilde{G}(x_n,y_n,z_n)\leqslant \Omega\bigg[\widetilde{G}(x_n,x,x)+\Omega\big[G(y_n,y,y)+\Omega[G(z_n,z,z)+G(x,y,z)]\big]\bigg].$$

Taking the lower limit as $n \to \infty$ in the first inequality and the upper limit as $n \to \infty$ in the second inequality we obtain the desired result.

2. Using the rectangle inequality we see that,

$$\widetilde{G}(x, y, \alpha) \leq \Omega \left[\widetilde{G}(x, x_n, x_n) + \Omega \left[\widetilde{G}(y, y_n, y_n) + \widetilde{G}(x_n, y_n, \alpha) \right] \right]$$

and

$$\widetilde{G}(x_n,y_n,\alpha)\leqslant \Omega\bigg[\widetilde{G}(x_n,x,x)+\Omega\big[G(y_n,y,y)+G(x,y,\alpha)\big]\bigg].$$

3. Similarly,

$$\widetilde{G}(x,\alpha,\beta) \leqslant \Omega \left[\widetilde{G}(x,x_n,x_n) + \widetilde{G}(x_n,\alpha,\beta) \right]$$

and

$$\widetilde{G}(x_n,\alpha,\beta)\leqslant \Omega\bigg[\widetilde{G}(x_n,x,x)+G(x,\alpha,\beta)\big]\bigg].\quad \ \Box$$

Let $\mathfrak S$ denote the class of all real functions $\beta:[0,\infty)\to[0,1)$ satisfying the condition

$$\beta(t_n) \to 1$$
 implies that $t_n \to 0$, as $n \to \infty$.

In order to generalize the Banach contraction principle, in 1973, Geraghty proved the following.

Theorem 1.15. [9] Let (X,d) be a complete metric space, and let $f: X \to X$ be a self-map. Suppose that there exists $\beta \in \mathfrak{S}$ such that

$$d(fx, fy) \le \beta(d(x, y))d(x, y)$$

holds for all $x, y \in X$. Then f has a unique fixed point $z \in X$ and for each $x \in X$ the Picard sequence $\{f^n x\}$ converges to z.

In 2010, Amini-Harandi and Emami [3] characterized the result of Geraghty in the setting of a partially ordered complete metric space.

In [7], some fixed point theorems for mappings satisfying Geraghty-type contractive conditions are proved in various generalized metric spaces.

Also, Zabihi and Razani [32] and Shahkoohi and Razani [31] obtained some fixed point results due to rational Geraghty contractions in b-metric spaces.

Motivated by [19], in this paper we present some fixed point theorems for different rational contractive mappings in partially ordered modified G-metric spaces. Our results extend some existing results in the literature.

2. Main Results

2.1 Fixed point results using \widetilde{G} -rational geraghty contractions

Let (X, \widetilde{G}) be a \widetilde{G} -metric space with function Ω and let \mathcal{F}_{Ω} denotes the class of all functions $\beta : [0, \infty) \to [0, \Omega^{-1}(1))$ satisfying the following condition:

$$\lim_{n\to\infty} \sup \beta(t_n) = \Omega^{-1}(1) \text{ implies that } t_n\to 0, \text{ as } n\to\infty.$$

An example of a function in \mathcal{F}_{Ω} may be given by $\beta(t) = (\ln 2)e^{-t}$ for t > 0 and $\beta(0) \in [0, \ln 2)$ where $\widetilde{G}(x, y, z) = e^{\max(|x-y|, |y-z|, |z-x|)} - 1$ for all $x, y, z \in \mathbb{R}$.

Another example of a function in \mathcal{F}_{Ω} may be given by $\beta(t) = W(1)e^{-t}$ for t > 0 and $\beta(0) \in [0, W(1))$ where $\widetilde{G}(x, y, z) = \max(|x - y|, |y - z|, |z - x|)e^{\max(|x - y|, |y - z|, |z - x|)}$ for all $x, y, z \in \mathbb{R}$. Note that W is the Lambert W-function (see, e.g., [8])

Definition 2.1.1. Let (X, \widetilde{G}) be an ordered \widetilde{G} -metric space. A mapping $f: X \to X$ is called a \widetilde{G} -rational Geraghty contraction if, there exists $\beta \in \mathcal{F}_{\Omega}$ such that,

$$\Omega(\widetilde{G}(fx, fy, fz)) \leqslant \beta(M(x, y, z))M(x, y, z) \tag{1}$$

for all comparable elements $x, y, z \in X$, where

$$\begin{split} M(x,y,z) &= \max \left\{ \widetilde{G}(x,y,z), \frac{\widetilde{G}(x,y,fy) [\widetilde{G}(y,z,fz)]^2}{1 + \widetilde{G}(x,fx,f^2x) \widetilde{G}(y,fy,f^2y)}, \right. \\ &\left. \frac{\widetilde{G}(x,fx,f^2x) \widetilde{G}(y,fy,f^2y) \widetilde{G}(z,fz,f^2z)}{1 + \widetilde{G}(fx,f^2x,f^3x) \widetilde{G}(fy,f^2y,f^3y)} \right\}. \end{split}$$

Recall that a modified G-metric space (X, \widetilde{G}) it said to has the s.l.c. property, if whenever $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to u \in X$, one has $x_n \preceq u$ for all $n \in \mathbb{N}$

Theorem 2.1.2. Let $(X, \preceq, \widetilde{G})$ be an ordered \widetilde{G} -complete \widetilde{G} -metric space. Let $f: X \to X$ be an increasing mapping with respect to \preceq such that there exists an element $x_0 \in X$ with $x_0 \preceq f(x_0)$. Suppose that f be a \widetilde{G} -rational Geraghty contraction. If,

- (I) f is continuous, or,
- (II) $(X, \preceq, \widetilde{G})$ has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Proof. Put $x_n = f^n(x_0)$. Since $x_0 \leq f(x_0)$ and f is increasing, we obtain by induction that

$$x_0 \leq f(x_0) \leq f^2(x_0) \leq ... \leq f^n(x_0) \leq f^{n+1}(x_0) \leq ...$$

We will do the proof in the following steps.

Step 1. We will show that $\lim_{n\to\infty} \widetilde{G}(x_n, x_{n+1}, x_{n+1}) = 0$. Without any loss of generality, we may assume that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$. Since $x_n \leq x_{n+1}$ for each $n \in \mathbb{N}$, then by (1) we have

$$G(x_n, x_{n+1}, x_{n+2}) = \widetilde{G}(fx_{n-1}, fx_n, fx_{n+1}) \le$$

$$\beta(M(x_{n-1}, x_n, x_{n+1}))M(x_{n-1}, x_n, x_{n+1}), \tag{2}$$

where

$$\begin{split} &M(x_{n-1},x_n,x_{n+1})\\ &= \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \frac{\widetilde{G}(x_{n-1},x_n,fx_n)\widetilde{G}(x_n,x_{n+1},fx_{n+1})^2}{1+\widetilde{G}(x_{n-1},fx_{n-1},f^2x_{n-1})\widetilde{G}(x_n,fx_n,f^2x_n)},\\ &\frac{\widetilde{G}(x_{n-1},fx_{n-1},f^2x_{n-1})\widetilde{G}(x_n,fx_n,f^2x_n)\widetilde{G}(x_{n+1},fx_{n+1},f^2x_{n+1})}{1+\widetilde{G}(fx_{n-1},f^2x_{n-1},f^3x_{n-1})\widetilde{G}(fx_n,f^2x_n,f^3x_n)} \Big\} \end{split}$$

