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1. Introduction

principle via using different form of contractive conditions in generalized metric
spaces. Some of such generalizations are obtained via contractive conditions
expressed by rational terms (see, [31], [19], [4], [5], [16], [24] and [32]).
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Ran and Reurings initiated the study of fixed point results on partially ordered
sets in [30]. Also, many researchers have focused on different contractive condi-
tions in complete metric spaces endowed with a partial order. For more details
we refer the reader to [25, 26].

Parvaneh and Ghoncheh in [28] introduced the concept of an extended b-metric
space (p-metric space).

Definition 1.1. /28] Let X be a (nonempty) set. A functiond : X x X — R* is
a p-metric iff there exists a strictly increasing continuous function € : [0, 00) —
[0,00) with Q1 (z) < 2 < Qx) and Q710) < 0 < Q(0) such that for all
z,y,z € X, the following conditions hold:

(di) d(z,y) =0 iff v =y,
(dz) d(z,y) = d(y, ),
(d3) d(z,z) < Qd(z,y) + d(y, 2)).

In this case, the pair (X, d) is called a p-metric space, or, an extended b-metric
space.

A b-metric [6] is a p-metric, when Q(z) = sz while a metric is a p-metric, when
Qz) = x.

We have the following proposition.

Proposition 1.2. [28] Let (X, d) be a metric space and let d(z,y) = &(d(x,y))
where £ : [0,00) — [0,00) is a strictly increasing function with x < &(x) and
0 =£(0). In this case, d is a p-metric with Q(t) = £(t).

The above proposition constructs the following example:
Example 1.3. Let (X, d) be a metric space and let d(z, y) = e?(®¥) sec™1 (ed(=)),
Then d is a p-metric with Q(t) = e sec™!(e?).

The concept of a generalized metric space, or a G-metric space, was introduced
by Mustafa and Sims. For more details in this field the reader can refer to
[15, 12, 13]

Definition 1.4. [23] Let X be a nonempty set and G: X x X x X — Rt be a
function satisfying the following properties:

(G1) G(z,y,2) =0 iff ct =y = z;
(G2) 0 < G(z,z,y), for all x,y € X with x # y;
(G3) G(x,x,y) < G(z,y,2), for all x,y,z € X with y # z;
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(G4) G(z,y,2) = G(z,2,y) = Gly,z,x2) = ---, (symmetry in all three vari-
ables);

(G5) G(z,y,2) < G(x,a,a)+G(a,y, z), for all z,y,z,a € X (rectangle inequal-
ity).

Then, the function G is called a G-metric on X and the pair (X, G) is called
a G-metric space.

Aghajani et al. in [2] motivated by the concept of b-metric [6] introduced the
concept of generalized b-metric spaces (Gp-metric spaces) and then they pre-
sented some basic properties of G-metric spaces.

The following is the definition of modified G-metric spaces which is a proper
generalization of the notions of G-metric spaces and Gp-metric spaces.

Definition 1.5. [29] Let X be a nonempty set and ) : [0,00) — [0,00) be a
strictly increasing continuous function such that Q’l(z)N <z < Q) for all
x>0 and Q71(0) = 0 = Q(0). Suppose that a mapping G : X x X x X — R*
satisfies:

(él) (N}'(x,y,z) =0ifr=y=z,

(62) 0< CNY'(x z,y) for all x,y € X with x # y,

(C~7'3) z,z,Y) < G(a: y,z) for all z,y,z € X with y # z,

G(
(64) (Jc Yy, z) = (p{a: y,2}), where p is a permutation of x,y, z (symmetry),
(éS) G(z,y,z) < Q[G(m,a,a) + é(a,y,z)] for all x,y,z,a € X (rectangle
inequality).
Then G is called a modified G-metric and the pair (X, é) is called a modified
G-metric space or a G-metric space.
Each G-metric space is a G-metric space with () = t and every Gjp-metric

space is a G-metric space with Q(t) = st.

Proposition 1.6. [29] Let (X,G) be a Gy-metric space with coefficient s >
1 and let G(z,y,2) = &(G(z,y,2)) where & : [0,00) — [0,00) is a strictly
increasing function with x < £(x) for all x > 0 and £(0) = 0. Then, show that
G is a modified G-metric with Q(t) = £(st).

For each z,y,z,a € X,
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53 !

z,y,2)
§(G(z,y, 2)) < &(sG(z,a,a) + 5G(a,y, 2))
< &(s8(G(z,a,a)) + 58(G(a,y, 2))
= E(Sé(x, a,a) + sCNJ(a, Y, 2))
= Q(G(x,a, a) + CNJ(a,y,z)).

So, G is a modified G-metric with Q(t) = &(st).

The above proposition constructs the following examples:

Example 1.7. [27] Let (X,G) be a Gp-metric space with coefficient s > 1.
Then,

1. G(z,y, 2) = C@¥:2) sec1(e9(@:9:2)) is a G-metric with Q(t) = e sec ™! ().
2. G(z,y,2) =[Gz, y, 2) + 1] sec L ([G(z, y, 2) + 1]) is a G-metric with Q(t) =
[st + 1] sec™1([st + 1]).

3. G(z,y,2) = @2 tan=1 (eF@¥:2) _1) is a G-metric with Q(t) = e tan~ (¥ —
1).

4. G(x,y,z) = G(z,y, z) cosh(G(z,y, z)) is a G-metric with Q(t) = st cosh(st).
5. G(z,y,2) = eC@¥A) In(14G(x, y, 2)) is a G-metric with Q(t) = et In(1+4st).
6. G(z,y,2) = G(z,y,2) + In(1 + G(z,y,z)) is a G-metric with Q(t) = st +
In(1 + st).

Definition 1.8. A4 G-metric G is said to be symmetric sz( x,Y,y) = é(y, x,T),
forall x,y € X.

