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Abstract. In this paper, recalling the structure of modified G-metric spaces (as
a generalization of both G-metric and Gb-metric spaces), we present the notions of

G̃-rational contractive mappings and investigate the existence of fixed point for such
mappings. We also provide examples and an application to illustrate the results
presented herein.

1. introduction and preliminaries

There is a large number of generalizations of Banach contraction principle via using
different form of contractive conditions in generalized metric spaces. Some of such
generalizations are obtained via contractive conditions expressed by rational terms
(see, [4], [5], [7], [8], [15], [22] and [27]).

Ran and Reurings initiated the study of fixed point results on partially ordered sets
in [26]. Also, many researchers have focused on different contractive conditions in
complete metric spaces endowed with a partial order. For more details we refer the
reader to [23,24].

Parvaneh in [17] introduced the concept of an extended b-metric space.

Definition 1.1. [17] Let X be a (nonempty) set. A function d̃ : X × X → R+ is a
p-metric iff there exists a strictly increasing continuous function Ω : [0,∞) → [0,∞)
with Ω−1(x) ≤ x ≤ Ω(x) and Ω−1(0) ≤ 0 ≤ Ω(0) such that for all x, y, z ∈ X, the
following conditions hold:

(d̃1) d̃(x, y) = 0 iff x = y,

(d̃2) d̃(x, y) = d̃(y, x),
(d̃3) d̃(x, z) ≤ Ω(d̃(x, y) + d̃(y, z)).

In this case, the pair (X, d̃) is called a p-metric space, or, an extended b-metric space.

A b-metric [9] is a p-metric, when Ω(x) = sx while a metric is a p-metric, when
Ω(x) = x.

We have the following proposition.

Proposition 1.2. [17] Let (X, d) be a metric space and let d̃(x, y) = ξ(d(x, y)) where
ξ : [0,∞) → [0,∞) is a strictly increasing function with x ≤ ξ(x) and 0 = ξ(0). In this
case, d̃ is a p-metric with Ω(t) = ξ(t).

The above proposition constructs the following example:
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Example 1.3. Let (X, d) be a metric space and let d̃(x, y) = ed(x,y) sec−1(ed(x,y)).
Then d̃ is a p-metric with Ω(t) = et sec−1(et).

The concept of a generalized metric space, or a G-metric space, was introduced by
Mustafa and Sims. For more details in this field the reader can refer to [28,29,30]

Definition 1.4. [18] Let X be a nonempty set and G: X×X×X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 iff x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with y 6= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).
Then, the function G is called a G-metric on X and the pair (X,G) is called a

G-metric space.

Aghajani et al. in [1] motivated by the concept of b-metric [9] introduced the concept
of generalized b-metric spaces (Gb-metric spaces) and then they presented some basic
properties of Gb-metric spaces.

The following is the definition of modified G-metric spaces which is a proper gener-
alization of the notions of G-metric spaces and Gb-metric spaces [31].

Definition 1.5. Let X be a nonempty set and Ω : [0,∞) → [0,∞) be a strictly
increasing continuous function such that Ω−1(x) ≤ x ≤ Ω(x) for all x > 0 and Ω−1(0) =
0 = Ω(0). Suppose that a mapping G̃ : X ×X ×X → R+ satisfies:

(G̃1) G̃(x, y, z) = 0 if x = y = z,

(G̃2) 0 < G̃(x, x, y) for all x, y ∈ X with x 6= y,

(G̃3) G̃(x, x, y) ≤ G̃(x, y, z) for all x, y, z ∈ X with y 6= z,

(G̃4) G̃(x, y, z) = G̃(p{x, y, z}), where p is a permutation of x, y, z (symmetry),
(G̃5) G(x, y, z) ≤ Ω[G̃(x, a, a)+G̃(a, y, z)] for all x, y, z, a ∈ X (rectangle inequality).

Then G̃ is called a modified G-metric and the pair (X, G̃) is called a modified G-
metric space or a G̃-metric space.

Each G-metric space is a G̃-metric space with Ω(t) = t and every Gb-metric space is
a G̃-metric space with Ω(t) = st.

Proposition 1.6. [31] Let (X,G) be a Gb-metric space with coefficient s ≥ 1 and
let G̃(x, y, z) = ξ(G(x, y, z)) where ξ : [0,∞) → [0,∞) is a strictly increasing function
with x ≤ ξ(x) for all x > 0 and ξ(0) = 0. We show that G̃ is a modified G-metric with
Ω(t) = ξ(st).

For each x, y, z, a ∈ X,

G̃(x, y, z)

= ξ(G(x, y, z)) ≤ ξ(sG(x, a, a) + sG(a, y, z))

≤ ξ(sξ(G(x, a, a)) + sξ(G(a, y, z))

= ξ(sG̃(x, a, a) + sG̃(a, y, z))

= Ω(G̃(x, a, a) + G̃(a, y, z)).

So, G̃ is a modified G-metric with Ω(t) = ξ(st).

The above proposition constructs the following examples:
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Example 1.7. [31] Let (X,G) be a Gb-metric space with coefficient s ≥ 1. Then,
1. G̃(x, y, z) = eG(x,y,z) sec−1(eG(x,y,z)) is a G̃-metric with Ω(t) = est sec−1(est).
2. G̃(x, y, z) = [G(x, y, z) + 1] sec−1([G(x, y, z) + 1]) is a G̃-metric with Ω(t) =

[st+ 1] sec−1([st+ 1]).
3. G̃(x, y, z) = eG(x,y,z) tan−1(eG(x,y,z) − 1) is a G̃-metric with Ω(t) = est tan−1(est −

1).
4. G̃(x, y, z) = G(x, y, z) cosh(G(x, y, z)) is a G̃-metric with Ω(t) = st cosh(st).
5. G̃(x, y, z) = eG(x,y,z) ln(1 +G(x, y, z)) is a G̃-metric with Ω(t) = est ln(1 + st).
6. G̃(x, y, z) = G(x, y, z)+ln(1+G(x, y, z)) is a G̃-metric with Ω(t) = st+ln(1+st).

Definition 1.8. A G̃-metric G̃ is said to be symmetric if G̃(x, y, y) = G̃(y, x, x), for
all x, y ∈ X.

