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Abstract. In this work, some Hardy-Hilbert’s integral inequalities
with the best possible constants are proved. Also, some finite and in-
finite decompositions of some type Hardy-Hilbert’s integral operators
are given. Indeed, for a non-negative kernel K, two Kernels K; and K»2
are given such that Tk = Tk, + Tk, and ||Tk|| = || Tk, || + ||Tx,|| and
also, Ty, # T}, for every constant c. So, the space of bounded linear
operators is not strictly convex. Also, as an application of infinite de-
composition of some Hardy-Hilbert’s integral operators, the convergence
of some series of hypergeometric functions are given.
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1. Introduction

David Hilbert in the early 1900s, in his lectures on integral equations,
proved a double series inequality. If {a,, } and {b,,} are two real sequences
such that 0 < >°>° ;a2 < oo and 0 < Y o°_ b2, < oo, then
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2 A. MOAZZEN

In 1911, Schour gave a new proof of the inequality which 7 is the best
possible sharp constant. Schour also discovered the integral analogue of
the Hilbert’s inequality as

/0°° /ooo dedy < ”{ /OOO 2 (a)dx /OOO gQ(y)dy}%, (1)

where f and g are measurable functions such that 0 < fooo f2(z)dr < 0o
and 0 < fo x)dr < o0.

There are some kinds of Hilbert-type inequalities. For instance, Dongmel
Xin in [4] gave the following statement:

suppose that p > 1, %+%=1,r> 1, %+%=1&ndalso)\>0, frg=0
such that

0< / :Ep(lfé)flfp(m) dx < 00,
0

> 1-2)—1
0 </ Y= g (y) dy < oo.
0

Then

[ e < ] ([ )

1

X (/Ooqu“‘z)‘lgq(y) dy) .

where the constant factor is the best possible.

(2)

In [2], the above-mentioned statement is generalized as follows:

1,1 1,1
suppose that p > 1, s+t = I, -+ <=1, m € Nand also u, v are
two strict increasing differentiable functions, u(0) = v(0) = 0, u(c0) =
v(oco) =00, A>0and f,g >0

0< /OOOW(x))p“—?>—1<u’<x>>1—”fp<x> dz < oo,

and
A

0= /ooo(’v(y))q(lS)l(v’(y))lng(y) dy < co.
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where
(2 -
K:C(T,S,)\,m): ;22)(7"27”2(71]{;4_ sz Sk-‘r Qm)
k=

Also the constant factor is the best possible.

In the same work the following statement is proved.

1,1 _ 1,1 _
Suppose that p > 1, sty =1L ;+5=1me NJ{0} and u,v are
two strict increasing differentiable functions, u(0) = v(0) = 0, u(c0) =
v(o0) =00, A >0and f, g >0,

O<AﬁM@W1”1W@Wpﬂ@Mx<w

and
A

0< [T W) g ) dy < o
0
Then

< o (1 (56)) " S0
/0 /0 uWMz) + 0 (y) dxdy
- K</Ooup(l_i)_l(ul)l_pfp(:c) dx);
0
(e g an)

Q=

(4)
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where

K = CE(T737)‘7m> = %

2m+1 -1 2m+1 Dk
(T BRIy Tkg-l)%erl MmN U(Skg-l)%erl)'
Also, the constant factor is the best possible.
A large number of generalizations, extensions and refinements of the
above inequality are available in literature such as Hardy et al. [1],
Mitrinovié et al [3] and Yang [6].

Recently, Yang [5] by the identity

1 max{m,n} min{m,n}

= N
m+n  (m+mn)? (m+n)?’ (m,n € N),

gave a decomposition of Hilbert’s inequality as follows:

53 T faomin < G0t )"

[V

n=1m=1
szm{m n} b <(g_1)(iai§:bi)é
n=1m=1 n=1 n=1

The sum of two best constant factors is 7 (the constant factor of the
Hilbert’s inequality).

The author and Lashkaripour in [2], gave decompositions of some Hilbert’s
type inequalities.

