Journal of Mathematical Extension Vol. 13, No. 3, (2019), 171-184

ISSN: 1735-8299

URL: http://www.ijmex.com

Some properties of ℓEQ -algebras

L. Abbasian

Kerman Branch, Islamic Azad University

L. Torkzadeh*

Kerman Branch, Islamic Azad University

Abstract. In this paper, first we investigate some properties of $(\ell EQ)EQ$ -algebras. Furthermore, we study some characterizations of ℓEQ -algebras. It is proved that every linearly ordered EQ-algebra and every EQ-algebra with three and four elements are ℓEQ -algebras. Finally we characterize 5-element ℓEQ -algebras and find EQ-algebras that are not ℓEQ -algebras.

AMS Subject Classification: 03G10; 03B52; 94D05

Keywords and Phrases: $(\ell EQ)EQ$ -algebra

1. Introduction

Fuzzy logic can be defined as a means of studying uncertainty and approximate reasoning [11,12]. For instance residuated logic[1], BL-logic [6], Lukasiewicz-logic [1] and MTL-logic [4] are some of the fuzzy logics which are adopted to generalize the Boolean truth functions on $\{0,1\}$.

Fuzzy type theory which has a fuzzy equality connective has been developed as a counterpart of the classical higher-order logic [9].

A specific algebra known as EQ-algebra has been introduced by V. Novák whose goal is to achieve the algebra of truth values for fuzzy type theory(FTT) [7]. Residuated lattices are special cases of EQ-algebras.

An EQ-algebra has three binary operations (meet, multiplication and a fuzzy equality) and a top element. A binary operation implication is derived from

Received: July 2017; Accepted: January 2018

^{*}Corresponding author

fuzzy equality by $x \to y = (x \land y) \sim x$. This implication and multiplication are not closely tied by the adjunction any more, therefore EQ-algebras generalize residuated lattices.

A special class of EQ-algebras which is called ℓEQ -algebras is defined in [10] and properties of them are investigated in [2].

In studies conducted on EQ-algebras, we were looking for those EQ-algebras which are not ℓEQ -algebras. In different finite examples we couldn't find such example. This results in this research in which we investigate ℓEQ -algebras with order of 3,4 and 5. Finally, in this article we found an EQ-algebra with order of 5 which is not an ℓEQ -algebra. We hope these characterizations open the door of finding more ℓEQ -algebras.

This paper is organized as follows: In Section 2, we review the basic definitions, properties and theorems. In Section 3, we give some properties of EQ-algebra with three, four and five elements. In Section 4, we show that every linearly ordered EQ-algebra is an ℓ EQ-algebra and also EQ-algebra with three and four elements are ℓ EQ-algebra. Finally we give some characterizations of a 5-element EQ-algebra.

2. Preliminaries

An algebra $\xi=(E,\wedge,\otimes,\sim,1)$ of type (2,2,2,0) is called an EQ-algebra where for all $a,b,c,d\in E$:

- (E1) $(E, \wedge, 1)$ is a \wedge -semilattice with top element 1. We set $a \leq b$ iff $a \wedge b = a$,
- (E2) $(E, \otimes, 1)$ is a monoid and \otimes is isotone in both arguments w.r.t. $a \leq b$,
- (E3) $a \sim a = 1$, (reflexivity axiom)
- (E4) $((a \land b) \sim c) \otimes (d \sim a) \leqslant c \sim (d \land b)$, (substitution axiom)
- (E5) $(a \sim b) \otimes (c \sim d) \leqslant (a \sim c) \sim (b \sim d)$, (congruence axiom)
- (E6) $(a \land b \land c) \sim a \leqslant (a \land b) \sim a$, (monotonicity axiom)
- (E7) $a \otimes b \leq a \sim b$, for all $a, b, c \in E.[2,10]$

The binary operations \wedge , \otimes and \sim are called meet, multiplication and fuzzy equality, respectively.