Proposition 1.9. [31] Let X be a G̃-metric space. Then for each x, y, z, a ∈ X it
follows that:

(1) if G̃(x, y, z) = 0 then x = y = z,

(2) G̃(x, y, z) ≤ Ω(G̃(x, x, y) + G̃(x, x, z)),
(3) G̃(x, y, y) ≤ Ω[2G̃(y, x, x)],
(4) G̃(x, y, z) ≤ Ω(G̃(x, a, z) + G̃(a, y, z)).

Recall that a function f is super-additive if

f(x+ y) ≥ f(x) + f(y)

for all x, y ∈ D(f).

Definition 1.10. Let X be a G̃-metric space with a super-additive function Ω. We
define d̃

G̃
(x, y) = G̃(x, y, y)+G̃(x, x, y), for all x, y ∈ X. It is easy to see that d̃

G̃
defines

a p-metric d̃ on X, which we call it the d-metric associated with G̃.

Definition 1.11. Let X be a G̃-metric space. A sequence {xn} in X is said to be:
(1) G̃-Cauchy if, for each ε > 0 there exists a positive integer n0 such that for all

m,n, l ≥ n0, G̃(xn, xm, xl) < ε;
(2) G̃-convergent to a point x ∈ X if, for each ε > 0 there exists a positive integer

n0 such that for all m,n ≥ n0, G̃(xn, xm, x) < ε.

(3) A G̃-metric space X is called G̃-complete, if every G̃-Cauchy sequence is G̃-
convergent in X.

Proposition 1.12. Let X be a G̃-metric space. Then the following are equivalent:
(1) the sequence {xn} is G̃-Cauchy.
(2) for any ε > 0 there exists n0 ∈ N such that G̃(xn, xm, xm) < ε for all m,n ≥ n0.

Proposition 1.13. Let X be a G̃-metric space. The following are equivalent:
(1) {xn} is G̃-convergent to x.
(2) G̃(xn, xn, x) → 0, as n→∞.

(3) G̃(xn, x, x) → 0, as n→∞.

In general, a Gb-metric function G(x, y, z) for s > 1 and so a modified G-metric
function G̃(x, y, z) with nontrivial function Ω is not jointly continuous in all its variables
(see [19]).

We will apply the following simple lemma about the G̃-convergent sequences.
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Lemma 1.14. [31] Let (X, G̃) be a G̃-metric space.
1. Suppose that {xn}, {yn} and {zn} are G̃-convergent to x, y and z, respectively.

Then we have

(Ω−1)3[G̃(x, y, z)] ≤ lim inf
n−→∞

G̃(xn, yn, zn) ≤ lim sup
n−→∞

G̃(xn, yn, zn) ≤ Ω3[G̃(x, y, z)].

2. Suppose that {xn} and {yn} are G̃-convergent to x and y, respectively. Then we
have

(Ω−1)2[G̃(x, y, α)] ≤ lim inf
n−→∞

G̃(xn, yn, α) ≤ lim sup
n−→∞

G̃(xn, yn, α) ≤ Ω2[G̃(x, y, α)].

3. If {xn} be G̃-convergent to x, then

(Ω−1)[G̃(x, α, β)] ≤ lim inf
n−→∞

G̃(xn, α, β) ≤ lim sup
n−→∞

G̃(xn, α, β) ≤ Ω[G̃(x, α, β)].

In particular, if x = y = z, then we have lim
n−→∞

G̃(xn, yn, zn) = 0.

Proof. 1. Using the rectangle inequality in a G̃-metric space it is easy to see that,

G̃(x, y, z) ≤ Ω
[
G̃(x, xn, xn) + Ω

[
G̃(y, yn, yn) + Ω[G̃(z, zn, zn) + G̃(xn, yn, zn)]

]]
and

G̃(xn, yn, zn) ≤ Ω
[
G̃(xn, x, x) + Ω

[
G(yn, y, y) + Ω[G(zn, z, z) +G(x, y, z)]

]]
.

Taking the lower limit as n→∞ in the first inequality and the upper limit as n→∞
in the second inequality we obtain the desired result.

2. Using the rectangle inequality we see that,

G̃(x, y, α) ≤ Ω
[
G̃(x, xn, xn) + Ω

[
G̃(y, yn, yn) + G̃(xn, yn, α)

]]
and

G̃(xn, yn, α) ≤ Ω
[
G̃(xn, x, x) + Ω

[
G(yn, y, y) +G(x, y, α)

]]
.

3. Similarly,

G̃(x, α, β) ≤ Ω
[
G̃(x, xn, xn) + G̃(xn, α, β)

]
and

G̃(xn, α, β) ≤ Ω
[
G̃(xn, x, x) +G(x, α, β)

]]
.

�

Let S denote the class of all real functions β : [0,∞) → [0, 1) satisfying the condition

β(tn) → 1 implies that tn → 0, as n→∞.

.
In order to generalize the Banach contraction principle, in 1973, Geraghty proved

the following.
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Theorem 1.15. [11] Let (X, d) be a complete metric space, and let f : X → X be a
self-map. Suppose that there exists β ∈ S such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the
Picard sequence {fnx} converges to z.

In 2010, Amini-Harandi and Emami [6] characterized the result of Geraghty in the
setting of a partially ordered complete metric space.

In [10], some fixed point theorems for mappings satisfying Geraghty-type contractive
conditions are proved in various generalized metric spaces. .

Also, Zabihi and Razani [27] and Shahkoohi and Razani [4] obtained some fixed point
results duo to rational Geraghty contractions in b-metric spaces.

Motivated by [5], in this paper we present some fixed point theorems for different ra-
tional contractive mappings in partially ordered modified G-metric spaces. Our results
extend some existing results in the literature.

2. Main results

2.1. Fixed point results using G̃-rational Geraghty contractions. Let (X, G̃)
be a G̃-metric space with function Ω and let FΩ denotes the class of all functions
β : [0,∞) → [0,Ω−1(1)) satisfying the following condition:

lim sup
n→∞

β(tn) = Ω−1(1) implies that tn → 0, as n→∞.

An example of a function in FΩ may be given by β(t) = (ln 2)e−t for t > 0 and
β(0) ∈ [0, ln 2) where G̃(x, y, z) = emax(|x−y|,|y−z|,|z−x|) − 1 for all x, y, z ∈ R.