$$\begin{split} &= \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \frac{\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})^2}{1+\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})}, \\ &\frac{\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})\widetilde{G}(x_{n+1},x_{n+2},x_{n+3})}{1+\widetilde{G}(x_n,x_{n+1},x_{n+2})\widetilde{G}(x_{n+1},x_{n+2},x_{n+3})}\} \\ &\leqslant \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \widetilde{G}(x_n,x_{n+1},x_{n+2})\}. \\ &M(x_{n-1},x_n,x_{n+1}) \\ &= \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \frac{\widetilde{G}(x_{n-1},x_n,fx_n)\widetilde{G}(x_n,x_{n+1},fx_{n+1})^2}{1+\widetilde{G}(x_{n-1},fx_{n-1},f^2x_{n-1})\widetilde{G}(x_n,fx_n,f^2x_n)}, \\ &\frac{\widetilde{G}(x_{n-1},fx_{n-1},f^2x_{n-1})\widetilde{G}(x_n,fx_n,f^2x_n)\widetilde{G}(x_{n+1},fx_{n+1},f^2x_{n+1})}{1+\widetilde{G}(fx_{n-1},f^2x_{n-1})\widetilde{G}(x_n,x_{n+1},x_{n+2})^2}\} \\ &= \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \frac{\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})^2}{1+\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})^2}, \\ &\frac{\widetilde{G}(x_{n-1},x_n,x_{n+1})\widetilde{G}(x_n,x_{n+1},x_{n+2})\widetilde{G}(x_{n+1},x_{n+2},x_{n+3})}{1+\widetilde{G}(x_n,x_{n+1},x_{n+2})\widetilde{G}(x_{n+1},x_{n+2},x_{n+3})}\} \\ &\leqslant \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \widetilde{G}(x_n,x_{n+1},x_{n+2},x_{n+3})\}. \end{split}$$

If $\max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}),\widetilde{G}(x_n,x_{n+1},x_{n+2})\} = \widetilde{G}(x_n,x_{n+1},x_{n+2})$, then from (2) we have,

$$\widetilde{G}(x_{n}, x_{n+1}, x_{n+2}) \leq \beta(M(x_{n-1}, x_{n}, x_{n+1}))\widetilde{G}(x_{n}, x_{n+1}, x_{n+2})
< \Omega^{-1}(1)\widetilde{G}(x_{n}, x_{n+1}, x_{n+2})
\leq \widetilde{G}(x_{n}, x_{n+1}, x_{n+2}),$$
(3)

which is a contradiction.

Hence, $\max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}),\widetilde{G}(x_n,x_{n+1},x_{n+2})\}=\widetilde{G}(x_{n-1},x_n,x_{n+1}).$ So, from (2),

$$\widetilde{G}(x_n, x_{n+1}, x_{n+2}) \leqslant \beta(M(x_{n-1}, x_n, x_{n+1}))\widetilde{G}(x_{n-1}, x_n, x_{n+1}) < \widetilde{G}(x_{n-1}, x_n, x_{n+1}). \tag{4}$$

That is, $\{\widetilde{G}(x_n, x_{n+1}, x_{n+2})\}$ is a decreasing sequence, then there exists $r \ge 0$ such that $\lim_{n\to\infty} \widetilde{G}(x_n, x_{n+1}, x_{n+2}) = r$. We will prove that r = 0. Suppose on contrary that r > 0. Then, letting $n \to \infty$, from (4) we have

$$r \leqslant \lim_{n \to \infty} \beta(M(x_{n-1}, x_n, x_{n+1}))r \leqslant \Omega^{-1}(1)r,$$

which implies that $\Omega^{-1}(1) \leqslant 1 \leqslant \lim_{n \to \infty} \beta(M(x_{n-1}, x_n, x_{n+1})) \leqslant \Omega^{-1}(1)$. Now, as $\beta \in \mathcal{F}_{\Omega}$ we conclude that $M(x_{n-1}, x_n, x_{n+1}) \to 0$ which yields that r = 0, a

contradiction. Hence, the assumption that r > 0 is false. That is,

$$\lim_{n \to \infty} \tilde{G}(x_n, x_{n+1}, x_{n+2}) = 0.$$
 (5)

Consequently,

$$\lim_{n \to \infty} \widetilde{G}(x_n, x_{n+1}, x_{n+1}) = 0.$$
 (6)

Step 2. Now, we prove that the sequence $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. Suppose the contrary, *i.e.*, $\{x_n\}$ is not a \widetilde{G} -Cauchy sequence. Then there exists $\varepsilon > 0$ for which we can find two subsequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that n_i is the smallest index for which

$$n_i > m_i > i \text{ and } \widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \geqslant \varepsilon.$$
 (7)

This means that

$$\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) < \varepsilon. \tag{8}$$

From the rectangular inequality, we get

$$\varepsilon \leqslant \widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \leqslant \Omega[\widetilde{G}(x_{m_i}, x_{m_i+1}, x_{m_i+1}) + \widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i})].$$

Taking the upper limit as $i \to \infty$ and by (6), we get

$$\Omega^{-1}(\varepsilon) \leqslant \limsup_{i \to \infty} \widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i}). \tag{9}$$

From the definition of M(x, y, z) and the above limits,

$$\begin{split} \lim\sup_{i\to\infty} M(x_{m_i},x_{n_i-1},x_{n_i-1}) &= \limsup\max\{\tilde{G}(x_{m_i},x_{n_i-1},x_{n_i-1}),\\ &\frac{\tilde{G}(x_{m_i},x_{n_i-1},fx_{n_i-1})\tilde{G}(x_{n_i-1},x_{n_i-1},fx_{n_i-1})^2}{1+\tilde{G}(x_{m_i},fx_{m_i},f^2x_{m_i})\tilde{G}(x_{n_i-1},fx_{n_i-1},f^2x_{n_i-1})},\\ &\frac{\tilde{G}(x_{m_i},fx_{m_i},f^2x_{m_i})\tilde{G}(x_{n_i-1},fx_{n_i-1},f^2x_{n_i-1})^2}{1+\tilde{G}(fx_{m_i},f^2x_{m_i},f^3x_{m_i})\tilde{G}(fx_{n_i-1},f^2x_{n_i-1},f^3x_{n_i-1})}\}\\ \leqslant \varepsilon. \end{split}$$

Now, from (1) and the above inequalities, we have

$$\begin{split} \varepsilon &\leqslant \limsup_{i \to \infty} \Omega(\widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i})) \\ &\leqslant \limsup_{i \to \infty} \beta(M(x_{m_i}, x_{n_i-1}, x_{n_i-1})) \limsup_{i \to \infty} M(x_{m_i}, x_{n_i-1}, x_{n_i-1}) \\ &\leqslant \varepsilon \limsup_{i \to \infty} \beta(M(x_{m_i}, x_{n_i-1}, x_{n_i-1})) \end{split}$$

which implies that $\Omega^{-1}(1) \leq \limsup_{i \to \infty} \beta(M(x_{m_i}, x_{n_i-1}, x_{n_i-1}))$. Now, as $\beta \in \mathcal{F}_{\Omega}$ we conclude that

 $M(x_{m_i}, x_{n_i-1}, x_{n_i-1}) \to 0$ which yields that $\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) \to 0$. Consequently,

$$\widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \leqslant \Omega[\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) + s\widetilde{G}(x_{n_i-1}, x_{n_i}, x_{n_i})] \to 0,$$

a contradiction to (7). Therefore, $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. \widetilde{G} -Completeness of X yields that $\{x_n\}$ \widetilde{G} -converges to a point $u \in X$.

Step 3. u is a fixed point of f.