We introduce the unary and binary operations $\stackrel{\sim}{}$ and \rightarrow for $a, b \in E$, by

$$\widetilde{a} = a \sim 1$$
 and $a \rightarrow b = (a \wedge b) \sim a$

If E is a nonempty set with three binary operations \land, \otimes, \sim such that $(E, \land, 1)$ is a \land -semilattice, $(E, \otimes, 1)$ is a monoid and \otimes is isotone with respect to \leqslant , then $(E, \otimes, \land, \sim, 1)$ is an EQ-algebra, where $a \sim b = 1$, for all $a, b \in E$.

Lemma 2.1. [2, 10] Let ξ be an EQ-algebra. Then the following properties hold for all $a, b, c, d \in E$:

- (e_1) $a \sim b = b \sim a$,
- (e_2) $(a \sim b) \otimes (b \sim c) \leqslant (a \sim c)$,
- (e_3) $(a \to b) \otimes (b \to c) \leqslant (a \to c)$ and $(b \to c) \otimes (a \to b) \leqslant (a \to c)$,
- (e_4) $a \sim d \leq (a \wedge b) \sim (d \wedge b)$,
- (e_5) $(a \sim d) \otimes ((a \wedge b) \sim c) \leq (d \wedge b) \sim c$,
- (e_6) $(a \wedge b) \sim a \leq (a \wedge b \wedge c) \sim (a \wedge c)$,
- (e_7) $a \otimes b \leq a \wedge b \leq a, b$,
- (e_8) $b \leqslant b \leqslant a \rightarrow b$,
- (e_9) $(a \to b) \otimes (b \to a) \leqslant a \sim b \leqslant (a \to b) \wedge (b \to a),$
- (e₁₀) If $a \leqslant b$, then $a \to b = 1$, $b \to a = a \sim b$, $\widetilde{a} \leqslant \widetilde{b}$, $c \to a \leqslant c \to b$ and $b \to c \leqslant a \to c$,
- (e₁₁) If $a \le b \le c$, then $a \sim c \le a \sim b$ and $a \sim c \le b \sim c$,
- $(e_{12}) \ a \otimes (a \sim b) \leqslant \widetilde{b}.$

Definition 2.2. [2, 10] Let ξ be an EQ-algebra. We say that it is

- (i) good, if for all $a \in E$, $\tilde{a} = a$,
- (ii) lattice-ordered EQ-algebra if it is a lattice,
- (iii) lattice EQ-algebra(ℓEQ -algebra) if it is a lattice-ordered EQ-algebra in which the following substitution axiom holds, for all $a,b,c,d \in E$:

$$(E8) ((a \lor b) \sim c) \otimes (d \sim a) \leq c \sim (d \lor b).$$

(iv) prelinear if for all $a, b \in E$, 1 is the unique upper bound in E of the set $\{(a \to b), (b \to a)\}.$

It is clear, every finite EQ-algebra is a lattice-ordered.

The following theorem gives some properties of ℓEQ -algebras:

Theorem 2.3. [2,3,10] Let ξ be an ℓEQ -algebra. For all $a,b,c,d \in E$ the following hold:

- (a) $a \rightarrow b = (a \lor b) \rightarrow b = (a \lor b) \sim b$,
- (b) $(a \sim d) \otimes ((a \vee b) \sim c) \leq ((d \vee b) \sim c)$,
- (c) $(a \sim b) \otimes (c \sim d) \leqslant (a \vee c) \sim (b \vee d)$,
- (d) $a \rightarrow b \leqslant (a \lor c) \rightarrow (b \lor c)$.

Theorem 2.4. [2] The following properties are equivalent in every lattice-ordered EQ-algebra ξ :

- (a) ξ is an ℓEQ -algebra,
- (b) ξ satisfies, for all $a, b, c \in E$:

$$a \sim b \leqslant (a \lor c) \sim (b \lor c).$$

Theorem 2.5. [2] Every prelinear and good EQ-algebra ξ is an ℓ EQ-algebra, whereby the join operation is given by for all $a, b \in E$:

$$a \lor b = ((a \to b) \to b) \land ((b \to a) \to a).$$

3. Some Properties of EQ-Algebras

In this section, we have the following new properties of EQ-algebras.

