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Abstract. In this paper, first we investigate some properties of ((EQ)EQ-
algebras. Furthermore, we study some characterizations of / EQ-algebras.

It is proved that every linearly ordered EQ-algebra and every EQ-
algebra with three and four elements are (EQ-algebras. Finally we
characterize 5-element {EQ-algebras and find EQ-algebras that are not
(EQ-algebras.
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1. Introduction

Fuzzy logic can be defined as a means of studying uncertainty and approximate
reasoning [11,12]. For instance residuated logic[1], BL-logic [6], Lukasiewicz-
logic [1] and MTL-logic [4] are some of the fuzzy logics which are adopted to
generalize the Boolean truth functions on {0, 1}.

Fuzzy type theory which has a fuzzy equality connective has been developed
as a counterpart of the classical higher-order logic [9].

A specific algebra known as EQ-algebra has been introduced by V. Novak
whose goal is to achieve the algebra of truth values for fuzzy type theory(FTT)
[7]. Residuated lattices are special cases of EQ-algebras.

An EQ-algebra has three binary operations (meet, multiplication and a fuzzy
equality) and a top element. A binary operation implication is derived from
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fuzzy equality by 2 — y = (x Ay) ~ x. This implication and multiplication are
not closely tied by the adjunction any more, therefore EQ-algebras generalize
residuated lattices.

A special class of EQ-algebras which is called /EQ-algebras is defined in [10]
and properties of them are investigated in [2].

In studies conducted on EQ-algebras, we were looking for those EQ-algebras
which are not /EQ-algebras. In different finite examples we couldn‘t find such
example. This results in this research in which we investigate ¢EQ-algebras
with order of 3,4 and 5. Finally, in this article we found an EQ-algebra with
order of 5 which is not an /EQ-algebra. We hope these characterizations open
the door of finding more ¢EQ-algebras.

This paper is organized as follows: In Section 2, we review the basic definitions,
properties and theorems. In Section 3, we give some properties of EQ-algebra
with three, four and five elements. In Section 4, we show that every linearly
ordered EQ-algebra is an /EQ-algebra and also EQ-algebra with three and
four elements are /EQ-algebra. Finally we give some characterizations of a
5-element EQ-algebra.

2. Preliminaries

An algebra € = (E, A, ®,~, 1) of type (2,2,2,0) is called an EQ-algebra where
for all a,b,c,d € E :

E1) (E,A,1) is a A-semilattice with top element 1. We set a < b iff a Ab = aq,

(

(E2)

(E3)

(E4) ((aAb) ~c)®(d~a) < e~ (dAD), (substitution axiom)
(E5)

(E6)

(E7)

The binary operations A, ® and ~ are called meet, multiplication and fuzzy
equality, respectively.

We introduce the unary and binary operations ~ and — for a,b € E, by
a=a~landa—b=(aAb)~a

If E is a nonempty set with three binary operations A, ®, ~ such that (E, A, 1)
is a A-semilattice, (E,®,1) is a monoid and ® is isotone with respect to <,
then (E,®, A, ~,1) is an EQ-algebra, where a ~ b =1, for all a,b € E.
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Lemma 2.1. [2,10] Let & be an EQ-algebra. Then the following properties hold
for all a,b,c,d € E:
(e1) a~b=b~a,

(e2) (a~b) @ (b~ ) < (a ),

(e3) (a—=b0)@(b—c)<(a—¢) and (b—¢)® (a —b) < (a — ¢),
(e4) a~d< (aNb) ~ (dAD),

(e5) (a~ d) @ ((a A b) ~ €) < (dAD) ~

(eg) (and) ~a<(anNbAc)~(aNc),

(e7) a®b<anb<a,b,

(eg)bgggaﬁb,

(e9) (a—=b)@b—a)<a~b<(a—b)A((b—a),

(e10) If a < b, thena—>b:1,b—>aza~b,’d<&c—>a<c—>b

and b —c<a—c,
(e11) Ifa<b<c¢ thena~c<a~banda~c<b~ec,
(e12) a® (a ~b) < b.