First, let f is continuous, so, we have

$$u = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} fx_n = fu.$$

Now, let (II) holds. Using the assumption on X we have $x_n \leq u$. Now, by Lemma 1.14,

$$(\Omega^{-1})^{2} [\widetilde{G}(u, u, fu)] \leqslant \limsup_{n \to \infty} \widetilde{G}(x_{n+1}, x_{n+1}, fu)$$

$$\leqslant \limsup_{n \to \infty} \beta(M(x_{n}, x_{n}, u)) \limsup_{n \to \infty} M(x_{n}, x_{n}, u),$$

where,

$$\begin{split} \lim_{n\to\infty} M(x_n,x_n,u) &= \lim_{n\to\infty} \max\{\widetilde{G}(x_n,x_n,u), \frac{\widetilde{G}(x_n,x_n,fx_n)\widetilde{G}(x_n,u,fu)^2}{1+\widetilde{G}(x_n,fx_n,f^2x_n)^2}, \\ &\frac{\widetilde{G}(x_n,fx_n,f^2x_n)^2\widetilde{G}(u,fu,f^2u)}{1+\widetilde{G}(fx_n,f^2x_n,f^3x_n)^2}\} \\ &= 0 \end{split}$$

Therefor, we deduce that $\widetilde{G}(u, u, fu) = 0$, so, u = fu.

Finally, suppose that the set of fixed point of f is well ordered. Assume on contrary that, u and v are two fixed points of f such that $u \neq v$. Then by (1), we have

$$G(u, v, v) = \widetilde{G}(fu, fv, fv) \leqslant \beta(M(u, v, v))M(u, v, v) =$$

$$\beta(\widetilde{G}(u, v, v))\widetilde{G}(u, v, v) < \Omega^{-1}(1)\widetilde{G}(u, v, v). \tag{10}$$

Because

$$M(u, v, v) = \widetilde{G}(u, v, v).$$

So, we get, $G(u, v, v) < \Omega^{-1}(1)G(u, v, v)$, a contradiction. Hence, u = v, and f has a unique fixed point. Conversely, if f has a unique fixed point, then the set of fixed points of f is well ordered. \square

2.2 Fixed point results via comparison functions

Let Ψ be the family of all nondecreasing functions $\psi:[0,\infty)\to[0,\infty)$ such that

$$\lim_{n \to \infty} \psi^n(t) = 0$$

for all t > 0.

Lemma 2.2.1. If $\psi \in \Psi$, then the following are satisfied.

- (a) $\psi(t) < t \text{ for all } t > 0$;
- (b) $\psi(0) = 0$.

Definition 2.2.2. Let $(X, \preceq, \widetilde{G})$ is an ordered \widetilde{G} -metric space. A mapping $f: X \to X$ is called a \widetilde{G} -rational ψ -contraction if, there exists $\psi \in \Psi$ such that,

$$\Omega(\widetilde{G}(fx, fy, fz)) \le \psi(M(x, y, z))$$
 (11)

for all comparable elements $x, y, z \in X$, where

M(x, y, z)

$$\begin{split} &= \max \bigg\{ \widetilde{G}(x,y,z), \frac{\widetilde{G}(x,x,fx)\widetilde{G}(x,x,fy)}{1 + \Omega[\widetilde{G}(x,x,fx) + \widetilde{G}(y,y,fy)]}, \\ &\frac{\widetilde{G}(y,y,z)\widetilde{G}(y,y,fz)}{1 + \Omega[\widetilde{G}(y,y,fy) + \widetilde{G}(z,z,fz)]}, \frac{\widetilde{G}(x,x,fx)\widetilde{G}(x,x,z)}{1 + \widetilde{G}(x,x,fy) + \widetilde{G}(y,y,fx)} \bigg\}. \end{split}$$

Theorem 2.2.3. Let $(X, \preceq, \widetilde{G})$ be an ordered \widetilde{G} -complete \widetilde{G} -metric space. Let $f: X \to X$ be an increasing mapping with respect to \preceq such that there exists an element $x_0 \in X$ with $x_0 \preceq f(x_0)$. Suppose that f be a \widetilde{G} -rational ψ -contractive mapping. If

- (I) f is continuous, or,
- (II) $(X, \preceq, \widetilde{G})$ has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Proof. Put $x_n = f^n(x_0)$.

Step I: We will show that $\lim_{n\to\infty} \widetilde{G}(x_n,x_{n+1},x_{n+1}) = 0$. We assume that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$. Since $x_n \leq x_{n+1}$ for each $n \in \mathbb{N}$, then by 11 we have

$$\widetilde{G}(x_{n}, x_{n+1}, x_{n+2}) = \widetilde{G}(fx_{n-1}, fx_{n}, fx_{n+1})
\leq \psi(M(x_{n-1}, x_{n}, x_{n+1}))
\leq \psi(\widetilde{G}(x_{n-1}, x_{n}, x_{n+1}))
< \widetilde{G}(x_{n-1}, x_{n}, x_{n+1}),$$
(12)

because

$$\begin{split} &M(x_{n-1},x_n,x_{n+1})\\ &= \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}), \frac{\widetilde{G}(x_{n-1},x_{n-1},x_n)\widetilde{G}(x_{n-1},x_{n-1},fx_n)}{1+\Omega[\widetilde{G}(x_{n-1},x_{n-1},fx_{n-1})+\widetilde{G}(x_n,x_n,fx_n)]},\\ &\frac{\widetilde{G}(x_n,x_n,x_{n+1})\widetilde{G}(x_n,x_n,fx_{n+1})}{1+\Omega[\widetilde{G}(x_n,x_n,fx_n)+\widetilde{G}(x_{n+1},x_{n+1},fx_{n+1})]},\\ &\frac{\widetilde{G}(x_{n-1},x_{n-1},fx_{n-1})\widetilde{G}(x_{n-1},x_{n-1},x_{n+1})}{1+\widetilde{G}(x_{n-1},x_{n-1},fx_{n})+\widetilde{G}(x_n,x_n,fx_{n-1})}\}\\ &\leqslant \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}),\widetilde{G}(x_{n-1},x_{n-1},x_n),\widetilde{G}(x_n,x_n,x_{n+1})\}\\ &\leqslant \max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}),\widetilde{G}(x_n,x_{n+1},x_{n+2})\}. \end{split}$$

and it is easy to see that

$$\max\{\widetilde{G}(x_{n-1},x_n,x_{n+1}),\widetilde{G}(x_n,x_{n+1},x_{n+2})\} = \widetilde{G}(x_{n-1},x_n,x_{n+1}),$$

so from (12), we conclude that $\{\widetilde{G}(x_n, x_{n+1}, x_{n+2})\}$ is decreasing. Then there exists $r \ge 0$ such that $\lim_{n \to \infty} \widetilde{G}(x_n, x_{n+1}, x_{n+2}) = r$.

is easy to see that $r = \lim_{n \to \infty} \widetilde{G}(x_{n-1}, x_n, x_n) = 0$.

Step 2. Now, we prove that the sequence $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. Suppose the contrary, *i.e.*, there exists $\varepsilon > 0$ for which we can find two subsequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that n_i is the smallest index for which

$$n_i > m_i > i \text{ and } \widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \geqslant \varepsilon.$$
 (13)

This means that

$$\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) < \varepsilon. \tag{14}$$

As in the proof of Theorem 2.1.2, we have,

$$\limsup_{i \to \infty} \widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i}). \tag{15}$$

From the definition of M(x, y, z) and the above limits,

$$\begin{split} & \limsup_{i \to \infty} M(x_{m_i}, x_{n_i-1}, x_{n_i-1}) = \limsup_{i \to \infty} \max \{ \widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}), \\ & \frac{\widetilde{G}(x_{m_i}, x_{m_i}, fx_{m_i}) \widetilde{G}(x_{m_i}, x_{m_i}, fx_{n_i-1})}{1 + \Omega[\widetilde{G}(x_{m_i}, x_{m_i}, fx_{m_i}) + \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})]}, \\ & \frac{\widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1}) \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})}{1 + \Omega[\widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1}) + \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})]}, \\ & \frac{\widetilde{G}(x_{m_i}, x_{m_i}, fx_{m_i}) \widetilde{G}(x_{m_i}, x_{m_i}, x_{n_i-1}, fx_{n_i-1})}{1 + \widetilde{G}(x_{m_i}, x_{m_i}, fx_{n_i-1}) + \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{m_i})} \} \\ & \leq \varepsilon \end{split}$$

Now, from (11) and the above inequalities, we have

$$\varepsilon \leqslant \limsup_{i \to \infty} \Omega[\widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i})] \leqslant \limsup_{i \to \infty} \psi(M(x_{m_i}, x_{n_i-1}, x_{n_i-1}))$$

$$< \varepsilon$$

which is a contradiction. Now, we conclude that $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. \widetilde{G} -Completeness of X yields that $\{x_n\}$ \widetilde{G} -converges to a point $u \in X$.