Another example of a function in FΩ may be given by β(t) = W (1)e−t for t > 0 and
β(0) ∈ [0,W (1)) where G̃(x, y, z) = max(|x− y|, |y− z|, |z − x|)emax(|x−y|,|y−z|,|z−x|) for
all x, y, z ∈ R. Note that W is the Lambert W -function (see, e.g., [3])

Definition 2.1. Let (X, G̃) be an ordered G̃-metric space. A mapping f : X → X is
called a G̃-rational Geraghty contraction if, there exists β ∈ FΩ such that,

Ω(G̃(fx, fy, fz)) ≤ β(M(x, y, z))M(x, y, z) (2.1)

for all comparable elements x, y, z ∈ X, where

M(x, y, z) = max
{
G̃(x, y, z),

G̃(x, y, fy)[G̃(y, z, fz)]2

1 + G̃(x, fx, f2x)G̃(y, fy, f2y)
,

G̃(x, fx, f2x)G̃(y, fy, f2y)G̃(z, fz, f2z)

1 + G̃(fx, f2x, f3x)G̃(fy, f2y, f3y)

}
.

Recall that a modified G-metric space (X, G̃) it said to has the s.l.c. property, if
whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has
xn � u for all n ∈ N
Theorem 2.2. Let (X,�, G̃) be an ordered G̃-complete G̃-metric space. Let f : X → X
be an increasing mapping with respect to � such that there exists an element x0 ∈ X

with x0 � f(x0). Suppose that f be a G̃-rational Geraghty contraction. If,
(I) f is continuous, or,
(II) (X,�, G̃) has the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and
only if f has one and only one fixed point.
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Proof. Put xn = fn(x0). Since x0 � f(x0) and f is increasing, we obtain by induction
that

x0 � f(x0) � f2(x0) � ... � fn(x0) � fn+1(x0) � · · · .
We will do the proof in the following steps.

Step 1. We will show that lim
n→∞

G̃(xn, xn+1, xn+1) = 0. Without any loss of generality,
we may assume that xn 6= xn+1, for all n ∈ N. Since xn � xn+1 for each n ∈ N, then
by 2.1 we have

G̃(xn, xn+1, xn+2) = G̃(fxn−1, fxn, fxn+1) ≤ β(M(xn−1, xn, xn+1))M(xn−1, xn, xn+1),
(2.2)

where

M(xn−1, xn, xn+1)

= max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn, fxn)G̃(xn, xn+1, fxn+1)2

1 + G̃(xn−1, fxn−1, f2xn−1)G̃(xn, fxn, f2xn)
,

G̃(xn−1, fxn−1, f
2xn−1)G̃(xn, fxn, f

2xn)G̃(xn+1, fxn+1, f
2xn+1)

1 + G̃(fxn−1, f2xn−1, f3xn−1)G̃(fxn, f2xn, f3xn)
}

= max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn, xn+1)G̃(xn, xn+1, xn+2)2

1 + G̃(xn−1, xn, xn+1)G̃(xn, xn+1, xn+2)
,

G̃(xn−1, xn, xn+1)G̃(xn, xn+1, xn+2)G̃(xn+1, xn+2, xn+3)

1 + G̃(xn, xn+1, xn+2)G̃(xn+1, xn+2, xn+3)
}

≤ max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)}.

If max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)} = G̃(xn, xn+1, xn+2), then from 2.2 we
have,

G̃(xn, xn+1, xn+2) ≤ β(M(xn−1, xn, xn+1))G̃(xn, xn+1, xn+2)
< Ω−1(1)G̃(xn, xn+1, xn+2)
≤ G̃(xn, xn+1, xn+2),

(2.3)

which is a contradiction.
Hence, max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)} = G̃(xn−1, xn, xn+1). So, from

2.2,

G̃(xn, xn+1, xn+2) ≤ β(M(xn−1, xn, xn+1))G̃(xn−1, xn, xn+1) < G̃(xn−1, xn, xn+1).
(2.4)

That is, {G̃(xn, xn+1, xn+2)} is a decreasing sequence, then there exists r ≥ 0 such that
lim

n→∞
G̃(xn, xn+1, xn+2) = r. We will prove that r = 0. Suppose on contrary that r > 0.

Then, letting n→∞, from 2.4 we have

r ≤ lim
n→∞

β(M(xn−1, xn, xn+1))r ≤ Ω−1(1)r,

which implies that Ω−1(1) ≤ 1 ≤ lim
n→∞

β(M(xn−1, xn, xn+1)) ≤ Ω−1(1). Now, as β ∈
FΩ we conclude that M(xn−1, xn, xn+1) → 0 which yields that r = 0, a contradiction.
Hence, the assumption that r > 0 is false. That is,

lim
n→∞

G̃(xn, xn+1, xn+2) = 0. (2.5)

Consequently,
lim

n→∞
G̃(xn, xn+1, xn+1) = 0. (2.6)
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Step 2. Now, we prove that the sequence {xn} is a G̃-Cauchy sequence. Suppose the
contrary, i.e., {xn} is not a G̃-Cauchy sequence. Then there exists ε > 0 for which we
can find two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index
for which

ni > mi > i and G̃(xmi , xni , xni) ≥ ε. (2.7)
This means that

G̃(xmi , xni−1, xni−1) < ε. (2.8)
From the rectangular inequality, we get

ε ≤ G̃(xmi , xni , xni) ≤ Ω[G̃(xmi , xmi+1, xmi+1) + G̃(xmi+1, xni , xni)].

Taking the upper limit as i→∞ and by 2.6, we get

Ω−1(ε) ≤ lim sup
i→∞

G̃(xmi+1, xni , xni). (2.9)

From the definition of M(x, y, z) and the above limits,

lim sup
i→∞

M(xmi , xni−1, xni−1) = lim sup
i→∞

max{G̃(xmi , xni−1, xni−1),

G̃(xmi , xni−1, fxni−1)G̃(xni−1, xni−1, fxni−1)2

1 + G̃(xmi , fxmi , f
2xmi)G̃(xni−1, fxni−1, f2xni−1)

,

G̃(xmi , fxmi , f
2xmi)G̃(xni−1, fxni−1, f

2xni−1)2

1 + G̃(fxmi , f
2xmi , f

3xmi)G̃(fxni−1, f2xni−1, f3xni−1)
}

≤ ε.