Definition 2.2. [2,10] Let £ be an EQ-algebra. We say that it is
(i) good, if for alla € E, @ = a,
(it) lattice-ordered EQ-algebra if it is a lattice,

(#it) lattice EQ-algebra({EQ-algebra) if it is a lattice-ordered EQ-algebra in
which the following substitution axiom holds, for all a,b,c,d € E :

(E8) (aVb)~c)@(d~a)<c~(dVD).

(iv) prelinear if for all a,b € E, 1 is the unique upper bound in E of the set
{la—=0),(b—a)}.

It is clear, every finite EQ-algebra is a lattice-ordered.
The following theorem gives some properties of /EQ-algebras:

Theorem 2.3. [2,3,10] Let & be an {EQ-algebra. For all a,b,c,d € E the
following hold:

(a)a—b=(aVb) —>b=(aVb)~b,

(1) (a~d)® ((a V) ~ ) < (VD) ~c),

() (a~b) @ (e~ d) < (aV ) ~ (b d),

(dya—b<(aVe)— (bVe).

Theorem 2.4. [2] The following properties are equivalent in every lattice-
ordered EQ-algebra &:

(a) € is an LEQ-algebra,

(b) & satisfies, for all a,b,c € E :
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a~b<(aVe)~ (bVc).

Theorem 2.5. [2] Every prelinear and good EQ-algebra ¢ is an /EQ-algebra,
whereby the join operation is given by for all a,b € E:

aVb=((a—=b) =b)A((b—a)—a).

3. Some Properties of EQ-Algebras

In this section, we have the following new properties of EQ-algebras.

Theorem 3.1. Let & be an EQ-algebra. Then the following hold for all a,b,c,d €
E:

(a) ((aAD) = c)®(d~a) < (dAD) — ¢,

) d—-co)@(a~d) <a—c

Proof. (a) By axiom (E6) and using (e1), (e2) and (e4) we obtain
((anb) —¢)® (d~a) ((anbAc)~(anb)® ((dAD) ~ (aAb))

(aANbAc)~ (dAD)
(aANbAecAd)~ (dAD)
(

(

2

N

NN N

cNdNb) ~ (dAD)
dAD) — c.

(b) Using (a), we find
(d—c)@(an~d)

((dA1) = ¢)® (a~d)
(anl)—c

= a—c 0O

N

By the two following theorems, we investigate some characterizations of 4 and
5-element prelinear EQ-algebras:

Theorem 3.2. Every non-linearly ordered EQ-algebra with four elements is a
prelinear EQ-algebra.

Proof. Let E = {0,a,b,1} be a non-linearly ordered EQ-algebra. Then 0 <
a,b < 1 and so by a < b — a and b < a — b, we can easily check that
(a—bVb—a)=1foralla,be E. O

Theorem 3.3. Let £ = ({0,a,b,¢,1},A,®,~,1) be a non-linear ordered 5-
element EQ-algebra. Then under each of the following conditions £ is a prelin-
ear EQ-algebra:
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(1)) 0< ec<a,b< 1 and a,b are incomparable,

(1) 0 <a<e<1,0<0b< 1 and elements {a,b} and {b,c} are pairwise
incomparable,

(7i) 0 < a,b,c < 1 and elements {a,b}, {a,c} and {b,c} are pairwise incom-
parable.

Proof. (i) We show that (a — b))V (b — a) =1, for all a,b € {. By ¢ < a
and ¢ < b, weimply c ma=1landc—b=1.5 (¢c > a)V(e—c¢c) =1
and (¢ = b)) V(b —-¢)=1.Byl=aVvb< (a — bV — a), weget
(a — b) V (b — a) = 1. Then the proof is complete.

The proof of (ii), (ii4) is similar to part (). O

Lemma 3.4. Let £ = (E,\,®,~, 1) be an EQ-algebra with the bottom element
0. Ifanb=0,a~1=aandb~1=0b, fora,be E, then 0 ~1=0.

Proof. We have 0 ~1<a~1=aand 0~1<b~1=0b, (by (e11)). Then
weget 0~1<aAb=0,hence0~1=0. O

Lemma 3.5. Let £ = (E,\,®,~, 1) be an EQ-algebra with the bottom element
0. Ifb~1=c~1=1andbANc=0, forb,c€ E, thena ~1=1, for every
acb.