Proposition 1.9. [29] Let X be a G-metric space. Then for each x,y,z,a € X
it follows that:

(1) if G(z,y,2) =0 then z =y = z,
(2) G(,y,2) < UGz, 2,y) + G(x,,2)),
(3) G(z,y,y) < Q2G(y, z,2)],

(4) G(z,y,2) < QG(x,0,2) + G(a,y, 2).

Recall that a function f is super-additive if
fl@ty) = f@)+ fy)

for all z,y € D(f).



SOME FIXED POINT THEOREMS VIA G-Rational ... 147

Definition 1.10. Let X be a é—met@'c space with a super-additive function
Q. We dgﬁne da(z,y) = G(m’?i’ y) + G(z,z,y), for all T,y € X. It is easy to
see that dz defines a p-metric d on X, which we call it the d-metric associated
with G.

Definition 1.11. Let X be a G-metric space. A sequence {x,} in X is said to
be:

(1) é—Cauchy if, for each € > 0 there exists a positive integer ng such that for
all m,n,l = ng, G(xn, Tm, ;) < &

(2) é—convergent to a point x € X if, for each ¢ > 0 there exists a positive
integer ng such that for all m,n > ng, G(zy, Tm, ) < €.

(8) A G-metric space X is called é-complete, if every é-Cauchy sequence 1§
G-convergent in X.

Proposition 1.12. Let X be a G-metric space. Then the following are equiv-
alent:

(1) the sequence {x,} is G-Cauchy.

(2) for any e > 0 there exists ng € N such that G(zp, T, xm) < € for all
m,n = ng.

Proposition 1.13. Let X be a G-metric space. The following are equivalent:
(1) {z,} is G-convergent to .

(2) G(xn, Tn,x) — 0, asn — oo.

(3) G(an,x,2) — 0, as n — oo.

In general, a Gp-metric function G(z,y, z) for s > 1 and so a modified G-metric

function G(z,y, z) with nontrivial function € is not jointly continuous in all its
variables (see [20]).

We will apply the following simple lemma about the é—convergent sequences.

Lemma 1.14. [29] Let (X,G) be a G-metric space.

1. Suppose that {x,},{yn} and {z,} are G-convergent to x, y and z, respec-
tively. Then we have

(@7 [G(e,y, 2)] < lIiminf G(@n, Yo, 20) < limsup G(2n, Yo, 20) < P[G(a,y, 2)].

n——oo

2. Suppose that {z,} and {yn} are G-convergent to & and y, respectively. Then

we have



148 V.PERVANEH, N. HUSSAIN, S. J. HOSSEINT AND F. GOLKARMANESH

Q" Y2[G(x,y, a)] < liminf G (20, yn, a) < limsup G (2, yn, o) < Q*[C(z,y, ).

n——r>00 n—-00

3. If {x,} be G-convergent to x, then

(Q_l)[é(m,mﬁ)] < liminf é(xn,a,ﬁ) < limsup é(xn,a,ﬁ) < Q[é(a:,a,ﬁ)].

n——0oo n—-00

In particular, if v = y = z, then we have lim é(xn,yn, zn) = 0.
n—-aoo

Proof. 1. Using the rectangle inequality in a G-metric space it is easy to see
that,

Gle,y.2) < Q[éu,xmxn) QLG ) + QUG (22 20, 20) +é<xn,ymzn>ﬂ}

and

G(Tn, Yn, 2n) < {é(xmw,x) +Q[G(Yn, y,y) + UG (2n, 2, 2) + G(x, v, Z)H} :

Taking the lower limit as n — oo in the first inequality and the upper limit as
n — oo in the second inequality we obtain the desired result.
2. Using the rectangle inequality we see that,

G(r,y,a) <Q [é(a;? Tp, Tp) + Q[é(y’ YnsYn) + é(xn, Yn, 0‘)]}

and

G(2n, yn, ) < Q {5(%,% z) + Q[G(Yn, v, y) + G(z, y,a)ﬂ .

3. Similarly,
é(ﬂi,(){,ﬂ) <0 [é(x7xnaxn) + é(mna a“@):|

and
é(mn,a,ﬁ) < Q[é(ajn,x,m) + G(m,a,ﬁ)]]. O

Let & denote the class of all real functions § : [0,00) — [0,1) satisfying the
condition
B(t,) — 1 implies that ¢, — 0, as n — co.

In order to generalize the Banach contraction principle, in 1973, Geraghty
proved the following.
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Theorem 1.15. [9] Let (X,d) be a complete metric space, and let f: X — X
be a self-map. Suppose that there exists 3 € & such that

d(fz, fy) < Bld(x, y))d(x, y)

holds for all x,y € X. Then f has a unique fixed point z € X and for each
x € X the Picard sequence {f"x} converges to z.

In 2010, Amini-Harandi and Emami [3] characterized the result of Geraghty in
the setting of a partially ordered complete metric space.

In [7], some fixed point theorems for mappings satisfying Geraghty-type con-
tractive conditions are proved in various generalized metric spaces.

Also, Zabihi and Razani [32] and Shahkoohi and Razani [31] obtained some
fixed point results duo to rational Geraghty contractions in b-metric spaces.

Motivated by [19], in this paper we present some fixed point theorems for
different rational contractive mappings in partially ordered modified G-metric
spaces. Our results extend some existing results in the literature.

2. Main Results

2.1 Fixed point results using G-rational geraghty contrac-
tions

Let (X, é) be a G-metric space with function 2 and let F, denotes the class
of all functions 3 : [0,00) — [0,Q271(1)) satisfying the following condition:

limsup B(t,) = Q7(1) implies that ¢, — 0, as n — oo.