Step 3. u is a fixed point of f. This step is proved as the proof of step 3 of Theorem 2.1.2 with some elementary changes. \square

If in the above theorem we take $\psi(t) = \sinh t$ and $\widetilde{G}(x, y, z) = \sinh(G(x, y, z))$ then we have the following corollary in the framework of G_b metric spaces.

Corollary 2.2.4. Let (X, G_b, \preceq) be an ordered G_b -complete G_b -metric space with coefficient s > 1. Let $f: X \to X$ be an increasing mapping with respect to \preceq such that there exists an element $x_0 \in X$ with $x_0 \preceq f(x_0)$. Suppose that

$$\sinh(s \cdot \sinh(G(fx, fy, fz))) \leqslant \sinh(M(x, y, z)) \tag{16}$$

for all comparable elements $x, y, z \in X$, where

$$\begin{split} &M(x,y,z)\\ &=\max\left\{\sinh(G(x,y,z)),\frac{\sinh(G(x,x,fx))\sinh(G(y,y,fy))}{1+\sinh(s\cdot[\sinh(G(x,y,y))+\sinh(G(x,x,fy))])},\\ &\frac{\sinh(G(y,y,fy))\sinh(G(z,z,fz))}{1+\sinh(s\cdot[\sinh(G(y,z,z))+\sinh(G(y,y,fz))])},\\ &\frac{\sinh(G(y,z,z))\sinh(G(y,y,z))}{1+\sinh(G(y,fy,fy))+\sinh(G(z,fz,fz))}\right\}. \end{split}$$

If

- (I) f is continuous, or,
- (II) (X, G_b, \preceq) enjoys the s.l.c. property,

then f has a fixed point.

2.3 Fixed point results related to JS-contractions

Jleli et al. [17] have introduced the class Θ_0 consists of all functions $\theta:(0,\infty)\to(1,\infty)$ satisfying the following conditions:

- (θ_1) θ is non-decreasing;
- (θ_2) for each sequence $\{t_n\}\subseteq (0,\infty)$, $\lim_{n\to\infty}\theta(t_n)=1$ if and only if $\lim_{n\to\infty}t_n=0$;
- (θ_3) there exist $r \in (0,1)$ and $\ell \in (0,\infty]$ such that $\lim_{t\to 0^+} \frac{\theta(t)-1}{t^r} = \ell$;
- (θ_4) θ is continuous.

They proved the following result:

Theorem 2.3.1. [17, Corollary 2.1] Let (X,d) be a complete metric space and let $T: X \to X$ be a given mapping. Suppose that there exist $\theta \in \Theta_0$ and $k \in (0,1)$ such that

$$x, y \in X, \quad d(Tx, Ty) \neq 0 \implies \theta(d(Tx, Ty)) \leq \theta(d(x, y))^k.$$
 (17)

Then T has a unique fixed point.

From now on, we denote by Θ the set of all functions $\theta:[0,\infty)\to[1,\infty)$ satisfying the following conditions:

 θ_1 . θ is a continuous strictly increasing function;

$$\theta_2$$
 for each sequence $\{t_n\}\subseteq (0,\infty)$, $\lim_{n\to\infty}\theta(t_n)=1$ if and only if $\lim_{n\to\infty}t_n=0$;

Remark 2.3.2. [10] It is clear that $f(t) = e^t$ does not belong to Θ_0 , but it belongs to Θ . Other examples are $f(t) = \cosh t$, $f(t) = \frac{2\cosh t}{1+\cosh t}$, $f(t) = 1 + \ln(1+t)$, $f(t) = \frac{2+2\ln(1+t)}{2+\ln(1+t)}$, $f(t) = e^{te^t}$ and $f(t) = \frac{2e^{te^t}}{1+e^{te^t}}$, for all t > 0.

Definition 2.3.3. Let $(X, \widetilde{G}, \preceq)$ be an ordered \widetilde{G} -metric space. A mapping $f: X \to X$ is called a \widetilde{G} -rational JS-contraction if

$$\theta(\Omega[\widetilde{G}(fx, fy, fz)]) \leqslant \theta(M(x, y, z))^k \tag{18}$$

for all comparable elements $x, y, z \in X$, where $\theta \in \Theta$, $k \in [0,1)$ and

$$\begin{split} &M(x,y,z)\\ &= \max \left\{ \widetilde{G}(x,y,z), \frac{\widetilde{G}(x,x,fx)\widetilde{G}(y,y,fy)}{1+\Omega[\widetilde{G}(x,y,y)+\widetilde{G}(x,x,fy)]}, \right. \\ &\left. \frac{\widetilde{G}(y,y,fy)\widetilde{G}(z,z,fz)}{1+\Omega[\widetilde{G}(y,z,z)+\widetilde{G}(y,y,fz)]}, \frac{\widetilde{G}(y,z,z)\widetilde{G}(y,y,z)}{1+\widetilde{G}(y,fy,fy)+\widetilde{G}(z,fz,fz)} \right\}. \end{split}$$

Theorem 2.3.4. Let $(X, \widetilde{G}, \preceq)$ be an ordered \widetilde{G} -complete \widetilde{G} -metric space. Let $f: X \to X$ be an increasing mapping with respect to \leq such that there exists an element $x_0 \in X$ with $x_0 \leq f(x_0)$. Suppose that f be a \widetilde{G} -rational JS-contractive mapping. If

(I) f is continuous, or,

(II) (X, G, \prec) enjoys the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Proof. Put $x_n = f^n(x_0)$.

Step 1. We will show that $\lim_{n\to\infty} \widetilde{G}(x_n,x_{n+1},x_{n+1})=0$. Without any loss of generality, we may assume that $x_n\neq x_{n+1}$, for all $n\in\mathbb{N}$. Since $x_n\preceq x_{n+1}$ for each $n \in \mathbb{N}$, then by (18) we have

$$\theta(\widetilde{G}(x_{n}, x_{n+1}, x_{n+2})) \leqslant \theta(\Omega[\widetilde{G}(x_{n}, x_{n+1}, x_{n+2})])
= \theta(\Omega[\widetilde{G}(fx_{n-1}, fx_{n}, fx_{n+1})])
\leqslant \theta(M(x_{n-1}, x_{n}, x_{n+1}))^{k}
\leqslant \theta(\widetilde{G}(x_{n-1}, x_{n}, x_{n+1}))^{k},$$
(19)