Now, from 2.1 and the above inequalities, we have

ε ≤ lim sup
i→∞

Ω(G̃(xmi+1, xni , xni))

≤ lim sup
i→∞

β(M(xmi , xni−1, xni−1)) lim sup
i→∞

M(xmi , xni−1, xni−1)

≤ ε lim sup
i→∞

β(M(xmi , xni−1, xni−1))

which implies that Ω−1(1) ≤ lim sup
i→∞

β(M(xmi , xni−1, xni−1)). Now, as β ∈ FΩ we

conclude that M(xmi , xni−1, xni−1) → 0 which yields that G̃(xmi , xni−1, xni−1) → 0.
Consequently,

G̃(xmi , xni , xni) ≤ Ω[G̃(xmi , xni−1, xni−1) + sG̃(xni−1, xni , xni)] → 0,

a contradiction to 2.7. Therefore, {xn} is a G̃-Cauchy sequence. G̃-Completeness of X
yields that {xn} G̃-converges to a point u ∈ X.

Step 3. u is a fixed point of f .
First, let f is continuous, so, we have

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.

Now, let (II) holds. Using the assumption on X we have xn � u. Now, by Lemma
1.14,

(Ω−1)2[G̃(u, u, fu)] ≤ lim sup
n→∞

G̃(xn+1, xn+1, fu)

≤ lim sup
n→∞

β(M(xn, xn, u)) lim sup
n→∞

M(xn, xn, u),
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where,

lim
n→∞

M(xn, xn, u) = lim
n→∞

max{G̃(xn, xn, u),
G̃(xn, xn, fxn)G̃(xn, u, fu)2

1 + G̃(xn, fxn, f2xn)2
,

G̃(xn, fxn, f
2xn)2G̃(u, fu, f2u)

1 + G̃(fxn, f2xn, f3xn)2
}

= 0.

Therefor, we deduce that G̃(u, u, fu) = 0, so, u = fu.
Finally, suppose that the set of fixed point of f is well ordered. Assume on contrary

that, u and v are two fixed points of f such that u 6= v . Then by 2.1, we have

G̃(u, v, v) = G̃(fu, fv, fv) ≤ β(M(u, v, v))M(u, v, v) = β(G̃(u, v, v))G̃(u, v, v) < Ω−1(1)G̃(u, v, v).
(2.10)

Because
M(u, v, v) = G̃(u, v, v).

So, we get, G(u, v, v) < Ω−1(1)G(u, v, v), a contradiction. Hence, u = v, and f has
a unique fixed point. Conversely, if f has a unique fixed point, then the set of fixed
points of f is well ordered. �

2.2. Fixed point results via comparison functions. Let Ψ be the family of all
nondecreasing functions ψ : [0,∞) → [0,∞) such that

lim
n→∞

ψn(t) = 0

for all t > 0.

Lemma 2.3. If ψ ∈ Ψ, then the following are satisfied.
(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

Definition 2.4. Let (X,�, G̃) is an ordered G̃-metric space. A mapping f : X → X

is called a G̃-rational ψ-contraction if, there exists ψ ∈ Ψ such that,

Ω(G̃(fx, fy, fz)) ≤ ψ(M(x, y, z)) (2.11)

for all comparable elements x, y, z ∈ X, where

M(x, y, z)

= max
{
G̃(x, y, z),

G̃(x, x, fx)G̃(x, x, fy)

1 + Ω[G̃(x, x, fx) + G̃(y, y, fy)]
,

G̃(y, y, z)G̃(y, y, fz)

1 + Ω[G̃(y, y, fy) + G̃(z, z, fz)]
,

G̃(x, x, fx)G̃(x, x, z)

1 + G̃(x, x, fy) + G̃(y, y, fx)

}
.

Theorem 2.5. Let (X,�, G̃) be an ordered G̃-complete G̃-metric space. Let f : X → X
be an increasing mapping with respect to � such that there exists an element x0 ∈ X

with x0 � f(x0). Suppose that f be a G̃-rational ψ-contractive mapping. If
(I) f is continuous, or,
(II) (X,�, G̃) has the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and
only if f has one and only one fixed point.
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Proof. Put xn = fn(x0).
Step I: We will show that lim

n→∞
G̃(xn, xn+1, xn+1) = 0. We assume that xn 6= xn+1,

for all n ∈ N. Since xn � xn+1 for each n ∈ N, then by 2.11 we have

G̃(xn, xn+1, xn+2) = G̃(fxn−1, fxn, fxn+1)
≤ ψ(M(xn−1, xn, xn+1))
≤ ψ(G̃(xn−1, xn, xn+1))
< G̃(xn−1, xn, xn+1),

(2.12)

because

M(xn−1, xn, xn+1)

= max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn−1, xn)G̃(xn−1, xn−1, fxn)

1 + Ω[G̃(xn−1, xn−1, fxn−1) + G̃(xn, xn, fxn)]
,

G̃(xn, xn, xn+1)G̃(xn, xn, fxn+1)

1 + Ω[G̃(xn, xn, fxn) + G̃(xn+1, xn+1, fxn+1)]
,
G̃(xn−1, xn−1, fxn−1)G̃(xn−1, xn−1, xn+1)

1 + G̃(xn−1, xn−1, fxn) + G̃(xn, xn, fxn−1)
}

≤ max{G̃(xn−1, xn, xn+1), G̃(xn−1, xn−1, xn), G̃(xn, xn, xn+1)}

≤ max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)},

and it is easy to see that max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)} = G̃(xn−1, xn, xn+1),
so from 2.12, we conclude that {G̃(xn, xn+1, xn+2)} is decreasing. Then there exists
r ≥ 0 such that lim

n→∞
G̃(xn, xn+1, xn+2) = r.