An example of a function in F may be given by 3(t) = (In2)e~* for ¢t > 0 and
B(0) € [0,In2) where G(x,y, 2) = emax(e=vlly=zLlz=2l) _1 for all z,y,z € R.

Another example of a function in Fqo may be given by 3(t) = W(1l)e™* for
t > 0 and B(0) € [0,W (1)) where G(z,y,2) = max(lz — yl, |y — 2|z —
x|)emax(“”—y|’|y_z"|z_“'|) for all z,y,z € R. Note that W is the Lambert W-
function (see, e.g., [8])

Definition 2.1.1. Let (X, é) be an ordered G-metric space. A mapping f :

X — X is called a G-rational Geraghty contraction if, there exists B € Fq
such that,

QG(fz, fy, [2) < BM(w,y, 2)) M (,y,2) (1)
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for all comparable elements x,y,z € X, where

G(x,y, fy)|G (y,z f2))?
1+ G, fx, f22)G(y, fy. f2y)
Gz, fz, f*2)G(y, fy, f*y)G(z, 2 f*2) }
1+ G(fz, f2x, f32)G(fy, f2y. f3y) )

M(z,y, 2) = max {é<x,y, 2),

Recall that a modified G-metric space (X, é) it said to has the s.l.c. property,
if whenever {z,} is a nondecreasing sequence in X such that z,, — u € X,
one has x,, <u foralln € N

Theorem 2.1.2. Let (X, <, é) be an ordered é—complete G-metric space. Let
[+ X — X be an increasing mapping with respect to =< such that there exists
an element xo € X with xo < f(x0). Suppose that f be a G-rational Geraghty
contraction. If,

(1) f is continuous, or,

(1) (X,=,G) has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered
if and only if f has one and only one fized point.

Proof. Put z,, = f"(xo). Since xg X f(x¢) and f is increasing, we obtain by
induction that

zo =2 f(w0) = f2(w0) = oo 2 fM(wo) 2 f T (wo) 2+

We will do the proof in the following steps.
Step 1. We will show that lim é(mn,xn+1,mn+1) = 0. Without any loss of

n—oo

generality, we may assume that z,, # x,41, for all n € N. Since z,, < x,1 for
each n € N, then by (1) we have

G(Sﬂn, Tn+1, xn+2) == é(fxn—la fxna fxn+1) <

5(M((En717$n7$n+1))M($n71,l’n,anrl), (2)

where
M(:rn—la Ty, ajn—&-l)

G(mn 1,Zn, f20)C(2n, Tnir, fong1)?
14G(Zn—1,f T 1,20 —1) (T, [T, f20)

G(fEn 1, Tn— 11f Tn— 1)G($n ffnvf fn)G(mn-f—lvffn-f—lvf In+1)}
14+ G(fon—1,f20n—1,f320_1)G(frn f22n,f32,

= max{é(a?n,l, Tn, $n+1)
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G(xn 17$n7$n+1)G(In7xn+1yxn+2)
14+G(Zn—1,%n,2n+1)G(Tn Tnt1.Tnt2)’

= max{é(xn_l, Ty Trg1)s

C(tn—1,%n,Tn41)C(zn zn+17rn+2)G(zn+l7xn+2 In+3)}
14+G(Zn,Tnin, 1n+2)G(In+1 Tp42,Tni3)

< HlaX{G(ﬂﬂn—l, T, Trt1), G(In733n+1,17n+2)}~

M(zp—1,Tn, Tni1)

G(xn 1, T, f2n)G (mn>$n+17fxn+l)
14 G(mn,l,fxn,l,f xn,l)G(mn,fxn,f Zn)
G(n 1, frn—1, F2n-1)G(@n, fon, fzxf)é(xnﬂ, feni1, fPanga) )

L+ G(frn—1, fPon1, [3n1)G(fn, f22n, f32,)
G(Tn_1, Tns T 1)G(Tn, Ty 1, Trz)?

1+ é(xn—la Tn, xn-i—l)é(-rru Tn+1, xn+2)

= max{é(xnfh L, xn+1)

)

= max{é(wnq,xn,mvwl)a

)

é(xnfh Tn, anrl)é(xn; Tn+1, ‘rn+2)G(xn+1a Tn+2, anrS) }
14+ G(n: Tn+1, Tnt2) G(Tnt1, Tnt2, Tngs)

< max{é(xn—h Tns xn—&-l): é(xna Tn+1, xn+2)}-

If max{é(mn_l,x,L,a:n+1), é(mn,xn+1,xn+2)} = (xn,xn+1,xn+2) then from
(2) we have,

G(.’L‘n, Tn+1, xn+2) < ﬁ(M<xTL—1a Ty $n+1))é($n, Tn+1, xn+2)
<7 (l)G({En, Tnil; Tni2) (3)
X G(xvm Tn+1, xn-&-Z)

/\

which is a contradiction.

Hence, max{é(xn_l,xn,xn+1),é(:17n,xn+1,xn+2)} = é(xn_l,xn,xn+1). So,
from (2),

é(ajvu Tn+1, xn+2) < ﬁ(M(xn—la T, ajn-l—l))é(xn—h T, xn+1) < G($n_1, T, mn+1)-
(4)