In this work, decompositions of some Hilbert’s type inequalities are given
which some of them are infinite forms. In the sence that, for a homoge-
neous kernel K (z,y) of degree —\, by finding a sequence { K, (z,y)} of
homogeneous kernels with the same degree and proving inequalities of

the form
1

[ K@iy < of [~ pwd{ [T ewaw)
d

1

[7 [ sawws@atnas < o [~ p@ark{ [T o)
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such that the constants are best possible and C' = > >° | Cy, the first
inequality decompose infinitely.

In this section, by the following identities, three pairs of new Hilbert-

type inequalities which respectively decompose inequalities (3), (4) and
(5) are given.

1 _ .’IJ)\ y/\
o — A 22—y + 22— 2\
1 B x)\ y)\
2y a2 2 g2h g2n
1 B Amin{z,y}

) A+l
(A min{z,y} + B max{z, y}) (A min{z,y} + B max{z, y})
Bmax{z,y}
(Amin{z,y} + Bmax{z,y}) 1
1,1 1 1,1 _
Theorem 1.1. Suppose thatp > 1, ;+, =1, ;+c=1,m¢€ NU{0} and
u, v are two strict increasing differentiable functions, u(0) = v(0) = 0,
u(00) = v(o0) =00, u > v, A >0 and also f, g >0,

0< / Oo(u@))p(l—%)-l(u'(x))l—p fP(z) dz < oo,

0

and
0< / (0() 2= () 9% (y) dy < oo
0

Then

2m
zé;;)) uX (@) f(@)g(y)
B D= () drdy

< K (fo ()= ! (@) () der)

A

< (S D W ) g () dy)
whe; = K(r,s,\,m) = Lmtl)

>\2m+1

_2m+1 00 1 2m+1 00 1
( r > k=0 (@ DrenrT 8 > k=0 (2sk 1 1)2m+T )

joegee o

Q=
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Also, the constant factor is the best possible.
Proof. Let f(x) - F(x)(u'(x))% and g(y) = G(y)(v'(y))?. Then
() f(x)9(y)

// u% —v2<)> ey

/ / (o Z(y)) u%) v%(y) ey

w1 (
P u N
Y e
v P

n ut 1 a-)
x (<1 G )> )q X U(:A) G(y)(u’)%dxdy

uZr — p2x

u a

u (-1)(1-2) 1

/ / u2,\ —v2>‘ Ty —FP(z)'(y) dxdy)

2m

1
q

Ut (a-1)(1-2)

ln
q li
/ / _v2,\ EEES! G(y)u'(x) dxdy)

= MPNq_
Note that
2m
o, oo (I(®) Le-na-d
:/ (/ . e v(y)dy)Fp(x)d:c
- 7)
By substituting ex = Zgyg one obtains
1 e’} Z2me§ e’} L , B
M = )\Qmﬂ(/ 1762Zdz)/0 (u(z))PA= )7L/ (@) P fP () da

1 00 ZQme_Tz OOZZmefz(lJr%)
~ \2m+l (/o 1 _ 2= dz _/0 1 — 2= dz)
” PA=2)=1(/ (V=P £P(2) d
(] @) @) o)
= KlrsAm) [ (o)t ) )
0
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where K(r,s,\,m) = %
1 1
( _ p2mtl Zzo:()W 4 g2m+1 ZZO:OW)'
By the same way, one obtains
Krsdm) [ @)D 0) ) dy

This proves the inequality.