It is easy to see that r = limn→∞ G̃(xn−1, xn, xn) = 0.
Step 2. Now, we prove that the sequence {xn} is a G̃-Cauchy sequence. Suppose

the contrary, i.e., there exists ε > 0 for which we can find two subsequences {xmi} and
{xni} of {xn} such that ni is the smallest index for which

ni > mi > i and G̃(xmi , xni , xni) ≥ ε. (2.13)

This means that
G̃(xmi , xni−1, xni−1) < ε. (2.14)

As in the proof of Theorem 2.2, we have,

lim sup
i→∞

G̃(xmi+1, xni , xni). (2.15)

From the definition of M(x, y, z) and the above limits,

lim sup
i→∞

M(xmi , xni−1, xni−1) = lim sup
i→∞

max{G̃(xmi , xni−1, xni−1),

G̃(xmi , xmi , fxmi)G̃(xmi , xmi , fxni−1)

1 + Ω[G̃(xmi , xmi , fxmi) + G̃(xni−1, xni−1, fxni−1)]
,

G̃(xni−1, xni−1, fxni−1)G̃(xni−1, xni−1, fxni−1)

1 + Ω[G̃(xni−1, xni−1, fxni−1) + G̃(xni−1, xni−1, fxni−1)]
,

G̃(xmi , xmi , fxmi)G̃(xmi , xmi , xni−1)

1 + G̃(xmi , xmi , fxni−1) + G̃(xni−1, xni−1, fxmi)
}

≤ ε.
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Now, from 2.11 and the above inequalities, we have

ε ≤ lim sup
i→∞

Ω[G̃(xmi+1, xni , xni)] ≤ lim sup
i→∞

ψ(M(xmi , xni−1, xni−1))

< ε

which is a contradiction. Now, we conclude that {xn} is a G̃-Cauchy sequence. G̃-
Completeness of X yields that {xn} G̃-converges to a point u ∈ X.

Step 3. u is a fixed point of f . This step is proved as the proof of step 3 of Theorem
2.2 with some elementary changes. �

If in the above theorem we take ψ(t) = sinh t and G̃(x, y, z) = sinh(G(x, y, z)) then
we have the following corollary in the framework of Gb metric spaces.

Corollary 2.6. Let (X,Gb,�) be an ordered Gb-complete Gb-metric space with coeffi-
cient s > 1. Let f : X → X be an increasing mapping with respect to � such that there
exists an element x0 ∈ X with x0 � f(x0). Suppose that

sinh(s · sinh(G(fx, fy, fz))) ≤ sinh(M(x, y, z)) (2.16)

for all comparable elements x, y, z ∈ X, where

M(x, y, z)

= max
{

sinh(G(x, y, z)),
sinh(G(x, x, fx)) sinh(G(y, y, fy))

1 + sinh(s · [sinh(G(x, y, y)) + sinh(G(x, x, fy))])
,

sinh(G(y, y, fy)) sinh(G(z, z, fz))
1 + sinh(s · [sinh(G(y, z, z)) + sinh(G(y, y, fz))])

,
sinh(G(y, z, z)) sinh(G(y, y, z))

1 + sinh(G(y, fy, fy)) + sinh(G(z, fz, fz))

}
.

If
(I) f is continuous, or,
(II) (X,Gb,�) enjoys the s.l.c. property,
then f has a fixed point.

2.3. Fixed point results related to JS-contractions. Jleli et al. [2] have intro-
duced the class Θ0 consists of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(θ1) θ is non-decreasing;
(θ2) for each sequence {tn} ⊆ (0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0;

(θ3) there exist r ∈ (0, 1) and ` ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = `;

(θ4) θ is continuous.
They proved the following result:

Theorem 2.7. [2, Corollary 2.1] Let (X, d) be a complete metric space and let T :
X → X be a given mapping. Suppose that there exist θ ∈ Θ0 and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) 6= 0 =⇒ θ
(
d(Tx, Ty)

)
≤ θ

(
d(x, y)

)k
. (2.17)

Then T has a unique fixed point.

From now on, we denote by Θ the set of all functions θ : [0,∞) → [1,∞) satisfying
the following conditions:
θ1. θ is a continuous strictly increasing function;
θ2. for each sequence {tn} ⊆ (0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0;
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Remark 2.8. [12] It is clear that f(t) = et does not belong to Θ0, but it belongs to Θ.
Other examples are f(t) = cosh t, f(t) = 2 cosh t

1+cosh t , f(t) = 1+ln(1+t), f(t) = 2+2 ln(1+t)
2+ln(1+t) ,

f(t) = ete
t

and f(t) = 2etet

1+etet , for all t > 0.

Definition 2.9. Let (X, G̃,�) be an ordered G̃-metric space. A mapping f : X → X

is called a G̃-rational JS-contraction if

θ(Ω[G̃(fx, fy, fz)]) ≤ θ(M(x, y, z))k (2.18)

for all comparable elements x, y, z ∈ X, where θ ∈ Θ, k ∈ [0, 1) and

M(x, y, z)

= max
{
G̃(x, y, z),

G̃(x, x, fx)G̃(y, y, fy)

1 + Ω[G̃(x, y, y) + G̃(x, x, fy)]
,

G̃(y, y, fy)G̃(z, z, fz)

1 + Ω[G̃(y, z, z) + G̃(y, y, fz)]
,

G̃(y, z, z)G̃(y, y, z)

1 + G̃(y, fy, fy) + G̃(z, fz, fz)

}
.

Theorem 2.10. Let (X, G̃,�) be an ordered G̃-complete G̃-metric space. Let f : X →
X be an increasing mapping with respect to � such that there exists an element x0 ∈ X
with x0 � f(x0). Suppose that f be a G̃-rational JS-contractive mapping. If
(I) f is continuous, or,
(II) (X, G̃,�) enjoys the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and
only if f has one and only one fixed point.

Proof. Put xn = fn(x0).
Step 1. We will show that lim

n→∞
G̃(xn, xn+1, xn+1) = 0. Without any loss of generality,

we may assume that xn 6= xn+1, for all n ∈ N. Since xn � xn+1 for each n ∈ N, then
by 2.28 we have

θ(G̃(xn, xn+1, xn+2)) ≤ θ(Ω[G̃(xn, xn+1, xn+2)])
= θ(Ω[G̃(fxn−1, fxn, fxn+1)])
≤ θ(M(xn−1, xn, xn+1))k

≤ θ(G̃(xn−1, xn, xn+1))k,

(2.19)
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because

M(xn−1, xn, xn+1)

= max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn−1, fxn−1)G̃(xn, xn, fxn)

1 + Ω[G̃(xn−1, xn, xn) + G̃(xn−1, xn−1, fxn)]
,

G̃(xn, xn, fxn)G̃(xn+1, xn+1, fxn+1)

1 + Ω[G̃(xn, xn+1, xn+1) + G̃(xn, xn, fxn+1)]
,

G̃(xn, xn+1, xn+1)G̃(xn, xn, xn+1)