Proof. Using (e4), we have 1 = ¢ ~ 1 < (¢Ab) ~ (1 AD) = 0 ~ b, thus
O0~b=1Nowl=(0~b®(b~1) <0~ 1implies 0 ~ 1= 1. Hence by
1=0~1<a~1 wegetthata~1=1, foreveryaec E. [

Lemma 3.6. Let £ = (E, A\, ®,~, 1) be an EQ-algebra. Ifa~1=1,b~1=c¢,
then a ~ b =c, fora,b,c € F.

Proof. From (e;) and (es), we obtain

c=1®c = (a~1)®@((b~
= (a~b)e(a~

Theorem 3.7. Let £ = ({0,a,b,¢,1},A,®,~,1) be a non-linearly ordered 5-
element EQ-algebra where 0 < a,b < ¢ < 1 and a,b are incomparable. If
b~c=0, then0~a=0.

Proof. Fromb=0b~c < (bAa) ~ (cha) =0~aand 0 ~c < b~ c =0, weget
that 0 ~ a € {b,c,1} and 0 ~ ¢ € {0, b}, respectively. Assume 0 ~ a = 1. Now if
O~c=0,thena<a~1l<a~c=1®(a~c)=0~a)@(a~c)<0~c=
0, which is a contradiction. If 0 ~ ¢ = b, then b =0 ~ ¢ < a ~ ¢. On the other
hand from (e11), we havea = 1Qa < 1 ~a < a ~ ¢, 80 ¢ = aVb < a ~ ¢, implies
a~ce{glt. fa~c=cthenc=1®c=0~a)®(a~c)<0~c=b,
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that is a contradiction. If a ~ ¢ =1, then 1 =a ~c < (aAb) ~ (cAD) =
0~ b, implies 0 ~b=1.Byl=(a~0)®(0~0b <a~b weget that
a ~b=1. Therefore 1 = (¢ ~a)® (a ~ b) < ¢ ~ b, that is b ~ ¢ = 1, which
is a contradiction. If 0 ~ a = ¢, then similar to the proof of the above way, we
get a contradiction. Therefore 0 ~a =0b. O

The following theorem gives some properties of fEQ-algebras:

Theorem 3.8. The following properties hold in every {EQ-algebra &, for all
a,b,c,d € E :

(a) ar~d<((aVb)~c)~((dVb)~c),

(b) (c—= (aVbd)®(d~a)<c— (dVD),

(c) ((aVd) = c)®(d~a)<(dVb) —c,

(d) (c — (aVb)®(a—d)?<c— (dVb).

Proof. (a) By axiom (E5) and Theorem 2.4, we obtain

a~d < (aVb)~(dVb)
((aVvd)~(dVb)®(c~ec)
< ((aVd)~c)~((dVb)~c).

(b) Using Theorem 2.4 and axiom (E4), we get

(c—=(aVvb)@(d~a) = ((eN(
< ((en(aVvbd) ~c)®@((dVDb)~ (aVD))
< ((en

(¢) By Theorem 2.3(a) and (E8), we find

((avd) = c)@(d~a) = ({(aVbVe)~c)®(d~a)
(dvbve)~c

= (dVb) —ec
(d) By (£8) and Theorems 2.3 and 2.4(a), we obtain

(c—(aVvd)@(@—d)? = ((cvVaVvb)~(@aVb)®((aVd) ~d®a—d
((eVavbvd)~(aVbVd) @ ((aVd)~d)®(a—d)
((cvbvd)~(aVvbVd)® ((aVd)~d)

(

eVbVd)~(dVh) =c— (dvb). O

VAS/ANV/AN
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4. Some Properties of /EQ-Algebras with Three,
Four and Five Elements

In this section, we characterize /EQ-algebras with order of 3,4 and 5.
Theorem 4.1. Every linearly ordered EQ-algebra is an {EQ-algebra.