because $M(x_{n-1}, x_n, x_{n+1})$

because
$$M(x_{n-1}, x_n, x_{n+1})$$
 = $\max\{\widetilde{G}(x_{n-1}, x_n, x_{n+1}), \frac{\widetilde{G}(x_{n-1}, x_{n-1}, fx_{n-1})\widetilde{G}(x_n, x_n, fx_n)}{1+\Omega[\widetilde{G}(x_{n-1}, x_n, x_n)+\widetilde{G}(x_{n-1}, x_{n-1}, fx_n)]}, \frac{\widetilde{G}(x_n, x_n, fx_n)\widetilde{G}(x_{n+1}, x_{n+1}, fx_{n+1})}{1+\Omega[\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_n, fx_n)+\widetilde{G}(x_n, x_n, x_{n+1})}\}$ = $\max\{\widetilde{G}(x_{n-1}, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, fx_{n+1}), \frac{\widetilde{G}(x_{n-1}, x_{n-1}, x_n)\widetilde{G}(x_n, x_n, x_{n+1}, fx_{n+1}, fx_{n+1})}{1+\Omega[\widetilde{G}(x_{n-1}, x_{n-1}, x_n)\widetilde{G}(x_n, x_n, x_{n+1})]}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_{n+1}, x_{n+1})}{1+\Omega[\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_{n-1}, x_{n-1}, x_{n+1})]}\}$ \(\int \text{max}\{\widetilde{G}(x_{n-1}, x_n, x_{n+1}), \frac{\widetilde{G}(x_{n-1}, x_n, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_{n-1}, x_{n-1}, x_{n+1})]}{1+\Omega[\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_{n-1}, x_{n-1}, x_{n+1})]}, \frac{\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_{n+1}, x_{n+1})}{1+\Omega[\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})]}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})]}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_{n+1}, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_{n+1}, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+1})}{1+\widetilde{G}(x_n, x_n, x_{n+1})+\widetilde{G}(x_n, x_n, x_{n+2})}, \frac{\widetilde{G}(x_n, x_n, x_n, x_{n+1})\widetilde{G}(x_n, x_n, x_{n+2})}{1+\widetilde{G}(x_n, x_n, x_n, x_{n+1})}

From (19) we deduce that,

$$\Theta(\widetilde{G}(x_n, x_{n+1}, x_{n+2})) \leqslant \Theta(\widetilde{G}(x_{n-1}, x_n, x_{n+1}))^k$$
.

Therefore,

$$1 \leqslant \Theta(\widetilde{G}(x_n, x_{n+1}, x_{n+2})) \leqslant \Theta(\widetilde{G}(x_{n-1}, x_n, x_{n+1}))^k \leqslant \ldots \leqslant \Theta(\widetilde{G}(x_0, x_1, x_2))^{k^n}.$$
 (20)

Taking the limit as $n \to \infty$ in (20) we have,

$$\lim_{n \to \infty} \Theta(\widetilde{G}(x_n, x_{n+1}, x_{n+2})) = 1$$

and since $\Theta \in \Delta_{\Theta}$ we obtain,

$$\lim_{n \to \infty} \tilde{G}(x_n, x_{n+1}, x_{n+2}) = 0.$$
 (21)

Therefore, we have,

$$\lim_{n \to \infty} \widetilde{G}(x_n, x_n, x_{n-1}) = 0.$$
(22)

Step 2. Now, we prove that the sequence $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. Suppose the contrary, *i.e.*, that $\{x_n\}$ is not a \widetilde{G} -Cauchy sequence. Then there exists $\varepsilon > 0$ for which we can find two subsequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that n_i is the smallest index for which

$$n_i > m_i > i \text{ and } \widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \geqslant \varepsilon.$$
 (23)

This means that

$$\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) < \varepsilon. \tag{24}$$

Hence,

$$\widetilde{G}(x_{m_i}, x_{m_i}, x_{n_i-1}) < \Omega(2\varepsilon).$$
 (25)

From the rectangular inequality, we get

$$\varepsilon \leqslant \widetilde{G}(x_{m_i}, x_{n_i}, x_{n_i}) \leqslant \Omega[\widetilde{G}(x_{m_i}, x_{m_i+1}, x_{m_i+1}) + \widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i})].$$

By taking the upper limit as $i \to \infty$, we get

$$\Omega^{-1}(\varepsilon) \leqslant \limsup_{i \to \infty} \widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i}). \tag{26}$$

From the definition of M(x, y, z) and the above limits,

$$\begin{split} & \limsup_{i \to \infty} M(x_{m_i}, x_{n_i-1}, x_{n_i-1}) = \limsup_{i \to \infty} \max \{ \widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}), \\ & \frac{\widetilde{G}(x_{m_i}, x_{m_i}, fx_{m_i}) \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})}{1 + \Omega[\widetilde{G}(x_{m_i}, x_{n_i-1}, x_{n_i-1}) + \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{m_i})]}, \\ & \frac{\widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1}) \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})}{1 + \Omega[\widetilde{G}(x_{n_i-1}, x_{n_i-1}, x_{n_i-1}) + \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})]}, \\ & \frac{\widetilde{G}(x_{n_i-1}, x_{n_i-1}, x_{n_i-1}) \widetilde{G}(x_{n_i-1}, x_{n_i-1}, fx_{n_i-1})}{1 + \widetilde{G}(x_{n_i-1}, fx_{n_i-1}, fx_{n_i-1}) + \widetilde{G}(x_{n_i-1}, fx_{n_i-1}, fx_{n_i-1})} \} \\ & \leqslant \varepsilon. \end{split}$$

Now, from (18) and the above inequalities, we have

$$\theta(\Omega[\Omega^{-1}(\varepsilon)]) \leqslant \limsup_{i \to \infty} \theta(\Omega[\widetilde{G}(x_{m_i+1}, x_{n_i}, x_{n_i})])$$

$$\leqslant \limsup_{i \to \infty} \theta(M(x_{m_i}, x_{n_i-1}, x_{n_i}))^k$$

$$\leqslant \theta(\varepsilon)^k$$

which implies that $\varepsilon = 0$, a contradiction. So, we conclude that $\{x_n\}$ is a \widetilde{G} -Cauchy sequence. \widetilde{G} -Completeness of X yields that $\{x_n\}$ \widetilde{G} -converges to a point $u \in X$.

Step 3. u is a fixed point of f.

When f is continuous, the proof is straightforward.

Now, let (II) holds. Using the assumption on X we have $x_n \leq u$. Now, we show that u = fu. By Lemma 1.14,

$$\begin{split} \theta((\Omega^{-1})^2[\widetilde{G}(u,u,fu)]) \leqslant \limsup_{n \to \infty} \theta(\widetilde{G}(x_{n+1},x_{n+1},fu)) \\ \leqslant \limsup_{n \to \infty} \theta(M(x_n,x_n,u))^k, \end{split}$$

where,

$$\begin{split} &\lim_{n\to\infty} M(x_n,x_n,u) \\ &= \lim_{n\to\infty} \max\left\{\widetilde{G}(x_n,x_n,u), \frac{\widetilde{G}(x_n,x_n,fx_n)\widetilde{G}(x_n,x_n,fx_n)}{1+\Omega[\widetilde{G}(x_n,x_n,x_n)+\widetilde{G}(x_n,x_n,fx_n)]}, \\ &\frac{\widetilde{G}(x_n,x_n,fx_n)\widetilde{G}(u,u,fu)}{1+\Omega[\widetilde{G}(x_n,u,u)+\widetilde{G}(x_n,x_n,fu)]}, \frac{\widetilde{G}(x_n,u,u)\widetilde{G}(x_n,x_n,u)}{1+\widetilde{G}(x_n,fx_n,fx_n)+\widetilde{G}(u,fu,fu)}\right\} = 0. \end{split}$$

Therefor, we deduce that $\widetilde{G}(u, u, fu) = 0$, so, u = fu.