1 + G̃(xn, fxn, fxn) + G̃(xn+1, fxn+1, fxn+1)
}

= max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn−1, xn)G̃(xn, xn, xn+1)

1 + Ω[G̃(xn−1, xn, xn) + G̃(xn−1, xn−1, xn+1)]
,

G̃(xn, xn, xn+1)G̃(xn+1, xn+1, xn+2)

1 + Ω[G̃(xn, xn+1, xn+1) + G̃(xn, xn, xn+2)]
,

G̃(xn, xn+1, xn+1)G̃(xn, xn, xn+1)

1 + G̃(xn, xn+1, xn+1) + G̃(xn+1, xn+2, xn+2)
}

≤ max{G̃(xn−1, xn, xn+1),
G̃(xn−1, xn−1, xn)Ω[G̃(xn, xn, xn−1) + G̃(xn−1, xn−1, xn+1)]

1 + Ω[G̃(xn−1, xn, xn) + G̃(xn−1, xn−1, xn+1)]
,

G̃(xn, xn, xn+1)Ω[G̃(xn+1, xn+1, xn) + G̃(xn, xn, xn+2)]

1 + Ω[G̃(xn, xn+1, xn+1) + G̃(xn, xn, xn+2)]
,

G̃(xn, xn+1, xn+1)G̃(xn, xn, xn+1)

1 + G̃(xn, xn+1, xn+1) + G̃(xn+1, xn+2, xn+2)
}

≤ max{G̃(xn−1, xn, xn+1), G̃(xn−1, xn−1, xn), G̃(xn, xn, xn+1)}

≤ max{G̃(xn−1, xn, xn+1), G̃(xn, xn+1, xn+2)}.

From (2.19) we deduce that,

Θ
(
G̃(xn, xn+1, xn+2)

)
≤ Θ

(
G̃(xn−1, xn, xn+1)

)k
.

Therefore,

1 ≤ Θ
(
G̃(xn, xn+1, xn+2)

)
≤ Θ

(
G̃(xn−1, xn, xn+1)

)k ≤ . . . ≤ Θ(G̃(x0, x1, x2))kn
.(2.20)

Taking the limit as n→∞ in (2.20) we have,

lim
n→∞

Θ
(
G̃(xn, xn+1, xn+2)

)
= 1

and since Θ ∈ ∆Θ we obtain,

lim
n→∞

G̃(xn, xn+1, xn+2) = 0. (2.21)

Therefore, we have,
lim

n→∞
G̃(xn, xn, xn−1) = 0. (2.22)

Step 2. Now, we prove that the sequence {xn} is a G̃-Cauchy sequence. Suppose the
contrary, i.e., that {xn} is not a G̃-Cauchy sequence. Then there exists ε > 0 for which
we can find two subsequences {xmi} and {xni} of {xn} such that ni is the smallest
index for which

ni > mi > i and G̃(xmi , xni , xni) ≥ ε. (2.23)
This means that

G̃(xmi , xni−1, xni−1) < ε. (2.24)
Hence,

G̃(xmi , xmi , xni−1) < Ω(2ε). (2.25)
From the rectangular inequality, we get

ε ≤ G̃(xmi , xni , xni) ≤ Ω[G̃(xmi , xmi+1, xmi+1) + G̃(xmi+1, xni , xni)].
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By taking the upper limit as i→∞, we get

Ω−1(ε) ≤ lim sup
i→∞

G̃(xmi+1, xni , xni). (2.26)

From the definition of M(x, y, z) and the above limits,

lim sup
i→∞

M(xmi , xni−1, xni−1) = lim sup
i→∞

max{G̃(xmi , xni−1, xni−1),

G̃(xmi , xmi , fxmi)G̃(xni−1, xni−1, fxni−1)

1 + Ω[G̃(xmi , xni−1, xni−1) + G̃(xni−1, xni−1, fxmi)]
,

G̃(xni−1, xni−1, fxni−1)G̃(xni−1, xni−1, fxni−1)

1 + Ω[G̃(xni−1, xni−1, xni−1) + G̃(xni−1, xni−1, fxni−1)]
,

G̃(xni−1, xni−1, xni−1)G̃(xni−1, xni−1, xni−1)

1 + G̃(xni−1, fxni−1, fxni−1) + G̃(xni−1, fxni−1, fxni−1)
}

≤ ε.

Now, from 2.28 and the above inequalities, we have

θ(Ω[Ω−1(ε)]) ≤ lim sup
i→∞

θ(Ω[G̃(xmi+1, xni , xni)])

≤ lim sup
i→∞

θ(M(xmi , xni−1, xni))
k

≤ θ(ε)k

which implies that ε = 0, a contradiction. So, we conclude that {xn} is a G̃-Cauchy
sequence. G̃-Completeness of X yields that {xn} G̃-converges to a point u ∈ X.

Step 3. u is a fixed point of f .
When f is continuous, the proof is straightforward.
Now, let (II) holds. Using the assumption on X we have xn � u. Now, we show that

u = fu. By Lemma 1.14,

θ((Ω−1)2[G̃(u, u, fu)]) ≤ lim sup
n→∞

θ(G̃(xn+1, xn+1, fu))

≤ lim sup
n→∞

θ(M(xn, xn, u))k,

where,

lim
n→∞

M(xn, xn, u)

= lim
n→∞

max
{
G̃(xn, xn, u),

G̃(xn, xn, fxn)G̃(xn, xn, fxn)

1 + Ω[G̃(xn, xn, xn) + G̃(xn, xn, fxn)]
,

G̃(xn, xn, fxn)G̃(u, u, fu)

1 + Ω[G̃(xn, u, u) + G̃(xn, xn, fu)]
,

G̃(xn, u, u)G̃(xn, xn, u)

1 + G̃(xn, fxn, fxn) + G̃(u, fu, fu)

}
= 0.

Therefor, we deduce that G̃(u, u, fu) = 0, so, u = fu.
Finally, suppose that the set of fixed point of f is well ordered. Assume on contrary

that, u and v are two fixed points of f such that u 6= v . Then by 2.28, we have

θ[G̃(u, v, v)] = θ[G̃(fu, fv, fv)] ≤ θ(M(u, v, v))k = θ(G̃(u, v, v))k. (2.27)

So, we get, G(u, v, v) = 0, a contradiction. Hence u = v, and f has a unique fixed
point. �
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If in the above theorem we take θ(t) = 2etet

1+etet and G̃(x, y, z) = eG(x,y,z) − 1 then we
have the following corollary in the framework of Gb metric spaces.