Theorem 3.1. Let ξ be an EQ-algebra. Then the following hold for all $a,b,c,d \in E$:

(a)
$$((a \land b) \rightarrow c) \otimes (d \sim a) \leqslant (d \land b) \rightarrow c$$
,
(b) $(d \rightarrow c) \otimes (a \sim d) \leqslant a \rightarrow c$.

Proof. (a) By axiom (E6) and using (e_1) , (e_2) and (e_4) we obtain

$$((a \wedge b) \to c) \otimes (d \sim a) \leqslant ((a \wedge b \wedge c) \sim (a \wedge b)) \otimes ((d \wedge b) \sim (a \wedge b))$$

$$\leqslant (a \wedge b \wedge c) \sim (d \wedge b)$$

$$\leqslant (a \wedge b \wedge c \wedge d) \sim (d \wedge b)$$

$$\leqslant (c \wedge d \wedge b) \sim (d \wedge b)$$

$$= (d \wedge b) \to c.$$

(b) Using (a), we find

$$(d \to c) \otimes (a \sim d) = ((d \wedge 1) \to c) \otimes (a \sim d)$$

$$\leq (a \wedge 1) \to c$$

$$= a \to c. \square$$

By the two following theorems, we investigate some characterizations of 4 and 5-element prelinear EQ-algebras:

Theorem 3.2. Every non-linearly ordered EQ-algebra with four elements is a prelinear EQ-algebra.

Proof. Let $E = \{0, a, b, 1\}$ be a non-linearly ordered EQ-algebra. Then $0 \le a, b \le 1$ and so by $a \le b \to a$ and $b \le a \to b$, we can easily check that $(a \to b) \lor (b \to a) = 1$, for all $a, b \in E$. \square

Theorem 3.3. Let $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ be a non-linear ordered 5-element EQ-algebra. Then under each of the following conditions ξ is a prelinear EQ-algebra:

- (i) $0 \le c \le a, b \le 1$ and a, b are incomparable,
- (ii) $0 \leqslant a \leqslant c \leqslant 1$, $0 \leqslant b \leqslant 1$ and elements $\{a,b\}$ and $\{b,c\}$ are pairwise incomparable,
- (iii) $0 \le a, b, c \le 1$ and elements $\{a, b\}$, $\{a, c\}$ and $\{b, c\}$ are pairwise incomparable.

Proof. (i) We show that $(a \to b) \lor (b \to a) = 1$, for all $a, b \in \xi$. By $c \le a$ and $c \le b$, we imply $c \to a = 1$ and $c \to b = 1$. So $(c \to a) \lor (a \to c) = 1$ and $(c \to b) \lor (b \to c) = 1$. By $1 = a \lor b \le (a \to b) \lor (b \to a)$, we get $(a \to b) \lor (b \to a) = 1$. Then the proof is complete. The proof of (ii), (iii) is similar to part (i). \square

Lemma 3.4. Let $\xi = (E, \wedge, \otimes, \sim, 1)$ be an EQ-algebra with the bottom element 0. If $a \wedge b = 0$, $a \sim 1 = a$ and $b \sim 1 = b$, for $a, b \in E$, then $0 \sim 1 = 0$.

Proof. We have $0 \sim 1 \leqslant a \sim 1 = a$ and $0 \sim 1 \leqslant b \sim 1 = b$, (by (e_{11})). Then we get $0 \sim 1 \leqslant a \wedge b = 0$, hence $0 \sim 1 = 0$. \square

Lemma 3.5. Let $\xi = (E, \wedge, \otimes, \sim, 1)$ be an EQ-algebra with the bottom element 0. If $b \sim 1 = c \sim 1 = 1$ and $b \wedge c = 0$, for $b, c \in E$, then $a \sim 1 = 1$, for every $a \in E$.