If the inequality mentioned in Theorem 1.1 takes the form of equality,
then there exist constants c¢; and cz such that ¢;? + c2? # 0 and

e1fP (@) (' ()P (@)1 = eag” () (0 () (0(w))' )

=c¢ a.e. in(0,00) x (0,00),
where c is constant. Without loss of generality, suppose ¢; # 0. One has
FP() = (' (@) (u(@)" D ae. in (0,00).
C1
Now, we have
= PA=2)=1(/ (£)) 1P P _ ¢ [Tdu
(w(@))" (i (@) PP () de = — | —
0 € Jo
which is in contradiction with
| @yt @) @) de < oo,
0

If the constant factor is not the best possible, then there is a positive
number C with C < K(r, s, A\,m) such that

/ / (1 ( 583 "uA f(@)g(y) dody

u(z) — v*A(y)

<o [Tat@pt D @ ) i)’

x (/Om(v(y))q(l2)1(v’(y))1ng(y) dy)%.
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Assume that 0 < e < (£2)\g and

_J o 0< 2 <u (1),
) {<u<m>> ) r> ),
and
()_{0 0<y <v (1),
I ) i) > 07 (1)

One can show that

/ ()P W @) P P () d = / ) D (W () g ) dy
0 0
1

On the other hand, we have

ln “(Z) " L (2)9:(y)
/ / “(” dzd
uz,\ — 0 (y) Yy
2m ,_1_,
oo 1
= /7 L¢71761¢'(/1 ( n(tl))_ Vo2 dt) dx
u=1(1) -
R e €T O)
:/1 wt <é o> dt

L[l

1— 2

N N 0 i
:/O (/% w™! dw) 1 dt

co 2m %—l—g
+ / (ln(t)) i dt)w_l_edw
1

1— 2
1 In(t t3-1
:Z(/O %fﬁ+0(l)
+ 1w%dt+02(1)) (€—>0)
¢ = LN LRI RO
_K(s,Am)

c +0(1). (e —0)
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We deduce that C' > K(r,s,A\,m) as € tends to zero. [

By the same way, one may obtain the following theorem.

Theorem 1.2. Suppose that p > 1, ]l)+ % =1, %+% =1, meN and
u, v are two strict increasing differentiable functions, u(0) = v(0) = 0,
u(00) = v(o0) =00, A >0 and also f, g > 0,

A

0< /ooo<u<x>>p“r“(u’(x))lpfp(x) dz < oo,

and

0= /ooo(v(y))q(l_3)_1(v’(y))1‘ng(y) dy < oo.

Then

/ / (10 (42)) ™" @) F (@) w)

dzd
uP\{ >—v%<y> o

=

<K(s,r,)\,m)(/0 up(l—%)—l(u/)1_pfp(x) df)
< ([T ) ) a)

Also the constant factor is the best possible.

Remark 1.3. By the identity,
K(r,s,\,m) + K(s,r,\,m) = Cg(r,s, \,m),

the sum of the two best constant factors in Theorems 1.1 and 1.2 is the
best constant factor in inequality (4). So, two theorems mentioned above
are a decomposition of inequality (4).

By similar computations, one may obtain the following two theorems:

Theorem 1.4. Suppose that p > 1, % + % =1, % + % =1, méeN and
u, v are two strict increasing differentiable functions, u(0) = v(0) = 0,
u(00) = w(00) =00, A>0 and f, g >0,

0<AﬁM@V“ (W (2)) 7P fP(2) da < oo,
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and
0< / (0(y))T =D () g% () dy < oo
0]

Then

(m ( :jé;;’)’ *(w)f(x)g(y)d .
/ / u(z) — 02N (y) i

<K(V/Ooo(u(x))p(1—j)—1(u/(x))1_pfp(x) dx)%

< ([T D ) 1) a)".

where

I'(2m) > 1 - 1
K =K(r,s,\,m) = 2m Y )
(rys, A m) = —om (T %((% Tr e ;0(2516 + 1)2m)

Also the constant factor is the best possible.