Corollary 2.11. Let (X,Gb,�) be an ordered Gb-complete Gb-metric space with coef-
ficient s > 1. Let f : X → X be an increasing mapping with respect to � such that
there exists an element x0 ∈ X with x0 � f(x0). Suppose that

2e[e
s·[eG(fx,fy,fz)−1]−1]ees·[eG(fx,fy,fz)−1]−1

1 + e[e
s·[eG(fx,fy,fz)−1]−1]ees·[eG(fx,fy,fz)−1]−1

≤

√
2eM(x,y,z)eM(x,y,z)

1 + eM(x,y,z)eM(x,y,z)
(2.28)

for all comparable elements x, y, z ∈ X, where

M(x, y, z)

= max
{
eG(x,y,z) − 1,

[eG(x,x,fx) − 1][eG(y,y,fy) − 1]
1 + es·[e

G(x,y,y)−1+eG(x,x,fy)−1] − 1
,

[eG(y,y,fy) − 1][eG(z,z,fz) − 1]
1 + es·[e

G(y,z,z)−1+eG(y,y,fz)−1] − 1
,

[eG(y,z,z) − 1][eG(y,y,z) − 1]
1 + eG(y,fy,fy) − 1 + eG(z,fz,fz) − 1

}
.

If
(I) f is continuous, or,
(II) (X,Gb,�) enjoys the s.l.c. property,
then f has a fixed point.

3. Examples

Example 3.1. Let X = [0, 8] be equipped with the G̃-metric

G̃(x, y, z) = sinh(
|x− y|+ |y − z|+ |z − x|

3
)

for all x, y, z ∈ X, where Ω(x) = sinhx which Ω−1(x) = sinh−1(x).
Define a relation � on X by x � y iff y ≤ x, the function f : [0, 8] → [0, 2] by

fx =
√

2 +
x

4

and the function β given by β(t) = 1
2 < 0.88137358702 = Ω−1(1).

For all comparable elements x, y ∈ X, we have,

Ω(G̃(fx, fy, fz)) = sinh(sinh(
|
√

2 + x
4 −

√
2 + y

4 |+ |
√

2 + y
4 −

√
2 + z

4 |+ |
√

2 + z
4 −

√
2 + x

4 |

3
))

≤ sinh(sinh(
|x4 −

y
4 |+ |y4 −

z
4 |+ | z4 −

x
4 |

3
))

≤ sinh(
G̃(x, y, z)

4
)

≤ G̃(x, y, z)
2

= β(G̃(x, y, z))G̃(x, y, z) ≤ β(M(x, y, z))M(x, y, z),

So, from Theorem 2.2 f has a fixed point.

Example 3.2. Let X = [0,∞] be equipped with the

G̃(x, y, z) =
|x− y|+ |y − z|+ |z − x|

3
+ ln(

|x− y|+ |y − z|+ |z − x|
3

)

for all x, y, z ∈ X, where Ω(x) = x+ lnx.
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Define a relation � on X by x � y iff y ≤ x, the function f : X → X by

fx = ln(
x

5
+ 2)

and the function ψ given by ψ(t) = 1
2 t. It is obvious that ψ(t) < t for all t ∈ X.

For all comparable elements x, y ∈ X, by mean value theorem, we have,

Ω[G̃(fx, fy, fz)]

= G̃(fx, fy, fz) + ln[1 + G̃(fx, fy, fz)] + ln[1 + G̃(fx, fy, fz) + ln[1 + G̃(fx, fy, fz)]]

=

∣∣ln 2 + x
5 − ln 2 + y

5

∣∣ +
∣∣ln 2 + y

5 − ln 2 + z
5

∣∣ +
∣∣ln 2 + z

5 − ln 2 + x
5

∣∣
3

+ ln[1 +

∣∣ln 2 + x
5 − ln 2 + y

5

∣∣ +
∣∣ln 2 + y

5 − ln 2 + z
5

∣∣ +
∣∣ln 2 + z

5 − ln 2 + x
5

∣∣
3

]

+ ln
[
1 +

∣∣ln 2 + x
5 − ln 2 + y

5

∣∣ +
∣∣ln 2 + y

5 − ln 2 + z
5

∣∣ +
∣∣ln 2 + z

5 − ln 2 + x
5

∣∣
3

+ ln[1 +

∣∣ln 2 + x
5 − ln 2 + y

5

∣∣ +
∣∣ln 2 + y

5 − ln 2 + z
5

∣∣ +
∣∣ln 2 + z

5 − ln 2 + x
5

∣∣
3

]
]

≤
∣∣x
5 −

y
5

∣∣ +
∣∣y
5 −

z
5

∣∣ +
∣∣ z
5 −

x
5

∣∣
3

+ ln[1 +

∣∣x
5 −

y
5

∣∣ +
∣∣y
5 −

z
5

∣∣ +
∣∣ z
5 −

x
5

∣∣
3

]

+ ln
[
1 +

∣∣x
5 −

y
5

∣∣ +
∣∣y
5 −

z
5

∣∣ +
∣∣ z
5 −

x
5

∣∣
3

+ ln[1 +

∣∣x
5 −

y
5

∣∣ +
∣∣y
5 −

z
5

∣∣ +
∣∣ z
5 −

x
5

∣∣
3

]
]

≤ 1
5
G̃(x, y, z) + ln[1 +

1
5
G̃(x, y, z)]

+ ln
[
1 +

1
5
G̃(x, y, z) + ln[1 +

1
5
G̃(x, y, z)]

]
≤ 9

10
G̃(x, y, z) = ψ(G̃(x, y, z)) ≤ ψ(M(x, y, z)),

So, from Theorem 2.5 f has a fixed point.