Proof. Using (e_4) , we have $1 = c \sim 1 \le (c \wedge b) \sim (1 \wedge b) = 0 \sim b$, thus $0 \sim b = 1$. Now $1 = (0 \sim b) \otimes (b \sim 1) \le 0 \sim 1$ implies $0 \sim 1 = 1$. Hence by $1 = 0 \sim 1 \le a \sim 1$, we get that $a \sim 1 = 1$, for every $a \in E$. \square

Lemma 3.6. Let $\xi = (E, \wedge, \otimes, \sim, 1)$ be an EQ-algebra. If $a \sim 1 = 1$, $b \sim 1 = c$, then $a \sim b = c$, for $a, b, c \in E$.

Proof. From (e_1) and (e_2) , we obtain

$$c = 1 \otimes c = (a \sim 1) \otimes (b \sim 1) \leqslant a \sim b$$

= $(a \sim b) \otimes (a \sim 1) \leqslant b \sim 1 = c$. \square

Theorem 3.7. Let $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ be a non-linearly ordered 5-element EQ-algebra where $0 \leq a, b \leq c \leq 1$ and a, b are incomparable. If $b \sim c = b$, then $0 \sim a = b$.

Proof. From $b = b \sim c \leq (b \wedge a) \sim (c \wedge a) = 0 \sim a$ and $0 \sim c \leq b \sim c = b$, we get that $0 \sim a \in \{b, c, 1\}$ and $0 \sim c \in \{0, b\}$, respectively. Assume $0 \sim a = 1$. Now if $0 \sim c = 0$, then $a \leq a \sim 1 \leq a \sim c = 1 \otimes (a \sim c) = (0 \sim a) \otimes (a \sim c) \leq 0 \sim c = 0$, which is a contradiction. If $0 \sim c = b$, then $b = 0 \sim c \leq a \sim c$. On the other hand from (e_{11}) , we have $a = 1 \otimes a \leq 1 \sim a \leq a \sim c$, so $c = a \vee b \leq a \sim c$, implies $a \sim c \in \{c, 1\}$. If $a \sim c = c$, then $c = 1 \otimes c = (0 \sim a) \otimes (a \sim c) \leq 0 \sim c = b$,

that is a contradiction. If $a \sim c = 1$, then $1 = a \sim c \leqslant (a \wedge b) \sim (c \wedge b) = 0 \sim b$, implies $0 \sim b = 1$. By $1 = (a \sim 0) \otimes (0 \sim b) \leqslant a \sim b$, we get that $a \sim b = 1$. Therefore $1 = (c \sim a) \otimes (a \sim b) \leqslant c \sim b$, that is $b \sim c = 1$, which is a contradiction. If $0 \sim a = c$, then similar to the proof of the above way, we get a contradiction. Therefore $0 \sim a = b$. \square

The following theorem gives some properties of ℓEQ -algebras:

Theorem 3.8. The following properties hold in every ℓEQ -algebra ξ , for all $a, b, c, d \in E$:

(a)
$$a \sim d \leq ((a \vee b) \sim c) \sim ((d \vee b) \sim c)$$
,

(b)
$$(c \rightarrow (a \lor b)) \otimes (d \sim a) \leqslant c \rightarrow (d \lor b)$$
,

(c)
$$((a \lor b) \to c) \otimes (d \sim a) \leq (d \lor b) \to c$$
,

$$(d)$$
 $(c \rightarrow (a \lor b)) \otimes (a \rightarrow d)^2 \leqslant c \rightarrow (d \lor b)$.

Proof. (a) By axiom (E5) and Theorem 2.4, we obtain

$$a \sim d \leqslant (a \lor b) \sim (d \lor b)$$

$$= ((a \lor b) \sim (d \lor b)) \otimes (c \sim c)$$

$$\leqslant ((a \lor b) \sim c) \sim ((d \lor b) \sim c).$$

(b) Using Theorem 2.4 and axiom (E4), we get

$$(c \to (a \lor b)) \otimes (d \sim a) = ((c \land (a \lor b)) \sim c) \otimes (d \sim a)$$