That is, {G(xn, Tni1,Tni2)} is a decreasing sequence, then there exists r > 0

such that lim G(xn,Zn41,%ni2) = 7. We will prove that » = 0. Suppose on

n—oo

contrary that r > 0. Then, letting n — oo, from (4) we have

r < lim ﬁ(M(xn—laxn7xn+l))r < Q_l(l)ra

n—oo

which implies that Q71(1) <1 < lim B(M(2n_1,Tn, Tnr1)) < 271(1). Now,
as B € Fq we conclude that M (x,_1,z,, p+1) — 0 which yields that » =0, a
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contradiction. Hence, the assumption that » > 0 is false. That is,

lim é(xn, Tptl, Tntz) = 0. (5)
Consequently, B

lim G(zp,Zni1,ZTnt1) = 0. (6)

n—oo

Step 2. Now, we prove that the sequence {z,} is a é—Cauchy sequence. Sup-
pose the contrary, i.e., {z,} is not a é—Cauchy sequence. Then there exists
e > 0 for which we can find two subsequences {z,,} and {z,,} of {z,} such
that n; is the smallest index for which

ng >m; > i and G(Tp,, Tn,, Tn,) > €. (7)

This means that

G(Imq,7xn,y—17xn7;—1) < €. (8)

From the rectangular inequality, we get

€< G(xmi » T xnz) < Q[é(xﬂh > Tmi+1, xmri-l) + é(xmz‘-‘rl’ Ln;s Tn; )]
Taking the upper limit as ¢ — oo and by (6), we get
Q 1(e) < limsup é(xmﬁl,xm,xm). (9)
1—00
From the definition of M(x,y, z) and the above limits,
lim SupM($mia$ni—17 £n,v—l) = limsup max{é(xm,xm_l, 357“_1),
1—00 1—00
G’(xmZ ) xniflv fxnifl)G(xnifly xniflv fmnifl)Q
1 + G(Imiv fmmz7 fomi)G(xniflv fxni—h f2mni71)
G(.Imi, fxm,v,a fQImi)G(zm—la fxni—la fzxn,y—l)Q
1 + G(f{l?mi, fzxmm fg‘Tmi)G(fIni_l, fon,j—la f3$ni—l)
<e.

b

}

Now, from (1) and the above inequalities, we have

e < limsup QG(Xm; 41, Tnys Tny))

i—00
g lim Sup ﬂ(M(Z‘W“ ) xni—h xni—l)) lim Sup M(xml I xni—la xni—l)
71— 00 71— 00

< slimsupﬂ(M(:cm“xm_l,xni_l))

—00
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which implies that Q~'(1) < limsup 3(M (2, , Tn,—1,%n,~1)). Now, as 3 € Fq
we conclude that _

M(Zpm;, Tn;—1, Tn;—1) — 0 which yields that G(2pm,,, Tn;—1, Tn;—1) — 0. Conse-
quently,

é(xmiaxnmxni) g Q[é(xmiaxni—la xn,—l) + Sé(mni—hxnwxni)] - 07

a contradiction to (7). Therefore, {z,,} is a G-Cauchy sequence.
G-Completeness of X yields that {x,} G-converges to a point u € X.

Step 3. u is a fixed point of f.
First, let f is continuous, so, we have

u= lim z,41 = lim fz, = fu.
n—oo

n—oo

Now, let (II) holds. Using the assumption on X we have x,, < u. Now, by
Lemma 1.14,

(Q_l)z[é(uv u, fu)] < lim sup é('rn-‘rlv Tn+1, fu)

< limsup B (@, 2, ) limsup M (2, 2, ),

n—oo n—oo

where,

B 2
lim Mz, o) = lim max(@(z,. 2, a), G(xn,zf,fxn)G(xn,u,fU)
n— 00 n— 00 1 + G(gjnm fzna f2In)2

G(n, frn, f%)?é(u,fu,fzu)}
1+ G(fon, f22,, f31,)2
=0.

)

Therefor, we deduce that é(u,u, fu) =0, so, u= fu.

Finally, suppose that the set of fixed point of f is well ordered. Assume on
contrary that, u and v are two fixed points of f such that w # v. Then by (1),
we have

G(u,v,v) = é(fu,fv,fv) < B(M (u,v,v))M(u,v,v) =
B(G(u,v,v)G(u,v,0) < Q7 (1)G(u,v,0), (10)

Because

M (u,v,v) = G(u, v, ).
So, we get, G(u,v,v) < Q7 1(1)G(u,v,v), a contradiction. Hence, u = v, and
f has a unique fixed point. Conversely, if f has a unique fixed point, then the
set of fixed points of f is well ordered. [
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2.2 Fixed point results via comparison functions

Let ¥ be the family of all nondecreasing functions 1 : [0,00) — [0,00) such
that
lim 4" (t) = 0

for all ¢t > 0.

Lemma 2.2.1. Ifvy € U, then the following are satisfied.

(a) Y(t) <t for allt > 0;

(b) 1(0) = 0.
Definition 2.2.2. Let (X, j,é) is an ordered G-metric space. A mapping f :
X — X is called a G-rational Y-contraction if, there exists 1» € ¥ such that,

QG (f, fy, f2)) < $(M(z,y,2)) (11)
for all comparable elements x,y,z € X, where

M(z,y, z)

= max {é(m,y,z), G(f’x’ fx)G(x,f,fy) ,
R LG,z f2) + Gy, y, fy)]
G(y,y,2)G(y,y, [2) G(z,z, fz)G(z, 2, 2) }

1+ Q[G(y,y. fy) + Gz, 2, f2)] 1+ G(z,z, fy) + G(y,y, f)

Theorem 2.2.3. Let (X, <, é) be an ordered é-complete G-metric space. Let
f: X — X be an increasing mapping with respect to =X such that there exists an
element xy € X with xg = f(xg). Suppose that f be a G-rational V¥-contractive

mapping. If
(I) f is continuous, or,
(1) (X, j,é) has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered
if and only if f has one and only one fized point.