Proof. Let E be alinearly ordered EQ-algebra. Then F is a lattice-ordered. We
show that F is an (EQ-algebra. By Theorem 2.4, it is sufficient to show that
a~b< (aVe)~ (bVe), fora,bceE.

Let a,b,c € F and a < b. Then b < ¢, implies a < b < ¢,s0a ~ b
1l=(aVe)~ (Ve If ¢ <b wehave a < cor ¢ < a, then a < ¢ <
or ¢ < a < b. Therefore by (e11), a ~b < c~b=(aVe)~ (bVe) or
a~b<a~b=(aVe)~(bVe) O

<
b

Since every EQ-algebra with three elements is a linearly ordered EQ-algebra,
so we have the following corollary:

Corollary 4.2. Fvery EQ-algebra with three elements is an {EQ-algebra.

Theorem 4.3. Every non-linearly ordered EQ-algebra £ = (E, N\, ®,~,1) with
four elements {0,a,b, 1} is an LEQ-algebra.

Proof. According to Theorem 2.4, it is sufficient to show that
a~b< (aVe)~(bVe), for abjce E (I)

By properties of EQ-algebras, all possible inequalities of the (I) hold, except
for the following inequalities:

(@) 0~a<(0VDh)~(aVb) =b~1,

b)0~b<(0Va)~(bVa)=a~1,

(c)a~b<(aVa)~(bVa)=a~1,

(d)a~b<(aVb)~(bVb)=1~hb.

Now we show that the above inequalities also hold. We have a®1 < a ~ 1 and

bel<b~1ls0a~1€{a1}and b~ 1€ {b1}. We consider the following
cases:

Case(1). a ~1=1,b~1=1. In this case the inequalities (a) — (d) hold.
Case(2). a ~ 1 =a,b~1=1 By b~ 1= 1, the inequalities (a) and
(d) hold. Using Lemma 3.6, we get a ~ b = a. Now from ¢ = a ~ b <
(aANb) ~ (bAD) =0 ~ b(by (e4)), we obtain 0 ~ b € {a,1}. If 0 ~ b = q,
then the inequalities (b) and (c¢) hold. If 0 ~ b = 1, then 0 ~ 1 = 1 because
1=0~b)®((b~1)<(0~1). From (e11), we have 1 =0~ 1 < a ~ 1. Thus
a ~ 1 =1, that is a contradiction.
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Case(3). a ~1=1, b~ 1=>b. The proof of this case is similar to the case(2).

Case(4).a ~1=a,b~1="b. Using Lemma 3.4, weget 0 ~ 1 =0andso Fisa
good EQ-algebra. Moreover by Theorem 3.2, E is a prelinear EQ-algebra. Thus
from Theorem 2.5, F is an /EQ-algebra. [

Theorem 4.4. Every non-linearly ordered 5-element EQ-algebra
&= ({0,a,b,¢,1},A\,®,~,1) in which 0 < a < ¢ < 1 and elements {a,b} and
{b, ¢} are pairwise incomparable, is an LEQ-algebra.

Proof. We show that the relation (I) hold for a,b,c € E. By properties of
EQ-algebras, all possible inequalities of the relation (I) hold, except for the
following inequalities:

(a)0~a< (0OVD) ~(aVd)=b~1,
b)) 0~b<(0Va)~(bVa)=a~1,
(e)0~e<(0VD) ~(cVb)=bn~1,
(d)0~b< (0Ve)~(bVe)=c~1,
(e)a~b<(aVa)~(bVa)=a~1,
(fla~b< (aVh)~ (VDb =1~b,
(9)a~b<(aVe)~(bVe)=c~1,
(h)b~c<(bVa)~(cVa)=1~c,
(A)b~e< (bVD) ~(cVbd)=bn~1.

We show that the above inequalities (a) — (d) hold.

Wehavea®l<a~1,001<b~landc®1l<c~1 Thena~1c¢€ {a,c1},
b~1e{b1} andc~1€{c,1}. We consider the following cases:

Case(l).a~1=a,b~1=band c~1=c. By Lemma 3.4, we get 0 ~ 1 =1,
hence E is a good EQ-algebra. Using Theorem 3.3(ii), F is a prelinear EQ-
algebra. Therefore E is an (EQ-algebra(by Theorem 2.5).