$$\leqslant ((c \land (a \lor b)) \sim c) \otimes ((d \lor b) \sim (a \lor b))$$

$$\leqslant ((c \land (d \lor b)) \sim c)$$

$$= c \to (d \lor b).$$

(c) By Theorem 2.3(a) and (E8), we find

$$((a \lor b) \to c) \otimes (d \sim a) = ((a \lor b \lor c) \sim c) \otimes (d \sim a)$$

$$\leqslant (d \lor b \lor c) \sim c$$

$$= (d \lor b) \to c.$$

(d) By (E8) and Theorems 2.3 and 2.4(a), we obtain

$$(c \to (a \lor b)) \otimes (a \to d)^2 = ((c \lor a \lor b) \sim (a \lor b)) \otimes ((a \lor d) \sim d) \otimes (a \to d)$$

$$\leqslant ((c \lor a \lor b \lor d) \sim (a \lor b \lor d)) \otimes ((a \lor d) \sim d) \otimes (a \to d)$$

$$\leqslant ((c \lor b \lor d) \sim (a \lor b \lor d)) \otimes ((a \lor d) \sim d)$$

$$\leqslant (c \lor b \lor d) \sim (d \lor b) = c \to (d \lor b). \quad \Box$$

4. Some Properties of ℓ EQ-Algebras with Three, Four and Five Elements

In this section, we characterize ℓ EQ-algebras with order of 3,4 and 5.

Theorem 4.1. Every linearly ordered EQ-algebra is an ℓ EQ-algebra.

Proof. Let E be a linearly ordered EQ-algebra. Then E is a lattice-ordered. We show that E is an ℓ EQ-algebra. By Theorem 2.4, it is sufficient to show that $a \sim b \leq (a \vee c) \sim (b \vee c)$, for $a, b, c \in E$.

Let $a,b,c \in E$ and $a \leq b$. Then $b \leq c$, implies $a \leq b \leq c$, so $a \sim b \leq 1 = (a \vee c) \sim (b \vee c)$. If $c \leq b$, we have $a \leq c$ or $c \leq a$, then $a \leq c \leq b$ or $c \leq a \leq b$. Therefore by (e_{11}) , $a \sim b \leq c \sim b = (a \vee c) \sim (b \vee c)$ or $a \sim b \leq a \sim b = (a \vee c) \sim (b \vee c)$. \square

Since every EQ-algebra with three elements is a linearly ordered EQ-algebra, so we have the following corollary:

Corollary 4.2. Every EQ-algebra with three elements is an ℓ EQ-algebra.

Theorem 4.3. Every non-linearly ordered EQ-algebra $\xi = (E, \wedge, \otimes, \sim, 1)$ with four elements $\{0, a, b, 1\}$ is an ℓ EQ-algebra.

Proof. According to Theorem 2.4, it is sufficient to show that

$$a \sim b \leqslant (a \lor c) \sim (b \lor c), for \ a, b, c \in E$$
 (I)

By properties of EQ-algebras, all possible inequalities of the (I) hold, except for the following inequalities:

- (a) $0 \sim a \leqslant (0 \lor b) \sim (a \lor b) = b \sim 1$,
- (b) $0 \sim b \leqslant (0 \lor a) \sim (b \lor a) = a \sim 1$,
- (c) $a \sim b \leq (a \vee a) \sim (b \vee a) = a \sim 1$,
- (d) $a \sim b \leqslant (a \lor b) \sim (b \lor b) = 1 \sim b$.

Now we show that the above inequalities also hold. We have $a \otimes 1 \leq a \sim 1$ and $b \otimes 1 \leq b \sim 1$, so $a \sim 1 \in \{a, 1\}$ and $b \sim 1 \in \{b, 1\}$. We consider the following cases:

Case(1). $a \sim 1 = 1$, $b \sim 1 = 1$. In this case the inequalities (a) - (d) hold.