Finally, suppose that the set of fixed point of f is well ordered. Assume on contrary that, u and v are two fixed points of f such that $u \neq v$. Then by (18), we have

$$\theta[\widetilde{G}(u,v,v)] = \theta[\widetilde{G}(fu,fv,fv)] \leqslant \theta(M(u,v,v))^k = \theta(\widetilde{G}(u,v,v))^k. \tag{27}$$

So, we get, G(u, v, v) = 0, a contradiction. Hence u = v, and f has a unique fixed point. \square

If in the above theorem we take $\theta(t) = \frac{2e^{te^t}}{1+e^{te^t}}$ and $\widetilde{G}(x,y,z) = e^{G(x,y,z)} - 1$ then we have the following corollary in the framework of G_b metric spaces.

Corollary 2.3.5. Let (X, G_b, \preceq) be an ordered G_b -complete G_b -metric space with coefficient s > 1. Let $f: X \to X$ be an increasing mapping with respect $to \preceq such that there exists an element <math>x_0 \in X$ with $x_0 \preceq f(x_0)$. Suppose that

$$\frac{2e^{[e^{s\cdot[e^{G(fx,fy,fz)}-1]}-1]e^{e^{s\cdot[e^{G(fx,fy,fz)}-1]}-1}}}{1+e^{[e^{s\cdot[e^{G(fx,fy,fz)}-1]}-1]e^{e^{s\cdot[e^{G(fx,fy,fz)}-1]}-1}}}\leqslant\sqrt{\frac{2e^{M(x,y,z)e^{M(x,y,z)}}}{1+e^{M(x,y,z)e^{M(x,y,z)}}}}$$

for all comparable elements $x, y, z \in X$, where

$$\begin{split} &M(x,y,z)\\ &= \max \left\{ e^{G(x,y,z)} - 1, \frac{[e^{G(x,x,fx)} - 1][e^{G(y,y,fy)} - 1]}{1 + e^{s\cdot[e^{G(x,y,y)} - 1 + e^{G(x,x,fy)} - 1]} - 1}, \right. \\ &\frac{[e^{G(y,y,fy)} - 1][e^{G(z,z,fz)} - 1]}{1 + e^{s\cdot[e^{G(y,z,z)} - 1 + e^{G(y,y,fz)} - 1]} - 1}, \frac{[e^{G(y,z,z)} - 1][e^{G(y,y,z)} - 1]}{1 + e^{G(y,fy,fy)} - 1 + e^{G(z,fz,fz)} - 1} \right\}. \end{split}$$

If

- (I) f is continuous, or,
- (II) (X, G_b, \preceq) enjoys the s.l.c. property,

then f has a fixed point.

2.4 Examples

Example 2.4.1. Let X = [0, 8] be equipped with the \widetilde{G} -metric

$$\widetilde{G}(x,y,z) = \sinh\left(\frac{|x-y| + |y-z| + |z-x|}{3}\right)$$

for all $x, y, z \in X$, where $\Omega(x) = \sinh x$ which $\Omega^{-1}(x) = \sinh^{-1}(x)$.

Define a relation \leq on X by $x \leq y$ iff $y \leq x$, the function $f: [0,8] \rightarrow [0,2]$ by

$$fx = \sqrt{2 + \frac{x}{4}}$$

and the function β given by $\beta(t) = \frac{1}{2} < 0.88137358702 = \Omega^{-1}(1)$. For all comparable elements $x, y \in X$, we have,

$$\begin{split} &\Omega(\widetilde{G}(fx,fy,fz))\\ &= \sinh(\sinh(\frac{|\sqrt{2+\frac{x}{4}}-\sqrt{2+\frac{y}{4}}|+|\sqrt{2+\frac{y}{4}}-\sqrt{2+\frac{z}{4}}|+|\sqrt{2+\frac{z}{4}}-\sqrt{2+\frac{x}{4}}|}{3}))\\ &\leqslant \sinh(\sinh(\frac{|\frac{x}{4}-\frac{y}{4}|+|\frac{y}{4}-\frac{z}{4}|+|\frac{z}{4}-\frac{x}{4}|}{3}))\\ &\leqslant \sinh(\frac{\widetilde{G}(x,y,z)}{4})\\ &\leqslant \frac{\widetilde{G}(x,y,z)}{2} = \beta(\widetilde{G}(x,y,z))\widetilde{G}(x,y,z) \leqslant \beta(M(x,y,z))M(x,y,z), \end{split}$$

So, from Theorem 2.1.2 f has a fixed point.

Example 2.4.2. Let $X = [0, \infty]$ be equipped with the

$$\widetilde{G}(x,y,z) = \frac{|x-y| + |y-z| + |z-x|}{3} + \ln(\frac{|x-y| + |y-z| + |z-x|}{3})$$

for all $x, y, z \in X$, where $\Omega(x) = x + \ln x$.

Define a relation \leq on X by $x \leq y$ iff $y \leqslant x$, the function $f: X \to X$ by

$$fx = \ln(\frac{x}{5} + 2)$$

and the function ψ given by $\psi(t) = \frac{1}{2}t$. It is obvious that $\psi(t) < t$ for all $t \in X$. For all comparable elements $x, y \in X$, by mean value theorem, we have,

$$\begin{split} &\Omega[\tilde{G}(fx,fy,fz)] \\ &= \tilde{G}(fx,fy,fz) + \ln[1 + \tilde{G}(fx,fy,fz)] + \ln[1 + \tilde{G}(fx,fy,fz) + \ln[1 + \tilde{G}(fx,fy,fz)]] \\ &= \frac{\left|\ln 2 + \frac{x}{5} - \ln 2 + \frac{y}{5}\right| + \left|\ln 2 + \frac{y}{5} - \ln 2 + \frac{z}{5}\right| + \left|\ln 2 + \frac{z}{5} - \ln 2 + \frac{x}{5}\right|}{3} \\ &+ \ln[1 + \frac{\left|\ln 2 + \frac{x}{5} - \ln 2 + \frac{y}{5}\right| + \left|\ln 2 + \frac{y}{5} - \ln 2 + \frac{z}{5}\right| + \left|\ln 2 + \frac{z}{5} - \ln 2 + \frac{x}{5}\right|}{3}] \\ &+ \ln\left[1 + \frac{\left|\ln 2 + \frac{x}{5} - \ln 2 + \frac{y}{5}\right| + \left|\ln 2 + \frac{y}{5} - \ln 2 + \frac{z}{5}\right| + \left|\ln 2 + \frac{z}{5} - \ln 2 + \frac{x}{5}\right|}{3}}{3} \end{split}$$

$$\begin{split} &+ \ln[1 + \frac{\left|\ln 2 + \frac{x}{5} - \ln 2 + \frac{y}{5}\right| + \left|\ln 2 + \frac{y}{5} - \ln 2 + \frac{z}{5}\right| + \left|\ln 2 + \frac{z}{5} - \ln 2 + \frac{x}{5}\right|}{3}] \\ &\leqslant \frac{\left|\frac{x}{5} - \frac{y}{5}\right| + \left|\frac{y}{5} - \frac{z}{5}\right| + \left|\frac{z}{5} - \frac{x}{5}\right|}{3}}{3} \\ &+ \ln[1 + \frac{\left|\frac{x}{5} - \frac{y}{5}\right| + \left|\frac{y}{5} - \frac{z}{5}\right| + \left|\frac{z}{5} - \frac{x}{5}\right|}{3}] \\ &+ \ln\left[1 + \frac{\left|\frac{x}{5} - \frac{y}{5}\right| + \left|\frac{y}{5} - \frac{z}{5}\right| + \left|\frac{z}{5} - \frac{x}{5}\right|}{3}}{3} \\ &+ \ln[1 + \frac{\left|\frac{x}{5} - \frac{y}{5}\right| + \left|\frac{y}{5} - \frac{z}{5}\right| + \left|\frac{z}{5} - \frac{x}{5}\right|}{3}}] \right] \\ &\leqslant \frac{1}{5}\widetilde{G}(x,y,z) + \ln[1 + \frac{1}{5}\widetilde{G}(x,y,z)] \\ &+ \ln\left[1 + \frac{1}{5}\widetilde{G}(x,y,z) + \ln[1 + \frac{1}{5}\widetilde{G}(x,y,z)]\right] \\ &\leqslant \frac{9}{10}\widetilde{G}(x,y,z) = \psi(\widetilde{G}(x,y,z)) \leqslant \psi(M(x,y,z)), \end{split}$$

So, from Theorem 2.2.3 f has a fixed point.