Case(2). a~1l=a,b~1=bandc~1=1. Wehave l=c~ 1< (cAb) ~
(IAb) =0 ~b,thusO~b=1. Thenb=(0~b)R(b~1)<0~1<b~1=,
thatisO~1=0.Sob=0~1<a~1=a, which is a contradiction.
Case(3).a~1l=ag,b~1=landc~1=cByl=b~1<(bAc)~ (1Ac) =
0~ c, we get that 0 ~c=1. Now 0 < a < cimplies 1 =0 ~ ¢ < a ~ ¢, that
is a ~ ¢ = 1. We get a contradiction, because c=1®c=(a ~¢)® (c~ 1) <
a~1=a.

Case(4).a~1=a,b~1=1and ¢ ~ 1= 1. By hypothesis, we have bAc = 0,
then from Lemma 3.5, we get that a ~ 1 = 1, that is a contradiction.

Case(5).a~1=1,b~1€{bltandec~1=c. Bya<ec<1and (e11), we
have 1 =a ~ 1 < ¢~ 1= ¢, which is a contradiction.
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Case(6). a~1=1,b~1=1, and ¢ ~ 1 = 1. In this case the inequalities
(a) — (d) hold, hence F is an /EQ-algebra.

Case(T).a~1=1,b~1=bandc~1=1.Froma~1l=1andc~1=1,
the inequalities (b) and (d) hold. By Lemma 3.6, we get a ~ b =0b. Now b = a ~
b<(aha)~(bAa)=a~0impliesa ~0¢€ {1,b}. If a ~ 0 = 1, then we get
O0~1=1,because 1 =(a~0)®(a~1)<0~1.S01=0~1<b~1=0,
which is a contradiction, therefore 0 ~ a = b. Hence the inequality (a) holds.
Similar to the above we get 0 ~ ¢ = b, thus the inequality (¢) holds.

Case(8). a ~1 =c¢,b~1=bandc~1=c¢c FrombAc=0and 0 ~
1<a~1=¢0~1<b~1=bweget 0 ~1=0. Byc=a~1¢g
(anb) ~(1AD)=0~Db, weobtain 0 ~be {1,c}. f0~b=1, then b= (0~
b)®(b~1) <0~ 1=0, that is a contradiction. Therefore 0 ~ b = ¢, hence
the inequalities (b) and (d) hold. From b=b~1< (bAc) ~(1Ac)=0~c,
weget 0 ~ce{b1l}. HO~c=1thenc=(c~0)Q@(c~1)<0~1=0
implies ¢ = 0, that is a contradiction. Thus 0 ~c=b. By b=0~c¢c <0~ a,
we obtain 0 ~ a € {b,1}. f0~a=1,thenc=(0~a)Q@(a~1) <0~1=0,
which is a contradiction. Hence 0 ~ a = b and so the inequalities (a) and (c)
hold.

Case(9).a~1=c¢,b~1=band c~ 1= 1. In this case, we get a contradiction
because, by 1 = ¢~ 1< (¢Ab) ~ (1Ab) =0~ b, we obtain 0 ~ b = 1. Thus
b=0~0)b~1)<0~1<b~1=b,80~1=0>. On the other hand
from (e11), we obtain 0 ~ 1 < bAc¢=0 that is0~1=0.

Case(10). a~1=¢,b~1=1and ¢ ~1=c. By b~ 1=1, the inequalities
(a), (c) hold. Now by (e4), c=a ~1 < (aAb) ~ (1Ab) =0 ~ b implies
O0~be{l,c}. O~b=1thenl =0 ~b®(b~1) <0~ 1 thatis
0~ 1=1.0On the other hand 1 =0~ 1< a~1=¢, soc=1, whichis a
contradiction. Hence 0 ~ b = ¢ and therefore the inequalities (b) and (d) hold.

Case(1l). a~1=¢,b~1=1and ¢ ~ 1= 1. Similar to the proof of case(4),
we get a contradiction.

Now we prove the inequality (e). By (e4), we have a ~ b < (a Ab) ~ (bAD) =
0 ~ b, and so by (b) we get that a ~b < a ~ 1.