Case(2). $a \sim 1 = a$, $b \sim 1 = 1$. By $b \sim 1 = 1$, the inequalities (a) and (d) hold. Using Lemma 3.6, we get $a \sim b = a$. Now from $a = a \sim b \le (a \wedge b) \sim (b \wedge b) = 0 \sim b$ (by (e_4)), we obtain $0 \sim b \in \{a, 1\}$. If $0 \sim b = a$, then the inequalities (b) and (c) hold. If $0 \sim b = 1$, then $0 \sim 1 = 1$ because $1 = (0 \sim b) \otimes (b \sim 1) \leq (0 \sim 1)$. From (e_{11}) , we have $1 = 0 \sim 1 \leq a \sim 1$. Thus $a \sim 1 = 1$, that is a contradiction.

Case(3). $a \sim 1 = 1$, $b \sim 1 = b$. The proof of this case is similar to the case(2).

Case(4). $a \sim 1 = a, b \sim 1 = b$. Using Lemma 3.4, we get $0 \sim 1 = 0$ and so E is a good EQ-algebra. Moreover by Theorem 3.2, E is a prelinear EQ-algebra. Thus from Theorem 2.5, E is an ℓ EQ-algebra. \square

Theorem 4.4. Every non-linearly ordered 5-element EQ-algebra $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ in which $0 \le a \le c \le 1$ and elements $\{a, b\}$ and $\{b, c\}$ are pairwise incomparable, is an ℓ EQ-algebra.

Proof. We show that the relation (I) hold for $a, b, c \in E$. By properties of EQ-algebras, all possible inequalities of the relation (I) hold, except for the following inequalities:

- (a) $0 \sim a \leq (0 \vee b) \sim (a \vee b) = b \sim 1$,
- (b) $0 \sim b \leq (0 \vee a) \sim (b \vee a) = a \sim 1$,
- $(c) \ 0 \sim c \leqslant (0 \lor b) \sim (c \lor b) = b \sim 1,$
- (d) $0 \sim b \leqslant (0 \lor c) \sim (b \lor c) = c \sim 1$,
- (e) $a \sim b \leqslant (a \vee a) \sim (b \vee a) = a \sim 1$,
- (f) $a \sim b \leqslant (a \lor b) \sim (b \lor b) = 1 \sim b$,
- (g) $a \sim b \leqslant (a \lor c) \sim (b \lor c) = c \sim 1,$
- (h) $b \sim c \leqslant (b \lor a) \sim (c \lor a) = 1 \sim c$
- (i) $b \sim c \leq (b \vee b) \sim (c \vee b) = b \sim 1$.

We show that the above inequalities (a) - (d) hold.

We have $a \otimes 1 \leq a \sim 1$, $b \otimes 1 \leq b \sim 1$ and $c \otimes 1 \leq c \sim 1$. Then $a \sim 1 \in \{a, c, 1\}$, $b \sim 1 \in \{b, 1\}$ and $c \sim 1 \in \{c, 1\}$. We consider the following cases:

Case(1). $a \sim 1 = a$, $b \sim 1 = b$ and $c \sim 1 = c$. By Lemma 3.4, we get $0 \sim 1 = 1$, hence E is a good EQ-algebra. Using Theorem 3.3(ii), E is a prelinear EQ-algebra. Therefore E is an ℓ EQ-algebra(by Theorem 2.5).

Case(2). $a \sim 1 = a$, $b \sim 1 = b$ and $c \sim 1 = 1$. We have $1 = c \sim 1 \le (c \wedge b) \sim (1 \wedge b) = 0 \sim b$, thus $0 \sim b = 1$. Then $b = (0 \sim b) \otimes (b \sim 1) \le 0 \sim 1 \le b \sim 1 = b$, that is $0 \sim 1 = b$. So $b = 0 \sim 1 \le a \sim 1 = a$, which is a contradiction.

Case(3). $a \sim 1 = a$, $b \sim 1 = 1$ and $c \sim 1 = c$. By $1 = b \sim 1 \le (b \wedge c) \sim (1 \wedge c) = 0 \sim c$, we get that $0 \sim c = 1$. Now $0 \le a \le c$ implies $1 = 0 \sim c \le a \sim c$, that is $a \sim c = 1$. We get a contradiction, because $c = 1 \otimes c = (a \sim c) \otimes (c \sim 1) \le a \sim 1 = a$.