Example 2.4.3. Let $\widetilde{G}: X \times X \times X \to \mathbb{R}^+$ be defined on X = [0, 1.5] by

$$\widetilde{G}(x, y, z) = e^{\frac{|x-y| + |y-z| + |z-x|}{3}} - 1$$

for all $x,y,z\in X.$ Then (X,\widetilde{G}) is a \widetilde{G} -complete \widetilde{G} -metric space with $\Omega(t)=e^t-1.$

Define k and $\theta \in \Theta$ by $k = \frac{1}{\sqrt{2}}$ and $\theta(t) = e^{te^t}$. Let X is endowed with the usual order. Let $f: X \to X$ be defined by $fx = \arctan(\frac{x}{16})$. It is easy to see that f is an ordered increasing and continuous self map on X and $0 \le f0$. For

any $x, y, z \in X$, we have

$$\begin{split} \widetilde{G}(fx,fy,fz) &= e^{\frac{|fx-fy|+|fy-fz|+|fz-fx|}{3}} - 1 \\ &= e^{\frac{\left|\arctan\frac{x}{16} - \arctan\frac{y}{16}\right| + \left|\arctan\frac{x}{16} - \arctan\frac{z}{16}\right| + \left|\arctan\frac{x}{16} - \arctan\frac{x}{16}\right|}{3}} - 1 \\ &\leqslant e^{\frac{\left|\frac{x}{16} - \frac{y}{16}\right| + \left|\frac{y}{16} - \frac{z}{16}\right| + \left|\frac{z}{16} - \frac{x}{16}\right|}{3}} - 1 \\ &\leqslant \frac{1}{16} \left(e^{\frac{|x-y|+|y-z|+|z-x|}{3}} - 1\right) \\ &= \frac{1}{16} \widetilde{G}(fx,fy,fz). \end{split}$$

164 V. PERVANEH, N. HUSSAIN, S. J. HOSSEINI AND F. GOLKARMANESH

So,

$$\begin{split} \Omega[\widetilde{G}(fx,fy,fz)] &= e^{\widetilde{G}(fx,fy,fz)} - 1 \\ &\leqslant e^{\frac{1}{16}\widetilde{G}(fx,fy,fz)} - 1 \\ &\leqslant \frac{1}{16}\widetilde{G}(fx,fy,fz). \end{split}$$

Therefore,

$$\begin{split} \theta(\Omega[\tilde{G}(fx,fy,fz)]) &= e^{\Omega[\tilde{G}(fx,fy,fz)]} e^{\Omega[\tilde{G}(fx,fy,fz)]} \\ &\leqslant e^{\frac{1}{16}\tilde{G}(fx,fy,fz)} e^{\frac{1}{16}\tilde{G}(fx,fy,fz)} \\ &\leqslant \left[e^{\tilde{G}(fx,fy,fz)} e^{\tilde{G}(fx,fy,fz)} \right]^{\frac{1}{\sqrt{2}}} = \left[\theta(\tilde{G}(fx,fy,fz)) \right]^{\frac{1}{\sqrt{2}}}. \end{split}$$

Thus, (18) is satisfied with $k = \frac{1}{\sqrt{2}}$. Hence, all the conditions of Theorem 2.3.4 are satisfied. We have that 0 is the unique fixed point of f.

2.5 Existence of a solution for an integral equation

We consider the following integral equation:

$$x(t) = \int_{a}^{b} K(t, s, x(s))ds + k(t),$$
 (28)

where $b > a \ge 0$. The aim of this section is to present the existence of a solution to (28) that belongs to X = C[a, b] (the set of all continuous real valued functions defined on [a, b]) as an application to the Theorem 2.3.4.

The considered problem can be changed as follows.

Let $f: X \to X$ be defined by:

$$fx(t) = \int_{a}^{b} (t, s, x(s))ds + k(t),$$

for all $x \in X$ and for all $t \in [a, b]$. Obviously, existence of a solution to (28) is equivalent to the existence of a fixed point of f. Let,

$$d(u, v) = \max_{t \in [a, b]} |u(t) - v(t)| = ||u - v||_{\infty}.$$

Let X be equipped with the modified G-metric given by

$$\widetilde{G}(u, v, w) = \xi(\max\{d(u, v), d(v, w), d(w, u)\}),$$

for all $u, v, w \in X$ where $\xi : [0, \infty) \to [0, \infty)$ is a strictly increasing continuous function with $t \leq \xi(t)$ for $t \geq 0$ and $\xi(0) = 0$ which is a \widetilde{G} -complete \widetilde{G} -metric space. We endow X with the partial ordered \leq given by $x \leq y \iff x(t) \leq y(t)$,

for all $t \in [a, b]$. It is known that (X, \preceq) has sequential limit comparison property [25, 1].

Now, we will prove the following result.

Theorem 2.5.1. Suppose that the following hypotheses hold:

- (i) $K: [a,b] \times [a,b] \times R \rightarrow R$ and $k: [a,b] \rightarrow R$ are continuous;
- (ii) for all $s, t \in [a, b]$ and for all $x, y \in X$ with $x \leq y$ we have,

$$\xi^{2} \left(\int_{a}^{b} \left| K(t, r, x(r)) - K(t, r, y(r)) \right| dr \right) \leqslant \frac{\xi \left(\|fx - fy\|_{\infty} \right) \theta \left(\xi(\|x - y\|_{\infty}) \right)^{\frac{1}{2}}}{\theta \left(\xi(\|fx - fy\|_{\infty}) \right)},$$

for all $t \in [a, b]$ and $\theta \in \Psi$.

(iii) There exists continuous function $\alpha:[a,b]\to\mathbb{R}$ such that

$$\alpha(t) \leqslant \int_{a}^{b} (t, s, \alpha(s)) ds + k(t).$$

Then, the integral equations (28) has a solution $x \in X$.

Proof. Let $x, y \in X$ be such that $x \succeq y$. From condition (ii), for all $t \in [a, b]$ we have,

$$\xi^{2}\Big(|fx(t) - fy(t)|\Big) \leqslant \xi^{2}\Big(\int_{a}^{b} |K(t, s, x(s)) - K(t, s, y(s)|ds\Big)$$
$$\leqslant \frac{\xi^{2}\Big(\|fx - fy\|_{\infty}\Big)\theta\Big(\xi(\|x - y\|_{\infty})\Big)^{\frac{1}{2}}}{\theta\Big(\xi^{2}(\|fx - fy\|_{\infty})\Big)}.$$

Hence,

$$\xi^{2}\left(d(fx,fy)\right) = \xi^{2}\left(\sup_{t\in[a,b]}|fx(t) - fy(t)|\right)$$

$$\leqslant \frac{\xi^{2}\left(\|fx - fy\|_{\infty}\right)\theta\left(\xi(\|x - y\|_{\infty})\right)^{\frac{1}{2}}}{\theta\left(\xi^{2}(\|fx - fy\|_{\infty})\right)}.$$
(29)

Hence,

$$\theta(\xi^2(\|fx - fy\|_{\infty})) \le \theta(\xi(\|x - y\|_{\infty}))^{\frac{1}{2}}.$$
 (30)