Proof. Put x,, = f™(xo).
Step I: We will show that lim é(mn, ZTpt1,Tpy1) = 0. We assume that z, #

n—od
Zpt1, for all n € N. Since z,, =< 2,41 for each n € N, then by 11 we have

G(x’ruxn-l-lyxn-‘rQ) - G(fxn—lafx’rufxn-&-l)
SYM(Tn-1,2n, Tns1))
< %(G(xnfla Tn, xn+1>)
<G

(xn—17 T, $n+1)a
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because

M(-Tn—la LTy xn+1)

G(Tn_1,Tn1,7)G(Tp_1,Tn_1, fTn)
1+ Q[é(xn_l,xn_l, fan_1) + G(xn, zn, fxn)]
é(xmxn,xnﬂ)é(:ﬁn,xn,fan)
1+ Q[é(xm T, fTn) + é(anrh Trt1, [Tnt1)]
é(xﬁ_l,xn_l,f:cn_l)é(x,i_l,:cn_l,xn_,_l) )
14+ G(@n-1,Tn-1, fxn) + G(@pn, Tn, fTrn_1)

= max{G (Tp_1, Tn, Tnt1),

9

)

< max{é(mn,l, Tn, anrl)a é(ﬂ?n,l, LTn—1, mn)y é(l"ru L, $n+1)}
< max{é(fﬂnfla Tn, wn+1)a é(x'm Tn41, $n+2)}a

and it is easy to see that
max{é(;cn_l, L, In—i—l)v é(l‘n, Tn+1, $n+2)} = é(xn—ly T, xn—&-l);

so from (12), we conclude that {G(zy, Zpi1, Zns2)} is decreasing.
Then there exists r > 0 such that lim G(z,,Tpt1, Tnt2) =7

n—oo

is easy to see that r = lim,,_o, G(xp—1, Ty, T,) = 0.
Step 2. Now, we prove that the sequence {z,} is a é—Cauchy sequence. Sup-

pose the contrary, i.e., there exists € > 0 for which we can find two subsequences
{xm,} and {z,,} of {z,} such that n; is the smallest index for which

ng >m; > i and G(zp,, Tn,, Tn,) > . (13)

This means that

G(Tm;s Tnye1, Tny—1) < E. (14)
As in the proof of Theorem 2.1.2, we have,

Lm sup G(Zm, 1, Tn,, Tn, ). (15)

— 00
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From the definition of M(z,y, z) and the above limits,

limsup M (T, , Tn;—1, Tn;—1) = limsup max{G(zpm,, Tn,~1, Tn;~1),
1—00 i—00

G(xmi"rﬂh"/ fxmi)G(xmm Ty fxnifl)
1+ Q[é(mmz7mmz7 fxmz) + é(xnifla Tn;—1, fmnlfl)]

)

G(In,,—la xni—lv fxni—l)G(Ini—l’ Tn;—1, fzm—l)
1+ Q[G(‘T'ﬂi—lﬂ Tni—1, f‘rm—l) + G(mm—hxm—l’ fxm—l)]

)

G(wm” -Tmiv fmmi)G(a:mz 3 mmz ) xnifl) }
1 + 6<xmiaxmw fxni—l) + 6(-%'71,5—17 mni—ly fmml)
<e.

Now, from (11) and the above inequalities, we have

e < limsup Q[G(Tm; 41, Tn;, Tn,)] < Umsup (M (Tm, s Tny—15 Tn;—1))

1—00 —00

<e€

which is a contradiction. Now, we conclude that {z,} is a G-Cauchy sequence.
G-Completeness of X yields that {x,,} G-converges to a point u € X.

Step 3. u is a fixed point of f. This step is proved as the proof of step 3 of
Theorem 2.1.2 with some elementary changes. [J

If in the above theorem we take 9(t) = sinh¢ and G(x,y, z) = sinh(G(z,y, 2))
then we have the following corollary in the framework of GG, metric spaces.

Corollary 2.2.4. Let (X, Gy, =) be an ordered Gy-complete Gyp-metric space
with coefficient s > 1. Let f : X — X be an increasing mapping with respect to
= such that there exists an element vo € X with xo = f(xo). Suppose that

sinh(s - sinh(G(fz, fy, f2))) < sinh(M(z,y, 2)) (16)
for all comparable elements x,y,z € X, where
M(z,y,z)
sinh(G(z, , fx)) sinh(G(y, y, fy))
"1+ sinh(s - [sinh(G(z,y,y)) + sinh(G(z, z, fy))])’
sinh(G(y, y, fy)) sinh(G(z, 2, f2))
1 + sinh(s - [sinh(G(y, 2, 2)) + sinh(G(y, y, f2))])’

sinh(G(y, z, z)) sinh(G(y, y, 2)) }
1+ sinh(G(y, fy, fy)) +sinh(G(z, fz, 2)) ]

= max { sinh(G(z, y, 2))
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If

(TI) f is continuous, or,

(I1) (X, Gy, %) enjoys the s.l.c. property,
then f has a fixed point.

2.3 Fixed point results related to JS-contractions

Jleli et al. [17] have introduced the class ©g consists of all functions 6 : (0, 00) —
(1, 00) satistying the following conditions:

(61) 0 is non-decreasing;
(02) for each sequence {t,,} C (0,00), lim 6(¢,) = lifand onlyif lim ¢, = 0;
f3) there exist r € (0,1) and ¢ € (0, oo] such that lim G(t)fl =/
( m =5
t—

(64) 0 is continuous.

They proved the following result:

Theorem 2.3.1. [17, Corollary 2.1] Let (X, d) be a complete metric space and
let T : X — X be a given mapping. Suppose that there exist § € Oy and
k€ (0,1) such that

vyeX, dTzTy)#0 = 0(d(Tz,Ty)) < Q(d(m,y))k. (17)

Then T has a unique fized point.