Theorem 1.5. Suppose that p > 1, I%—!—% =1, % + % =1, m € N and
u, v are two strict increasing differentiable functions, u(0) = v(0) = 0,
u(00) = v(o0) =00, A >0 and also f, g > 0,

0= /Ooow(sc))“l*%)*(u’(w))lfpff'(x) dz < oo,

and
0 < / ()10~ (1)) ~9g%(y) dy < oo.
0

Then

(m ( :2;3 @) f)g(y)
/ / u (z) — v\ (y) i

<K () ([ Twrt D @) ) de)”
< (T H W ) g ay)

Also, the constant factor is the best possible.
Remark 1.6. By the identity

K(r,s,\,m)+ K(s,r,\,m) = C(r,s,\,m),
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sum of the best constant factors in Theorem 1.4 and 1.5 is the best
constant factor in inequality (3). So the above-mentioned two theorems
are a decomposition of inequality (3). Also, note that by taking m = 1
i Theorems 1.4 and 1.5, we have

o

_ T2 1
K(rs A0 = (7 kz((zkzﬂ)rﬂ QZ 2sk:+1 2)

1 o0
SR ST
k=0(k+’";q}>

k=0(k+’2t1>
1 ,,r+1 ,,r—=1
— e (v h v D)

2
B v
N [2)\8111(2’;)} '
where P(z) = 1;((;)), satisfies in the identity

¥(@) + (1 - 2) = (mese(ma))’.

Also, we have

o0 o0

T2 1
K(S”“’A’”*7<32Z((2k+1)s+1 Z2k+1 >

) =
B T
N [2/\sin(27;)] '
These correspond to the constant factors of inequalities mentioned in
Theorems 2.5 and 2.6 in [2], respectively.

In the sequel, we prove a pair of Hilbert-type inequality which decompose
the following inequality:

if p> 1, %—F% =1, A > 2 —min{p,q}, 0 < % <1, A and B are
nonnegative and wu, v are two strict increasing differentiable functions,
u(0) = v(0) =0, u(oo) = v(oc0) = 00, and f, g > 0 and also

0< /0 ") A ()7 2 () d < o,
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0 < /0 ) A @) g () dy < oo.

Then

* f(x)g(y)
/0 /0 (Amin{u, v} + Bmax{u,v})* dedy

< K(/Oooul)‘(u')lpfp(a:) dx)

3 =

1

([ e, o

where

(0,0, ) = AL 6,0 F( pl0: Ly (s 0 +8(1,84(N)F(, 4 0): Loy ).

such that ¢,.(\) = 1- % and F'(«, 3;7; z) denotes the hypergeometric
function defined by

P 37) = g [ 0
L)y —5) Jo
providing v > 8 > 0 and |z| < 1. The constant factor is the best
possible(cf. [2] Theorem 2.9).
Theorem 1.7. Suppose that p > 1, %4—% =1, A > 2 — min{p, ¢},

0< % <1, A and B are nonnegative and u, v are two strict increasing
differentiable functions, u(0) = v(0) = 0, u(oco) = v(oc0) = o0, and f,
g = 0 and also

0< / () AW () £ () di < oo,

0< / o) () g () dy < oo,
0
Then

i min{u, v} f(2)g(y) _
/0 /0 (Amin{u, v} + Bmax{u,v}) 1 dady <B~ D (p, ¢, \)

([T e )

0

([ e @)



ON FINITE AND INFINITE DECOMPOSITION ... 13

where

Wa(p.0.3) = BT+ 6 F (A 11+ 64(0):2 4 64(0): )

FOL L+ 0O F (A + 1,1+ 602+ (0 ).

The constant factor is the best possible.
Proof. Let f(z) = F(x)(u'(x))% and g(y) = G(y)(v'(y))7. Then
[ [ i) + M)y,

(Amin{u, v} + Bmax{u,v}) M1

:/0 /0 .mmf"{uvv}F(w)(v’); M(g)

(Amin{u,v} + Bmax{u,v}) »

min {u, v} G(y) ()7 (2)" dody
(Amin{u,v} + B max{u, U})%

o oo min{u, v} FP(z)v'( £ "
e 2

dzd
min{u, v} + B max{u,v}) ! “ y)

% oo min{u, v}G?(y)u'( & " 1
8 (/0 /0 (Amin{u,v}—|—Bmax£u,)v})/\4rl d:cdy)

11
=MprNa.