Therefore, from (29) we have,

$$\begin{split} \theta\Big(\xi\Big(\widetilde{G}(fx,fy,fz)\Big)\Big) &= \theta\Big(\xi\Big(\xi(\max\{d(fx,fy),d(fy,hz),d(fz,fx)\})\Big)\Big) \\ &\leqslant \max\Big\{\theta\Big(\xi^2(d(fx,fy))\Big),\theta\Big(\xi^2(d(fy,fz))\Big),\theta\Big(\xi^2(d(fz,fx))\Big)\Big\} \\ &\leqslant \max\Big\{\theta\Big(\xi(\|x-y\|_{\infty})\Big)^{\frac{1}{2}},\theta\Big(\xi(\|y-z\|_{\infty})\Big)^{\frac{1}{2}},\theta\Big(\xi(\|z-x\|_{\infty})\Big)^{\frac{1}{2}}\Big\} \\ &\leqslant \theta\Big(M(x,y,z)\Big)^{\frac{1}{2}}, \end{split}$$

where

$$\begin{split} M(x,y,z) &= \max \bigg\{ \widetilde{G}(x,y,z), \frac{\widetilde{G}(x,x,fx)\widetilde{G}(y,y,fy)}{1+\xi [\widetilde{G}(x,y,y)+\widetilde{G}(x,x,fy)]}, \\ &\frac{\widetilde{G}(y,y,fy)\widetilde{G}(z,z,fz)}{1+\xi [\widetilde{G}(y,z,z)+\widetilde{G}(y,y,fz)]}, \frac{\widetilde{G}(y,z,z)\widetilde{G}(y,y,z)}{1+\widetilde{G}(y,fy,fy)+\widetilde{G}(z,fz,fz)} \bigg\}, \end{split}$$

So, from Theorem 2.3.4, there exists $x \in X$, a fixed point of f which is a solution of (28). \square

3. Conclusion

Taking $\Omega(x) = sx$, our obtained results coincide with the results in usual G_b -metric spaces and taking $\Omega(x) = x$, our obtained results coincide with the results in usual G-metric spaces.

References

- [1] R. P. Agarwal, N. Hussain, and M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, *Abstr. Appl. Anal.*, **2012** (2012), Art. ID 245872, 15 pp.
- [2] A. Aghajani, M. Abbas, and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G_b-metric spaces, Filomat, 28 (6) (2014), 1087-1101.
- [3] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, *Nonlinear Anal. TMA.*, 72 (5) (2010), 2238–2242.
- [4] M. Arshad, E. Karapínar, and J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, *J. Inequalities Appl.*, 2013, 2013:248.
- [5] A. Azam, B. Fisher, and M. Khan, Common Fixed Point Theorems in Complex Valued Metric Spaces, Num. Func. Anal. Opt., 32 (2011), 243– 253.
- [6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.

- [7] D. Dukić, Z. Kadelburg, and S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011 Article ID 561245, 13 pages, doi:10.1155/2011/561245
- [8] T. P. Dence, A brief look into Lambert W function, Applied Math., 4 (2013), 887–892.
- [9] M. Geraghty, On contractive mappings, *Proceedings Amer. Math. Soc.*, 40 (1973), 604–608.
- [10] N. Hussain, D. Đorić, Z. Kadelburg, and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012:126 (2012).
- [11] N. Hussain, V. Parvaneh, J. R. Roshan, and Z Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B) -contractive mappings in ordered *b*-metric spaces with applications, *Fixed Point Theory Appl.*, 2013, 2013:256.
- [12] N. Hussain, A. Latif, and P. Salimi, New fixed point results for contractive maps involving dominating auxiliary functions, J. Nonlinear Sci. Appl., 9 (2016), 41144126.
- [13] N. Hussain, V. Parvaneh, and F. Golkarmanesh, Coupled and tripled coincidence point results under (F, g)-invariant sets in G_b -metric spaces and G- α -admissible mappings, $Mathematical\ Sciences$, 9 (1) (2015), 11-26.
- [14] N. Hussain, J. R. Roshan, V. Parvaneh, and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequalities Appl., 2013, 2013:486.
- [15] N. Hussain, J. R. Roshan, V. Parvaneh, and A. Latif, A unification of G-metric, partial metric and b-metric spaces, Abstr Applied Anal., Volume 2014, Article ID 180698, 15 pp.
- [16] D. S. Jaggi, Some unique fixed point theorems. *Indian J. Pure Appl. Math.*, 8 (2), (1977), 223–230.
- [17] M. Jleli, E. Karapınar, and B. Samet, Further generalizations of the Banach contraction principle, *J. Inequal. Appl.*, 2014, 2014:439.
- [18] M. Jovanović, Z. Kadelburg, and S. Radenović, Common fixed point results in metric-type spaces, Abstr. Applied Anal., 2010, Article ID 978121, 15 pages doi:10.1155/2010/978121.
- [19] A. Latif, Z. Kadelburg, V. Parvaneh, and J. R. Roshan, Some fixed point theorems for G-rational Geraghty contractive mappings in ordered generalized b-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 1212–1227.

- 168 V. PERVANEH, N. HUSSAIN, S. J. HOSSEINI AND F. GOLKARMANESH
- [20] Z. Mustafa, J. R. Roshan, and V. Parvaneh, Coupled coincidence point Results for (ψ, φ) -weakly contractive mappings in Partially ordered G_b -metric spaces, Fixed Point Theory Appl., 2013, **2013**:206.
- [21] Z. Mustafa, J. R. Roshan, V. Parvaneh, and Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, *J. Inequalities Appl.*, 2014, **2014**:46.
- [22] Z. Mustafa, J. R. Roshan, V. Parvaneh, and Z. Kadelburg, Some common fixed point results in ordered partial *b*-metric spaces, Journal of Inequalities and Applications, 2013, **2013**, 562.
- [23] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2), (2006), 289–297.
- [24] H. K. Nashine, M. Imdad, and M. Hasanc, Common fixed point theorems under rational contractions in complex valued metric spaces, *J. Nonlinear Sci. Appl.*, 7 (2014), 42–50.
- [25] J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order*, 22 (3) (2005), 223-239.
- [26] J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, *Acta Mathematica Sinica*, 23 (12) (2007), 2205-2212.
- [27] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Anal. Univ. de Vest, Timisoara Seria Matematica Informatica, XLVIII (2010) 125–137.
- [28] V. Parvaneh and S. J. Hosseini Ghoncheh, Fixed points of $(\psi, \varphi)_{\Omega}$ contractive mappings in ordered *p*-metric spaces, Global Analysis and
 Discrete Mathematics, 4 (1) (2010), 15-19.
- [29] V. Parvaneh and H. Hosseinzadeh, Some coincidence point results for generalized JS-contractive mappingns in ordered modified G-mertic spaces, Complex and nonlinear systems, 1 (2) (2018), 53–73.
- [30] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math.* Soc., 132 (5) (2004), 1435–1443.
- [31] R. J. Shahkoohi and A. Razani, Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequalities Appl., 2014, 2014:373.
- [32] F. Zabihi and A. Razani, Fixed point theorems for hybrid rational Geraghty contractive mappings in orderd b-metric spaces, Journal of Appl. Math., vol. 2014, Article ID 929821, 9 pages.

Vahid Pervaneh

Assistant Professor of Mathematics Department of Mathematics Gilan-E-Gharb Branch, Islamic Azad University Gilan-E-Gharb, Iran E-mail: zam.dalahoo@gmail.com

Nawab Hussain

Professor of Mathematics Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia E-mail: nhusain@kau.edu.sa

Seyyed Jalaleddin Hosseini

Assistant Professor of Mathematics Department of Mathematics Takestan Branch, Islamic Azad University Takestan, Iran E-mail: sjhghoncheh@gmail.com

Farhan Golkarmanesh

Assistant Professor of Mathematics Department of Mathematics Sanandaj Branch, Islamic Azad University Sanandaj, Iran E-mail: fgolkarmanesh@yahoo.com