From now on, we denote by © the set of all functions 6 : [0,00) — [1,00)
satisfying the following conditions:

01. 6 is a continuous strictly increasing function;

0s. for each sequence {t,} C (0,00), lim 6(t,) =1 if and only if lim ¢, = 0;
Remark 2.3.2. [10] It is clear that f(t) = €' does not belong to g, but

it belongs to ©. Other examples are f( ) = cosht, f( ) = f:f;:htt; f(t) =

1+In(1+1), f(t) = 2;_21:1?1?; L f@) =€t and f(t) = 1+ = forallt > 0.

Definition 2.3.3. Let (X,é,j) be an ordered G-metric space. A mapping
f:X — X is called a G-rational JS-contraction if

0(QG(fx, fy, f2)]) < O(M(z,y,2)" (18)
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for all comparable elements x,y,z € X, where 6 € ©, k € [0,1) and
M(z,y,2)
:max{é(x,y,z), Gz, f2)G(y,y, fy) 7
1+ Q[G(x,y,9) + G, z, fy)]

Gy, y, fy)G (2,2, f2) ~C:'(y,z,Z)CNJ(yLy,Z) }
1+ Q[G(y, z,2) + Gy, y, [2)] 1+ Gy, fy, fy) + G(z, f2, f2)

Theorem 2.3.4. Let (X, G, <) be an ordered é-complete G-metric space. Let
[+ X — X be an increasing mapping with respect to < such that there exists an
element ©o € X with xg = f(xo). Suppose that f be a G-rational JS-contractive
mapping. If

(1) f is continuous, or,

(1) (X, é, <) enjoys the s.l.c. property,

then f has a fized point. Moreover, the set of fized points of f is well ordered
if and only if f has one and only one fized point.

Proof. Put z, = f™(xo).
Step 1. We will show that lim é(xn,xnﬂ,xnﬂ) = 0. Without any loss of

n—oo

generality, we may assume that x, # x,+1, for all n € N. Since z,, < 4 for
each n € N, then by (18) we have

Q(é(xn,xn+1,xn+2)) ( (xn»xn+17mn+2)])

( (fl'n 1afxn,fxn+1)])

(M(xn lzxn7mn+1))k (19)
(

G(:L'n laxn71'n+1))ka

NN A
DD D
QE

because M (z,—1,Zn, Tni1)

G(Tn—1,8n—1,fTn_ 1)@(wn,wn,fzn)
N 71+Q[G(zn 1,Tn, xn)-‘rG(mn 13T — 1,f;vn)]
G(zn,xn,fmn)G(zn+l,zn+1,fmn+1) G(zn,xn+1,zn+1)G(:vn,xn,mn+1) }
1+Q[G(In In+1’In+1)+G(Inanafwn+l)] 1+G(zn7fg3n’fwn)+€(zn+l’f$n+1vfzn+1)
G(:cn 1,Tn—1, xn)G(xn Ty, Trg1)
B 1+Q[G(azn 1,Tm, xn)+G(zn 1,Tn—1 In+1)]
G(zy, 'rn,rn+1)G(rn+1 Trt1,Tn42) G(rn,zn+1,rn+1)G(rn,rﬂ,zﬂ_H)
1+Q[G(zn Trti, zn+1)+G(mn,zn,zﬂ+2)] 1+G(zn Ty, zn+1)+G(zn+1,zn+2,zﬂ+2)
G(Tp—1,Tm— 1,acn)Q[G(;cn,a:n,xn )4+G(@n—1,Tn— 1,Zn+1)]
1+Q[G(xn 1,xn,xn)+G(mn 13T — 1,xn+1)] !
G(xyl,zn,mn+1)Q[G(zn+1,;En+1,a:n)-i-G(zmwn,wnJrg)] G(wn,a:wr],wnJrl)G(wn Ty, Trg1)
1+Q[G(zn,azn+1,zn+1)+G(xn,ln,a,nJrg)] ’ 1+G(::7n ,1n+1,zn+1)+G(wn+1,wn+2,a,n+2)
< max{G(xn 1y Tny Tntl), G(xn 1y Ty 1,xn),G(mn,mn,mn+1)}

< max{G(xn 15 Ty Tnt1), G(fnawn—«—lafn-«-Z)}-

= max{é(xn 1, Ty Tpt1)

= HlaX{G(iUn 15 Ln, -'En+1)

< max{G(Tn_1,Tn, Tpi1),
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From (19) we deduce that,

O(G(wn, Tnt1, Tny2)) < @(G(mn_l,xn,xn+1))k.
Therefore,
1< 0(Clns st Tns2)) < O(CEn—1, 20 2s1))" < ... < OGla, 21,22))F". (20)
Taking the limit as n — oo in (20) we have,

lim @(é(mn,wn+1,xn+2)) =1

n—oo

and since © € Ag we obtain,

lim é(mn,xnﬂ,xnﬁ) =0. (21)
Therefore, we have,
lim G(zp, Tp, Tp_1) = 0. (22)

Step 2. Now, we prove that the sequence {z,} is a G’—Cauchy sequence. Sup-
pose the contrary, i.e., that {x, } is not a é—Cauchy sequence. Then there exists
e > 0 for which we can find two subsequences {z,,} and {z,,} of {z,} such
that n; is the smallest index for which

n; > m; > i and é(a:m“mm,xm) > e (23)
This means that
G(Timyy Tny—1, Tn;—1) < E. (24)
Hence,
G(Zm,s Ty Tny—1) < Q(26). (25)

From the rectangular inequality, we get

£ < G(ijl ) xni ) xni) g Q[G(ijl ) xmi-{-h xm,i-i-l) + é(xmﬁ-h xni ) xni )] .
By taking the upper limit as ¢ — oo, we get

Q1 (e) < limsup G(Tpm, 11, Tn, , Tn, )- (26)