Similar to the proof of (e), we can easily check that the inequalities (f) — (4)
hold, by (e4) and the inequalities (a) — (d). O

Theorem 4.5. Every non-linearly ordered 5-element EQ-algebra
&=({0,a,b,¢,1},A,®,~,1) in which 0 < ¢ < a,b < 1 and a,b are incompara-
ble, is an LEQ-algebra.

Proof. We show that the relation (I) hold, for a,b,c € E. By properties of
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EQ-algebras, all possible inequalities of the relation (I) hold, except for the
following inequalities:

We show that the above inequalities (a) — (d) hold. we can easily check that
the inequalities (e), (f) can be obtained from (e4) and the inequalities (¢) and

(d).
Wehave a @1 <a~landb®1<b~1 thena~1¢€{a,1} andb~1¢€
{b,1}. We consider the following cases:

Case(l). a~1=1,b~1=1. In this case all of the inequalities hold.

Case(2). a ~1=1,b~1 =10 From a ~ 1 = 1, the inequalities (b) and
(c) hold. Also by Lemma 3.6, we obtain a ~ b =0. By b =a ~ b < (a A
a) ~ (bAa) = a ~ ¢, we get that a ~ ¢ € {b,1}. Now if a ~ ¢ = 1, then
l=(c~a)®(a~1) <ec~1 that is ¢ ~ 1 = 1. On the other hand,
c<b< 1limpliesl =c~1<b~1(by (e11)), thus b ~ 1 = 1, which is a
contradiction. Hence a ~ ¢ = b and the inequality (d) holds. From 0 < ¢ < a,
we obtain 0 ~ a < a ~ ¢=b = b ~ 1, therefore the inequality (a) holds.

Case(3). a ~ 1 =a, b ~ 1= 1. The proof is similar to the proof of case(2).

Case(4).a~1=a,b~1=b.Byc<ab<1l,weobtanc~1<a~1=a
and ¢ ~ 1 < b~ 1 =05 Therefore 1 ~ ¢ < aAb=c <1~ ¢ that is
l~c=cFromO0O~1<a~1=aand0~1<b~1=10 weget
0~1€{0,c}. Let 0 ~1=0. Then E is a good EQ-algebra. Also by Theorem
3.3(i), E is a prelinear EQ-algebra, hence E is an /EQ-algebra(by Theorem
2.5).

Nowlet 0~ 1=c Thenbyb=b~1< (bAa)~ (1 Aa)=c~ a, we get that
c~ae{l,b}. fe~a=1thena=1®a=(c~a)®@(a~1)<c~1=c¢,
that is a contradiction. Thus a ~ ¢ = b and the inequality (d) holds. Now
a=a~1<(aAb)~(1AD) =c~b, impliesc~be{l,a}. ffc~b=1, we
get a contradiction, because b =1® b= (¢c~b)® (b~ 1) < c~1=c Thus
¢ ~ b = a and so the inequality (¢) holds. From 0 < ¢ < a,b, we obtain
O~a<c~a=b=b~1land 0 ~b<c~b=a=a~ 1, therefore the
inequalities (a) and (b) hold. O

Theorem 4.6. Fvery non-linearly ordered 5-element EQ-algebra
& = ({0,a,b,¢,1}, A, ®,~,1) in which 0 < a,b,c < 1, and elements {a,b},
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{a,c} and {b,c} are pairwise incomparable, is an LEQ-algebra.

Proof. By c=c® 1 < ¢~ 1, we have two cases:

Case(l). c~1=1.From1l=c~1< (¢cAha) ~(1ANa) =0~ a and
l=c~1<(cAb)~ (1AD) =0~ b, we get that 0 ~ a =0 ~ b = 1. Therefore
1=0~a)® (0 ~b) <a~b, implies a ~ b = 1. On the other hand, by
b~l=(a~b@b~1)<a~landa~1l=0b~a)®@(a~1)<b~1,
we obtaina ~ 1 =b~ 1. Alsowehavea =a®1 <a~1=0b~ 1 and
b=bl<b~1=a~1,thetna~1=b~1=1.Byl=(a~1)® (1~
¢) < a~ ¢, we get that a ~ ¢ = 1. Similarly we can prove b ~ ¢ = 1. Now
l=b~ec<(bAe)~(che)=0~cand1=(0~a)®(a~1) <0~ 1, imply
0~c=0n~1=1. Therefore a ~ b = 1, for every a,b € E, that is F is an
(EQ-algebra.