Example 3.3. Let G̃ : X ×X ×X → R+ be defined on X = [0, 1.5] by

G̃(x, y, z) = e
|x−y|+|y−z|+|z−x|

3 − 1

for all x, y, z ∈ X. Then (X, G̃) is a G̃-complete G̃-metric space with Ω(t) = et − 1.
Define k and θ ∈ Θ by k = 1√

2
and θ(t) = ete

t
. Let X is endowed with the usual

order. Let f : X → X be defined by fx = arctan( x
16). It is easy to see that f is an

ordered increasing and continuous self map on X and 0 ≤ f0. For any x, y, z ∈ X, we
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have

G̃(fx, fy, fz) = e
|fx−fy|+|fy−fz|+|fz−fx|

3 − 1

= e
|arctan x

16−arctan
y
16 |+|arctan

y
16−arctan z

16 |+|arctan z
16−arctan x

16 |
3 − 1

≤ e
| x
16−

y
16 |+|

y
16−

z
16 |+| z

16−
x
16 |

3 − 1

≤ 1
16

(
e
|x−y|+|y−z|+|z−x|

3 − 1
)

=
1
16
G̃(fx, fy, fz).

So,

Ω[G̃(fx, fy, fz)] = eG̃(fx,fy,fz) − 1

≤ e
1
16

G̃(fx,fy,fz) − 1

≤ 1
16
G̃(fx, fy, fz).

Therefore,

θ(Ω[G̃(fx, fy, fz)]) = eΩ[G̃(fx,fy,fz)]eΩ[G̃(fx,fy,fz)]

≤ e
1
16

G̃(fx,fy,fz)e
1
16 G̃(fx,fy,fz)

≤
[
eG̃(fx,fy,fz)eG̃(fx,fy,fz)] 1√

2 = [θ(G̃(fx, fy, fz))]
1√
2 .

Thus, (2.28) is satisfied with k = 1√
2
. Hence, all the conditions of Theorem 2.11 are

satisfied. We have that 0 is the unique fixed point of f .

4. Existence of a solution for an integral equation

We consider the following integral equation:

x(t) =
∫ b
a K(t, s, x(s))ds+ k(t), (4.1)

where b > a ≥ 0. The aim of this section is to present the existence of a solution to 4.1
that belongs to X = C[a, b] (the set of all continuous real valued functions defined on
[a, b]) as an application to the Theorem 2.11.

The considered problem can be changed as follows.
Let f : X → X be defined by:

fx(t) =
∫ b

a
(t, s, x(s))ds+ k(t),

for all x ∈ X and for all t ∈ [a, b]. Obviously, existence of a solution to 4.1 is equivalent
to the existence of a fixed point of f .

Let,
d(u, v) = max

t∈[a,b]
|u(t)− v(t)| = ||u− v||∞.

Let X be equipped with the modified G-metric given by

G̃(u, v, w) = ξ(max{d(u, v), d(v, w), d(w, u)}),
for all u, v, w ∈ X where ξ : [0,∞) → [0,∞) is a strictly increasing continuous function
with t ≤ ξ(t) for t ≥ 0 and ξ(0) = 0 which is a G̃-complete G̃-metric space. We endow
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X with the partial ordered � given by x � y ⇐⇒ x(t) ≤ y(t), for all t ∈ [a, b]. It is
known that (X,�) has sequential limit comparison property. [23]

Now, we will prove the following result.

Theorem 4.1. Suppose that the following hypotheses hold:
(i) K : [a, b]× [a, b]×R→ R and k : [a, b] → R are continuous;
(ii) for all s, t ∈ [a, b] and for all x, y ∈ X with x � y we have,

ξ2
( ∫ b

a

∣∣∣K(t, r, x(r))−K(t, r, y(r))
∣∣∣ dr) ≤ ξ

(
‖fx− fy‖∞

)
θ
(
ξ(‖x− y‖∞)

) 1
2

θ
(
ξ(‖fx− fy‖∞)

) ,

for all t ∈ [a, b] and θ ∈ Ψ.
(iii) There exists continuous function α : [a, b] → R such that

α(t) ≤
∫ b

a
(t, s, α(s))ds+ k(t).

Then, the integral equations 4.1 has a solution x ∈ X.

Proof. Let x, y ∈ X be such that x � y. From condition (ii), for all t ∈ [a, b] we have,

ξ2
(
|fx(t)− fy(t)|

)
≤ ξ2

( ∫ b

a
|K(t, s, x(s))−K(t, s, y(s)|ds

)
≤
ξ2

(
‖fx− fy‖∞

)
θ
(
ξ(‖x− y‖∞)

) 1
2

θ
(
ξ2(‖fx− fy‖∞)

) .

Hence,

ξ2
(
d(fx, fy)

)
= ξ2

(
supt∈[a,b] |fx(t)− fy(t)|

)
≤ ξ2

(
‖fx−fy‖∞

)
θ
(
ξ(‖x−y‖∞)

) 1
2

θ
(
ξ2(‖fx−fy‖∞)

) .
(4.2)

Hence,

θ
(
ξ2(‖fx− fy‖∞)

)
≤ θ

(
ξ(‖x− y‖∞)

) 1
2 . (4.3)

Therefore, from 4.3 we have,

θ
(
ξ
(
G̃(fx, fy, fz)

))
= θ

(
ξ
(
ξ(max{d(fx, fy), d(fy, hz), d(fz, fx)})

))
≤ max

{
θ
(
ξ2(d(fx, fy))

)
, θ

(
ξ2(d(fy, fz))

)
, θ

(
ξ2(d(fz, fx))

)}
≤ max

{
θ
(
ξ(‖x− y‖∞)

) 1
2 , θ

(
ξ(‖y − z‖∞)

) 1
2 , θ

(
ξ(‖z − x‖∞)

) 1
2

}
≤ θ

(
M(x, y, z)

) 1
2 ,

where

M(x, y, z) = max
{
G̃(x, y, z),

G̃(x, x, fx)G̃(y, y, fy)

1 + ξ[G̃(x, y, y) + G̃(x, x, fy)]
,

G̃(y, y, fy)G̃(z, z, fz)

1 + ξ[G̃(y, z, z) + G̃(y, y, fz)]
,

G̃(y, z, z)G̃(y, y, z)

1 + G̃(y, fy, fy) + G̃(z, fz, fz)

}
,

So, from Theorem 2.11, there exists x ∈ X, a fixed point of f which is a solution of
4.1. �
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5. Conclusion

Taking Ω(x) = sx, our obtained results coincide with the results in usual Gb-metric
spaces and taking Ω(x) = x, our obtained results coincide with the results in usual
G-metric spaces.
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