1— 00
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From the definition of M(z,y, z) and the above limits,
limsup M (2, , Tn,—1,Tp,—1) = limsup max{G(Lm,, Tn, 1, Tn, 1),
i—00 i—00
é(xmi,mmi,fxmi)é(xm_l,xm_l,fa:nl._l)
14+ QG (@my Tng—15Tng—1) + G(Tn; -1, Tny—1, fTm,)]
é(iﬂnﬁhxnﬁhfmnﬁl)é(xnﬁl?a?nﬁhfmnrl)
I+ Q[é(ivnfl, Tpy—1,Tn,—1) + é(mnﬁh Tny—1, fn,—1)]
é(mni—hmni—hxTLi—l)é(JUm—l,Z‘m—h$ni—1) }
1+ G(2n,—1, fEni—1 fEni-1) + C(@ni—1, fTni—1, [Tns—1)
<e.

b

i

Now, from (18) and the above inequalities, we have
020 (2))) < limsup QG @ +1, T 70, )])

< llm sup H(M(xmiuxni717xni))k

1—00

< O(e)”

which implies that ¢ = 0, a contradiction. So, we conclude that {z,} is a
G- Cauchy sequence. G- Completeness of X yields that {x,} G- converges to a
point u € X.

Step 3. u is a fixed point of f.
When f is continuous, the proof is straightforward.
Now, let (II) holds. Using the assumption on X we have x, < u. Now, we

show that v = fu. By Lemma 1.14,
0(Q)2[G (u, u, fu)]) < limsup O(G(Tni1, Tni1, fu))

n—00

< lim sup O(M (2, Tp,u))k,
where,
lim M(z,,xn,u)
= lim max {é(zn,xn,u), G(ivn,xn,fxn)G(xﬁ, Tn, fn) ,
n—00 14+ Q[G(xn, Tny xn) + G(h, Tn,y f20)]
G2, T, f20)G(u, u, fu) G, 1, w)G (2, T, 1) } B
1+ Q[G(wn,u,u) + G(acn,:cn, fu)] "1+ é(xn, fn, fx,) + CNT'(u, fu, fu)
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Therefor, we deduce that é(u, u, fu) =0, so, u = fu.

Finally, suppose that the set of fixed point of f is well ordered. Assume on
contrary that, u and v are two fixed points of f such that u # v. Then by (18),
we have

0[G(u,v,0)] = 0[G(fu, fv, fv)] < O(M(u,v,0)* = 0(G(u,v,0)F.  (27)

So, we get, G(u,v,v) = 0, a contradiction. Hence v = v, and f has a unique
fixed point. O

If in the above theorem we take (t) = 2¢ and G(z,y,z) = eF@v:2) — 1

1+ete’
then we have the following corollary in the framework of G, metric spaces.

Corollary 2.3.5. Let (X, Gy, =) be an ordered Gy-complete Gyp-metric space
with coefficient s > 1. Let f : X — X be an increasing mapping with respect
to =< such that there exists an element xo € X with xo = f(xo). Suppose that

o 1eC(fa, fy.fz)_ o5 G(fz,fy,fz) _q)
26[6 [eG(fa. fy,f2) 1]_1]e le 1.1 \/ 26M(w)y)z)e]\l(m,y,z)

14 e[es_[eG(fz,fy,fz)71]71]ees-[eG(fm,f’yyfz)—1]71 X 1+ eM(m,y,z)eM(’”*y’Z)

for all comparable elements x,y,z € X, where

M(z,y, z)
o S G g [eG @@ fe) _1])[eCWy.fy) 1]
’ 1+ 65.[5G(m1y,y)71+6G(m,w,fy)71] _ 1’
[eCWy.fy) _ 1][eC(=2:02) _ 1] [eCW22) _ 1][eCWy2) 1]
1 4 es[eCW=m) —14eGwv 1] 1’ 1 4 ¢GW:fy:fy) — 1 4 G(z.f2f2) — }

If

(I) f is continuous, or,

(I1) (X, Gy, X) enjoys the s.l.c. property,
then f has a fived point.

2.4 Examples

Example 2.4.1. Let X = [0, 8] be equipped with the G-metric

for all z,y,z € X, where Q(x) = sinh  which Q~!(z) = sinh™* ().
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Define a relation < on X by z <y iff y < z, the function f : [0,8] — [0, 2] by

x
= 2 —_

fx +t7

and the function 3 given by 3(t) = 3 < 0.88137358702 = Q~1(1).

For all comparable elements z,y € X, we have,

UC(fz, fy. f2))

(\ﬂ—d2+%|+|,/2+%—ﬁ|+\ﬂ— \/@5)

3

c sinn(einn T8 11— %
<

= sinh(sinh

N 3
< sinh(iG(xlly’ Z))
< SOV G,y 2) @, y.2) < B0, 2) My, 2),

So, from Theorem 2.1.2 f has a fixed point.
Example 2.4.2. Let X = [0, o0] be equipped with the

lv —yl + |y — 2|+ |2 — x]
3

~ r—yl+tly—z+ljz—x
_lroyltly -t le—af

G(z,y,2) 3 In(

)

for all z,y,z € X, where Q(z) = x + Inz.
Define a relation < on X by x < y iff y < z, the function f: X — X by

fx= ln(g +2)

and the function v given by ¥(t) = %t. It is obvious that ¥ (t) < t for all t € X.