Case(4). $a \sim 1 = a$, $b \sim 1 = 1$ and $c \sim 1 = 1$. By hypothesis, we have $b \wedge c = 0$, then from Lemma 3.5, we get that $a \sim 1 = 1$, that is a contradiction.

Case(5). $a \sim 1 = 1$, $b \sim 1 \in \{b, 1\}$ and $c \sim 1 = c$. By $a \leq c \leq 1$ and (e_{11}) , we have $1 = a \sim 1 \leq c \sim 1 = c$, which is a contradiction.

Case(6). $a \sim 1 = 1$, $b \sim 1 = 1$, and $c \sim 1 = 1$. In this case the inequalities (a) - (d) hold, hence E is an ℓ EQ-algebra.

Case(7). $a \sim 1 = 1$, $b \sim 1 = b$ and $c \sim 1 = 1$. From $a \sim 1 = 1$ and $c \sim 1 = 1$, the inequalities (b) and (d) hold. By Lemma 3.6, we get $a \sim b = b$. Now $b = a \sim b \leqslant (a \wedge a) \sim (b \wedge a) = a \sim 0$ implies $a \sim 0 \in \{1,b\}$. If $a \sim 0 = 1$, then we get $0 \sim 1 = 1$, because $1 = (a \sim 0) \otimes (a \sim 1) \leqslant 0 \sim 1$. So $1 = 0 \sim 1 \leqslant b \sim 1 = b$, which is a contradiction, therefore $0 \sim a = b$. Hence the inequality (a) holds. Similar to the above we get $0 \sim c = b$, thus the inequality (c) holds.

Case(8). $a \sim 1 = c$, $b \sim 1 = b$ and $c \sim 1 = c$. From $b \wedge c = 0$ and $0 \sim 1 \leqslant a \sim 1 = c$, $0 \sim 1 \leqslant b \sim 1 = b$, we get $0 \sim 1 = 0$. By $c = a \sim 1 \leqslant (a \wedge b) \sim (1 \wedge b) = 0 \sim b$, we obtain $0 \sim b \in \{1, c\}$. If $0 \sim b = 1$, then $b = (0 \sim b) \otimes (b \sim 1) \leqslant 0 \sim 1 = 0$, that is a contradiction. Therefore $0 \sim b = c$, hence the inequalities (b) and (d) hold. From $b = b \sim 1 \leqslant (b \wedge c) \sim (1 \wedge c) = 0 \sim c$, we get $0 \sim c \in \{b, 1\}$. If $0 \sim c = 1$, then $c = (c \sim 0) \otimes (c \sim 1) \leqslant 0 \sim 1 = 0$ implies c = 0, that is a contradiction. Thus $0 \sim c = b$. By $b = 0 \sim c \leqslant 0 \sim a$, we obtain $0 \sim a \in \{b, 1\}$. If $0 \sim a = 1$, then $c = (0 \sim a) \otimes (a \sim 1) \leqslant 0 \sim 1 = 0$, which is a contradiction. Hence $0 \sim a = b$ and so the inequalities (a) and (c) hold.

Case(9). $a \sim 1 = c$, $b \sim 1 = b$ and $c \sim 1 = 1$. In this case, we get a contradiction because, by $1 = c \sim 1 \le (c \land b) \sim (1 \land b) = 0 \sim b$, we obtain $0 \sim b = 1$. Thus $b = (0 \sim b) \otimes (b \sim 1) \le 0 \sim 1 \le b \sim 1 = b$, so $0 \sim 1 = b$. On the other hand from (e_{11}) , we obtain $0 \sim 1 \le b \land c = 0$ that is $0 \sim 1 = 0$.

Case(10). $a \sim 1 = c$, $b \sim 1 = 1$ and $c \sim 1 = c$. By $b \sim 1 = 1$, the inequalities (a), (c) hold. Now by (e_4) , $c = a \sim 1 \le (a \wedge b) \sim (1 \wedge b) = 0 \sim b$ implies $0 \sim b \in \{1, c\}$. If $0 \sim b = 1$, then $1 = (0 \sim b) \otimes (b \sim 1) \le 0 \sim 1$ that is $0 \sim 1 = 1$. On the other hand $1 = 0 \sim 1 \le a \sim 1 = c$, so c = 1, which is a contradiction. Hence $0 \sim b = c$ and therefore the inequalities (b) and (d) hold.