Case(2). ¢ ~ 1 = c¢. From the case(l) and a < a ~ 1, b < b ~ 1, we get
that a ~ 1 = a and b ~ 1 = b. Then by Theorem 3.4, 0 ~ 1 = 0. On the
other hand, by Theorem 3.3(iii), E is a prelinear EQ-algebra. Therefore F is
an (EQ-algebra(by Theorem 2.5). O

In the following theorems, we denote & by £ = ({0,a,b,¢,1}, A, ®, ~,1) a non-
linearly ordered 5-element EQ-algebra where 0 < a,b < ¢ < 1 and a,b are
incomparable.

Theorem 4.7. & is an (EQ-algebra if and only if 0 ~a=b~c and 0 ~ b=
a~ c.

Proof. Let & be an (EQ-algebra. Then by Theorem 2.4, 0 ~ a < (0V b) ~
(aVb) = b~ c. Also from (e4), we have b ~ ¢ < (bAa) ~ (cAa) =0 ~ a. Hence
0 ~ a="b~ c. Similarly we can prove 0 ~b=a ~ c.

Conversely, let 0 ~a =b~ cand 0 ~ b = a ~ c. Then we show that &5 is an
(EQ-algebra. Using Theorem 2.4, it is sufficient to show that the relation (I)
hold, for a,b,c € E. By properties of EQ-algebras, all possible inequalities of
the relation

(I) hold, except for the following inequalities:

(@) 0~a<(0VDh)~(aVbd)=0br~e,

b)0~b< (0Va)~(bVa)=a~c,

(c)a~b< (aVa)~(bVa)=an~c,

(d)a~b<(aVb)~ (Vb)) =b~c.

By assumption the inequalities (a) and (b) hold. From (e4), we obtain a ~ b <
(anb) ~(bAb)=0~b=a~canda~b< (aha)~ (bAa)=a~0=b~c.

Then the inequalities (¢) and (d) hold and the proof is complete. O
In &, we have b<c—b=b~c,and so b~ c € {b,c, 1}.
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Theorem 4.8. If b~ c =1, for b, c € &5, then & is an {EQ-algebra.

Proof. By 1=b~c < (bAa) ~ (cha) =0~ a, weget thatb~c=0~a = 1.
From (eg) and (e19), we have a < ¢ — a = a ~ ¢, so we obtain a ~ ¢ € {a,c,1}.
Now we have the following cases:

Case(l). a~c=1. Byl=a~c< (aAb) ~ (¢cAb) =0~ b, we get that
a ~ ¢ =0~ b. Therefore by Theorem 4.7, E is an ¢EQ-algebra.

Case(2). a ~ ¢ = a. From (e2) and (e11), weget a =1®a < (0~ a) ® (a ~
c)<0~c<a~c=a,thus0~c=a. Bya=a~c<0~b, weget that 0 ~
be {a,e,1}. Now assume 0 ~b=1,then1=(0~b) @ (b~c)<0~c=a,
which is a contradiction. If 0 ~b=1¢, then 1=(0~0)® (b~¢c) < (0~ b) ~
(0 ~ ¢) = ¢~ a = a, that is a contradiction. Therefore 0 ~ b = a. Hence by
Theorem 4.7, E is an {EQ-algebra.

Case(3). a ~ ¢ = ¢. Similar to the proof of case(2), E is an fEQ-algebra. O

Theorem 4.9. In &5, if b ~ ¢ =b, and a ~ ¢ € {a,1}, then & is an LEQ-
algebra.