X

B =

Note that

o / / min{1, 2} P ()0 ()" i

u)(Amin{1, 2} + Bmax{1, 2})**1
_ » > min{1,¢}t=°P
/ o (@ )(/0 (Amin{1,t} + Bmax{1,t}) ! dt) dx

1 tl—sp 00 $+—sp
1-A
FP(z - dt L — T
/ / (At + BT +/1 (A + Bt)M1 )

=B~ (>‘+1)<ﬂ(1 2 —sp))F <>\+1,2—sp;3—sp;—%>

A oo
+ 081, A+ sp))F()\ + 1L A+sp;A+sp+1; _B>> (/ ul TP () dx),
0
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and,

N =B~(+1) <5(1, 2— sq))F(A +1,2 — sq;3 — sq; —%)

A o0
+B(L A+ «SfJ))F(A + LA+ s A +sg+ 1 —B)> (/ v AG(y) dy)~
0

Now one may find that the factor in the right-hand side attains its
minimum at s = %. This completes the proof.
If inequality in Theorem 1.7 takes the form of equality, then there exist
constants ¢; and ¢y such that ¢;2 4 ¢2? # 0 and

erf? (@) (u' (2)) P (u(2)) = 297 (y) (v () (0(y))*
=cae. in (0,00) x (0,00),

where c is constant. Without loss of generality, suppose that ¢; # 0. One

has
fP(z) = £(u'(z))P(u(x) 2 a.e. in (0,00).

C1

Now, we have
[ w2y e e = £ [T

0 C1Jo U

which is in contradiction with
0< / (u(x)) (' ()P fP(x) d < oco.
0

If the constant factor is not the best possible, then there is a positive
number K with
K < B_(A+1)\I/1(p> q, )‘)a

such that

/Ooo /Ooo ( min{u, v}f(z)g(y) dxdy
e A

Amin{u,v} + Bmax{u,v}) !

3=

<K( [ @) @) 7 ) do)

0

< ([T ) ) )
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Assume that

B 0<z<u (1)
fe(z) = { (u(z - u'(x x 2z U_l(l)v
and
<>—{0 " Py
=N (o) v (y) y = v (1),

where 0 < € < A+ ¢ — 2. One can show that

| @) e e = [ @) W) ) dy
0 0

a |

On the other hand, we have

00 OO min{“a”}fe(ﬂi)ge(y)
/0 /o (Amin{u, v} + Bmax{u,v})M? dzxdy

00 1 6+1
>B*“”l/ (/__if__ﬁ
u=1(1) 0 (1 + Et)A—H

N
—/ tﬁ+1dt+/ Tdt)u_l_ﬁu’dx
0 0 (1_|_ t))\—l—l

B
1
= E<B_(A+1)‘I’(p, ¢ \) + 0(1)>
B—(A+1)
T BTYeti-2)

where a = % and g = %. By tending € to zero, a contradiction
is obtained. [
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Theorem 1.8. Suppose that p > 1, I—lj—l—% =1, A > 2 — min{p, ¢},

0< % <1, A and B are nonnegative and u, v are two strict increasing
differentiable functions, u(0) = v(0) = 0, u(oo) = v(c0) = o0, and f,
g 2 0 and also

0< /0 (@) (@) () de < oo,

0 < /0 ()W () 0 () dy < oo

Then

00 OO max{u, U}f(;p)g(y)
/0 /0 (Amin{u, v} + Bmax{u,v}) 1 dxdy

1

< B_(A'H)\Ilg(p, q, )\) ( /Ooul—)\(ul)l—pfp(x) d(L‘) P
0

1

<([ @) W) dy)

0

where

Va(p, ¢, A) = B(L, 6g (X)) FAF1L, 0g(A); 1464(N);

4
—)+B(L 6N F O, 8 (N): L+6,(V); —).

The constant factor is the best possible.

Remark 1.9. By the identity

F(a+1,b+1;c+1;z):b£(F(a+1,b;c;z)—F(a,b;c;z)),
2z

one may prove that

B-O+D) (A\Iq(p, g, \) + BUs(p,q, A)) = BU(p,q, ).
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So ,Theorems 1.7 and 1.8 give a decomposition of inequality (5).