For all comparable elements x,y € X, by mean value theorem, we have,
QG(fa, fy, f2)

= G(fx, fy, f2) + W[l + G(fx, fy, )] + W[l + G(fz, fy, [2) + W[l + G(fz, [y, [2)]
Cm24+ % -2+ 4+ |2+ ¥ —In24F|+|In2+ £ —In2+4 ¢

3
z _ y y B . .
+ln[1—|—|1n2+5 ln2+5|+’1n2+531n2+5|+]1n2+5 ln2+5|]
+ln[1+|ln2+§_ln2+é’|+lln2+g;1n2+g|+|1n2+g_1n2+a5s|
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- ’ln2+%—1n2+%‘+’1n2+%—1n2+§‘+’1n2+§—1n2+%‘]}

+ In] 5 5
B R R |
= 3
z _ Y y__ z z_z
_|_1n[1+|5 5|+’535|+’5 5|]
NSRS TET
3
RN S 1 s EXLE T
3
< %@(w,y, z) + [l + %é(w, y,2)|

1~ 1~
+n |1+ ZGlay.2) +Infl + Gy, 2)]|

< 15 00e.2) = $(Glap.2) < B (.2),

So, from Theorem 2.2.3 f has a fixed point.

Example 2.4.3. Let G: X x X x X — R* be defined on X = [0, 1.5] by

~ lz—yl+ly—z|+|z—=]
3

G(z,y,z)=e -1

for all z,y,z € X. Then (X, @) is a G-complete G-metric space with Q(t) =
et — 1.
Define k and § € © by k = J5 and 0(t) = e, Let X is endowed with the

usual order. Let f : X — X be defined by fx = arctan(i5). It is easy to see
that f is an ordered increasing and continuous self map on X and 0 < f0. For

any x,y,z € X, we have

G(fx, fy, f2) = e

[fe—fyl+|fy—fzl+|fz—fx|
5 ~1

Y _ar =
arctan arctan 5 |+

2 Z_
16 arctan 16 arctan 16
3

x R
arctan {&% —arctan {% |+

-1

Il
)

N
)
wl |
|
—

1
6

1 ~

le—yl+|ly—z|+|z—=|
3 — 1)

N
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So,
< et CUnfuf2) _q
1 ~
ST .
= 16G<f$7fy7fz)
Therefore,

O(QUG(fx, [y, f2)]) = eACUmLufletOTm 17
< e%@(f%f%ﬁkﬁé(f:c,fy,fz>
AN

1

< [eé(fz,fy,fz>e@“‘”’fy’f”}% [0(G(fa, fy, f2))] V2.

s

Thus, (18) is satisfied with k = % Hence, all the conditions of Theorem 2.3.4
are satisfied. We have that 0 is the unique fixed point of f.

2.5 Existence of a solution for an integral equation

We consider the following integral equation:
z(t) = [V K(t,s,2(s))ds + k(t), (28)

where b > a > 0. The aim of this section is to present the existence of a
solution to (28) that belongs to X = C|a,b] (the set of all continuous real
valued functions defined on [a,b]) as an application to the Theorem 2.3.4.

The considered problem can be changed as follows.
Let f: X — X be defined by:

b
falt) = [ (t.s.a(o)ds + k()

for all € X and for all ¢ € [a, b]. Obviously, existence of a solution to (28) is
equivalent to the existence of a fixed point of f.
Let,

d(u,v) = max fu(t) = v(t)] = [lu = vl

Let X be equipped with the modified G-metric given by

G(u,v,w) = &(max{d(u,v),d(v, w),d(w,u)}),
for all u,v,w € X where £ : [0,00) — [0,00) is a strictly increasing continuous
function with ¢ < £(¢) for ¢t > 0 and £(0) = 0 which is a G-complete G-metric
space. We endow X with the partial ordered < given by <y <> z(t) < y(¢),
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for all t € [a,b]. It is known that (X, <) has sequential limit comparison
property [25, 1].

Now, we will prove the following result.

Theorem 2.5.1. Suppose that the following hypotheses hold:
(i) K : [a,b] x [a,b] x R — R and k : [a,b] — R are continuous;
(ii) for all s,t € [a,b] and for all z,y € X with x = y we have,

o [ (12 = fylloo)0(E(lz — ylloe)) ®
& /

(&l fz — fyll)) ’
for all ¢t € [a,b] and 0 € P.

(iii) There exists continuous function « : [a,b] — R such that

K(t,r,z(r)) — K(t,r,y(r))‘ dr) <

b
at) < / (t,s,a(s))ds + k(t).
Then, the integral equations (28) has a solution x € X.

Proof. Let x,y € X be such that = = y. From condition (ii), for all ¢ € [a, b]
we have,

&(1fat) - ruol) < ([ Kt s.(5) — Kt 9(5)1ds)

2(|fx — fylo)0(E(z - ylloo))
CIEES) ‘

X

Hence,
52(d(f’£7fy)) =€2(Supte[a,b]|fx(t) (t)|>
& (17a—sull=) o (€llo—sll o)) ® (29)
o(e2( fa—fyll) ) '
Hence,

NI
—
w
(=]
=

e(fg(fo - fyHOO)) < 9(5(H33 - yHOO)) :

Therefore, from (29) we have,
0(¢(Gso.1y.12))) = 9(5( (max{d(fz, fy), d(fy, he),d(f2 f2)})) )
max {6(€2(d(f, 1)), 0( €2y, £2)) ), 0(€2(e( 2, 1)) }
max{e (2 = ylle)) * 6(€ly = 2loe)) € — )}

(]W(:E, v, z))

t\?\»—A
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where

G(z,z, f2)G(y,y, [Y)
1+¢[G(,y,y) + G, , fy)]
G(y.y, fy)G (2,2, 12) Gy, 2,2)G(y, y, 2) }
1+¢[G(y, 2,2) + Gy, y, f2)] 1+ Gly, fy, fy) + Gz, f2, f2) )
So, from Theorem 2.3.4, there exists x € X, a fixed point of f which is a
solution of (28). O

M(z,y, =) = max {é@c, y,2)

3. Conclusion

Taking Q(z) = sz, our obtained results coincide with the results in usual G-
metric spaces and taking Q(z) = x, our obtained results coincide with the
results in usual G-metric spaces.
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