Proof. By Theorem 3.7, we have 0 ~ a = b. Let a ~ ¢ = a. Then by (e11), we
getthat 0 ~c<a~c=aand 0 ~c<b~c=b.S00~c<aANnb=0, that
is0O~c=0.Alsobya~c<(aAb) ~(cAb) =0~ b, weobtain 0 ~ b €
{a,¢,1}. Now if 0 ~b=1,then b=10b=(0~b)®@(b~c) <0~c=0,
which is a contradiction. If 0 ~ b =¢, thenb=1b= (0~ 0)®(b~c¢) < (0 ~
b) ~ (0 ~ ¢) =c~ 0 =0, that is a contradiction. Then 0 ~ b = a and so by
Theorem 4.7, &5 is an fEQ-algebra. Assume a ~c=1,thenbya~c <0~
,we obtain 0 ~ b = 1. Thus 0 ~ b = a ~ ¢, and by Theorem 4.7, &5 is an
(EQ-algebra. [

In &5, we know a ~ ¢ < 0~ b and so a ~ ¢ = ¢ implies 0 ~ b € {c, 1}, now we
have the following theorems in &5:

Theorem 4.10. Let b ~c=b,a~c=cand 0 ~ b = c. Then & is an
LEQ-algebra.

Proof. From b ~ ¢ = b and Theorem 3.7, we get that 0 ~ a = b. Therefore
O~a=b~c=banda~c=0~0b=c & is an (EQ-algebra, by Theorem
4.7. O

Theorem 4.11. (i) Letb~c=b,a~c=cand 0~ b= 1. Then we get two
fuzzy equalities such that &5 is not an (EQ-algebra.

(it) Let b ~ ¢ = c in &. Then we get two fuzzy equalities such that &5 is not an
LEQ-algebra.
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Proof. (i) By0 < a,b<cand (e11),weget 0~c<b~c=band0~c<a~
c=¢80 0~ c<bAc=Db, therefore 0 ~ ¢ € {0,b}. Now if 0 ~ ¢ = 0, then by
(e2) b=1®b=(0~b)® (b~ c) <0~ c=0, which is a contradiction. Thus
0~c="5b. By (E7) and (e11), we obtain b=b®1 < b~ 1< b~ c=0>that is
b~1=b Fromb=10b=0~b)@((b~1)<0~1<b~1=0D, we obtain
0~1=b.By0<a<1and(e1), we have b =0~ 1 < a ~ 1.0n the other
hand a =a®1 < a ~ 1, therefore c=aVb<a~1,thusa~1¢€ {c1}. Now
ifa~1=1, then froma < c<1and (e1;), weget l=a~1<a~c=c
which is a contradiction. Hence a ~ 1 = ¢. By b ~ ¢ = b and Theorem 3.7, we
get that 0 ~ a = b. From (e4), we have a ~ b < (aAa) ~ (bAa)=a~0=Db,
soa~b<b Thusbyb=10b=(0b~0)® (0~a)<b~a<b, weget that
a~b=b Wehavec=c®1<c~1,thenc~ 1€ {c1}. Hence we can form
two fuzzy equalities, say ~1 and ~9 such that & with either ~q or ~s is not
an (EQ-algebra, because 1 =0~bg (0Va)~ (bVa)=a~c=c:

S S| = S| = S
A= SO
—lalo|o|o =
MRIEIEIEIK
|| = = o
[N RN K=l il K2l R~
[wal Rl Il el il I
== SO SO
—| oo =

O[S O’_g
SRS YRS N e

QO[T TR

(i4) Let b ~ ¢ = c. Then by (e4), we havec=b~c < (bAa) ~ (cAa) =0~ a,
therefore 0 ~ a € {c,1}. If 0 ~ a = ¢, then similar to the proof of Theorem
4.10, &5 is an (EQ-algebra. If 0 ~ a = 1, similar to the proof of (i) we can
obtain two the following fuzzy equalities ~3 and ~, such that & with either
~3 Or ~y4 is not an fEQ-algebra: O

~3 0 a b c 1 ~y 0 a b c 1
0 1 1 a a a 0 1 1 a a a
a 1 1 a a a a 1 1 a a a
b a a 1 c c b a a 1 c c
c a a c 1 c c a a c 1 1
1 a a c c 1 1 a a c 1 1
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