1.1 Some infinite decompositions
In 1934, Hardy et al. [1] published the following statement.

Theorem 1.1.1. Suppose that p > 1, %—i—% =1, K(z,y) is a non-
negative homogeneous function of degree -1 in R%. If f(z),9(y) > 0,
f e LP(Ry), g € LY ]R+ k = fo (u, )u ~vdu is finite. Then, we
have k = [;° K(1,u)u" <du and

[ [ ki saswdsay < o [~ e} /0 "y}
/ / K(x,y)f diL‘ dy<kp/ fP(x (7)

The constant factor k is the best possible.

1n(g)

In special case, by taking K (z,y) = — they proved the following two

pairs of equivalent inequalities: If p > 1 —|— = =1and f, g > 0 such
that

0</oofp(:1;)da;<oo,
0

0 </ g% (y) dy < oo,
0

then

* (e In(2)f()o(v) T T
[ e < [ ] (o)
X (/Ooogq(y)dy>;,
/OOO (/OOO ijl(_g;;f(x)dx)pdy < kP /Doo 17 (2)da. ()

Now, by the above theorem, some infinite decompositions of some Hardy-
Hilbert’s type inequalities are given.

(8)
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Theorem 1.1.2. Suppose that p > 1, %—l—% =1 and f, g > 0 such that
o0
0< / fP(x)dx < oo,
0

0< / 91(y) dy < oo.
0
Then

S =

/OOO/OOOKn(%y)f(w)g(y)da:dy < kn(/ooo fp(a:)dx)
X ( /0 Oogq(y)dy) :

In($) min"{z, y}
sgn(x —y) max"*+{z, y}’
1 + 1
1y2 1y2-
(n+3)? (n+9)

(10)

=

where

Kn(xay) =

kp =

Proof. K, is a non-negative homogeneous function of degree -1 in Ri
and so by Theorem 1.1.1, we have

o _1 1 1
k‘n:/ Ky(xz, 1)z vdz =
0

nr1E

Also, the constant factors k, are the best possible. [J

Remark 1.1.3. Note that

S

So, inequalities (10) decompose infinitly inequality (8).

Theorem 1.1.4. Suppose f, g > 0 such that

0</Oof2(m)d:n<oo,
0
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o
0 </ > (y) dy < .
0

Then

7 Kl f@at)dzdy < k([ (@)
I/ ([ rene)

X (/Ooogg(y)dy) %,

(11)

where

—~

|
e~
~—
S

kn

Tl

Proof. Applying Theorem 1.1.1 completes the proof. [

Remark 1.1.5. Note that

— (—4)"
Z2n+1 -

n=0

So, inequalities (11) decompose infinitly inequality (1).

In 2002, Yang [6] gave a generalization of inequality (1) by introducing
a parameter A > 0 as:

1

[ R < sl [ ey

00 1
x {/ t(‘ffl)(lf”gq(t)dt}q,(12)

0

where the constant factor ﬁ(ﬂ) is the best possible.
p

In the following, ifinite decomposition of the above inequality is given.
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Theorem 1.1.6. Suppose that p > 1, %4—% =1, A>0and f, g >0
such that
0< / 2 PDA=N £2(2) d < o0,
0
o
0< / y(q—l)(l—k)gq(y) dy < oo.
0
Then

/0 /0 Kp(x,y)f(x)g(y)dzdy < kn</0 x(p_l)(l_/\)fp(x)dx)g "

(e’ 1
x (/ y(q‘”“‘”gq(y)dy)q,
0

where
D min )
Kn(x7y)_ max”“{x/\,y/\} )
(=)™ 1 1
fo L
" A lntl n—l—%

The constant factors k,, are the best possible.

Proof. By applying the Holder’s inequality, we have

| [ satemr@omists= [ [7 (ki@ )

y P
) 1-2)
X {Kﬁ (x, y)ﬁ}dxdy
q

z 7 g(y)

11
< MrNa,
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where, by taking y = xui,

o [T 000 ()
0 0

A max"tH{1, u}

(=nrr 1 1 /°° (p-1)(1-3)
= + z'\P fP(x)dx.
A [n—i—; n—i—ﬂ 0 (@)

Simillarly, one may obtain

_ =y /°° * min"{l,u} _1 (G=1)(1=\) g
N= A Jo { 0 max"*l{l,u}u Pdu}:z: 9*()dy

(—1)n 1 1 / (@—1)(1-X) d
= + y'? gq(y) Y.
1 1
A [n—i- » n—+ q} 0

If (13) takes the form of equality, then there exist constants A and B
such that A% + B? # 0 and

Az g2y = Bylae=DI=N — ¢ (g.e).

In the case A # 0, we have

/°° S0 () = /°° € dr = oo,
0 0 A

which is a contradiction.
If the constant factor k,, is not the best possible, then there exist a
positive constant C' (with C' < k,,) and a > 0 such that

[ [ maw i@y <o [ 08 )

a

(14)

For e > 0 small enough (¢ < A(p—1)) and 0 < b < a , setting f. and g. as:

fe(@) = ge(x) =0, = € (0,b);

Jel@) =2 T, g(@) =TT, w e booo).
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Then,

o e _1_§+A _1_§+A
/ / Ky(z,y)z 7l ay  a rdrdy.
a b

Let b — 0%, by (14) and taking y = zu>, we have

/aOO/OOOKn(Iv y) fe()g:(y)daxdy =

L(/oo (—1)" min"{1, U}u—%(H‘%)du < g
Aea \ Jo max" {1, u} “

For ¢ — 0%, we have k,, < C. O

Remark 1.1.7. Note that

oo

1 1.1 1.1
§ ky = *[pF(la =, 14+=; —1)+QF(1, ] 1_'_77 _1)] =
oy A PP a q

1 L dz 1 dz
X[/o xé(:c+1)+/o x;(erl)]

By taking x = % in the second integral, we have
> 1 1 dx o dx T
D kn = X[ 1 N 1 ] = Asin(Z)
n—0 0 xq(x—|— 1) 1 xq(x—'— 1) Sln(;)

This means that inequalities (13) infinitly decompose (12).

Yang [7] gave an extension of the Hardy-Hilbert’s inequality as: Suppose
that A > 2 — min{p, ¢}, then

[ f(x)g(y) P+HA—2 g+ -2
/0 /o (w+y)Adxdy<ﬂ( p q )

X {/000 :Ul_)‘fp(m)dx}%

x {/OOO yl_kgq(y)dy}%- (15)

By the above methods, one my prove the following theorem:
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Theorem 1.1.8. suppose that p > 1, %—I— % =1 and f, g > 0 such that
o
0< / A fP(x) dr < oo,
0

oo
0< / y' g (y) dy < oo.
0

Then
[e'e) o] [e%s) 1
/ / Ky (x,y)dzdy < ky, X {/ xl_)‘fp(x)dm}p
o Jo 0
o) 1
x {/ yl_qu(y)dy}q, (16)
0
where,
(_1)n min”{:c,y}
Kn 5 - )
() = 1z, y} (o + )1
and
1 2— A 2— A
p = (—1)"| ————F\—1,n+1— n+2-"—201
1) [n+1—2—qA ( q q )
1 2— A 2— A
- S FA—Ln—14+ A+ —"in+ A+ —=;-1)].
TL—1+A+T q q

Remark 1.1.9. Note that

00 2—X 2—)

= 1 ne=g 0o . —n—1-==
‘T x q
S ST e o o
nzz;) nzz‘f) [ o (z+1)A1 L @+ DT }
- 1—e niﬂ o _—n—1-2=2
x T q
eg& Z( ) [/0 (z + 1) ac—F/lE @it :c}
l-e 00 M 2=
l‘ T q
si%lJr x—i—l $+/15n0 ) (1 1)1 T

_ P+FA—2 g+ A—2
_/0 <x+1>Ad e
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In other words, inequalities (16) infinitly decompose (15).
Note that by taking A =2, p = q = 2, we have

i 2(_1)nF(17n +Ln+2;-1)=p6(1,1) =1

— nt 1
Also, we have F(1,n;n + 1;-1) = 1 — na,, where a, = [, I_de
One may prove that an + an—1 = +, n = 1,2,3,.... and ag = In2,

n
a1 =1—1n2. Hence, we have

, 11 (—1)nt
= (-1 M1-4-—- 42 ] -2
This implies that

F(ln+1ln+2—1) = (n+1) [(—1)”—1 (1—;+;’—-+(_1)n1) —1n2}.

On the other hand, we have

So,

Flnt s -1)=1-% D0t l
m=0
(-1 (n+1)
'mZO n+m+1
Hence, we have

m+n 1
sz+n+1 2

n=0 m=0
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1.2 Decomposition of the Hardy-Hilbert’s operator
The Hilbert’s integral operator is defined as: 7' : L?(R*) — L?(R*), for
any f € L?(R1), there exists a function h = T'f € L?(R") satisfying

b =N = [ Hae ye o)

For any g € L?(R"), an inner product of T'f and g is defined as follows:

wra = [ ([T Loy = [ [T IDN g,

Setting the norm of f as || f|l2 = {[;° f(z da:}? if || fll2, lgll2 > 0, then
the Hardy-Hilbert’s inequality may be rewritten as

(T'f,9) <=l fll2llgll2-

It follow that ||T|| = =.
Simillarly, the Hardy-Hilbert’s integral operator T), : LP(R™) — LP(R™),
is defined as

AC)
o TtY

(Tpf)(y) = dz, y € (0,00).

Also, for any non-negative g € LI(R™), the formal inner product of T}, f
and g is defined as follows;

(1. 9) //fxﬂ/ddy

Suppose that p > 1, L +f =1, L"(R") (r=p,q) are real normed linear
spaces and k(x,y) 1s a non—negatlve symmetric measurable function in
R)?% satisfying

/Oook(ac 0 "Vt = ko(r) €R (z > 0).

Yang ([6]) defined an integral operator as T : L"(RT) — L"(RT) (r =
p,q), for any f(>0) € LP(R™, there exists h = T f € LP(R"), such that

(T = h) = | T ey f@)de (g > 0).
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Or, for any g(> 0) € LI(R™), there exists h = T'g € LI(R"), such that

(Tg)(x) = h(x) = /0 Tk ey (> 0).

Yang proved that the operator T is bounded with ||T'|| < ko(p). He
proved that if € > 0, is small enough and the integral [;* k(x,t)(¥) S dt
(r = p,q;x > 0) is convergent to a constant k.(p) independent of z
satisfying k. (p) = ko(p) + o(1)(e — 07), then ||T|| = ko(p). If || T] > 0,
feLP(Ry), g€ LYRy), [[£lp, llglly > 0, then

(Tf,9) < ITl fllpllgllq-

By the above notations, taking

Ko(z,y) = <ln (%»MUA@)

B - )
K(xvy) = Kl(xﬂ y) + KQ(x7y)7

and Ty : LP(RT) — LP(RT) (M = K, Ki,K>), for any f(> 0) €
LP(R+),

(Tam f)(y / M(z,y)f(x)dx,

we have T = Tk, + Tk, and by Theorems 1.1 and 1.2,
| Tk || = 1Tk, | + 1Tk |-

Note that a Banach space (V) ||.]|]) is strictly convex if and only if = # 0
and y # 0 and ||z + y|| = ||z]| + ||y together imply that z = cy for some
constant ¢ > 0. So, by the above decomposition, the space of bounded
linear operators is not strictly convex.

By taking .

K(z,y) = A g
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(=1)" min"{a*, y*}
K =
n(x7y) maxn+1{x/\7y)\} )

we have T = EZO:() Tk, and Remark 1.1.7 says that

oo
ITwcll = 1T, I
n=0
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