Case(11). $a \sim 1 = c$, $b \sim 1 = 1$ and $c \sim 1 = 1$. Similar to the proof of case(4), we get a contradiction.

Now we prove the inequality (e). By (e₄), we have $a \sim b \leq (a \wedge b) \sim (b \wedge b) = 0 \sim b$, and so by (b) we get that $a \sim b \leq a \sim 1$.

Similar to the proof of (e), we can easily check that the inequalities (f) - (i) hold, by (e_4) and the inequalities (a) - (d). \square

Theorem 4.5. Every non-linearly ordered 5-element EQ-algebra $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ in which $0 \le c \le a, b \le 1$ and a, b are incomparable, is an ℓ EQ-algebra.

Proof. We show that the relation (I) hold, for $a, b, c \in E$. By properties of

EQ-algebras, all possible inequalities of the relation (I) hold, except for the following inequalities:

```
(a) 0 \sim a \leqslant (0 \lor b) \sim (a \lor b) = b \sim 1,
```

(b)
$$0 \sim b \leqslant (0 \lor a) \sim (b \lor a) = a \sim 1$$
,

(c)
$$b \sim c \leqslant (b \lor a) \sim (c \lor a) = 1 \sim a$$
,

(d)
$$a \sim c \leq (a \vee b) \sim (c \vee b) = 1 \sim b$$
,

(e)
$$a \sim b \leq (a \vee a) \sim (b \vee a) = a \sim 1$$
,

$$(f)$$
 $a \sim b \leqslant (a \lor b) \sim (b \lor b) = 1 \sim b.$

We show that the above inequalities (a) - (d) hold, we can easily check that the inequalities (e), (f) can be obtained from (e_4) and the inequalities (c) and (d).

We have $a \otimes 1 \leq a \sim 1$ and $b \otimes 1 \leq b \sim 1$, then $a \sim 1 \in \{a, 1\}$ and $b \sim 1 \in \{b, 1\}$. We consider the following cases:

Case(1). $a \sim 1 = 1$, $b \sim 1 = 1$. In this case all of the inequalities hold.

Case(2). $a \sim 1 = 1$, $b \sim 1 = b$. From $a \sim 1 = 1$, the inequalities (b) and (c) hold. Also by Lemma 3.6, we obtain $a \sim b = b$. By $b = a \sim b \leqslant (a \wedge a) \sim (b \wedge a) = a \sim c$, we get that $a \sim c \in \{b,1\}$. Now if $a \sim c = 1$, then $1 = (c \sim a) \otimes (a \sim 1) \leqslant c \sim 1$, that is $c \sim 1 = 1$. On the other hand, $c \leqslant b \leqslant 1$ implies $1 = c \sim 1 \leqslant b \sim 1$ (by (e_{11})), thus $b \sim 1 = 1$, which is a contradiction. Hence $a \sim c = b$ and the inequality (d) holds. From $0 \leqslant c \leqslant a$, we obtain $0 \sim a \leqslant a \sim c = b = b \sim 1$, therefore the inequality (a) holds.

Case(3). $a \sim 1 = a, b \sim 1 = 1$. The proof is similar to the proof of case(2).

Case(4). $a \sim 1 = a, b \sim 1 = b$. By $c \leqslant a, b \leqslant 1$, we obtain $c \sim 1 \leqslant a \sim 1 = a$ and $c \sim 1 \leqslant b \sim 1 = b$. Therefore $1 \sim c \leqslant a \wedge b = c \leqslant 1 \sim c$, that is $1 \sim c = c$. From $0 \sim 1 \leqslant a \sim 1 = a$ and $0 \sim 1 \leqslant b \sim 1 = b$, we get $0 \sim 1 \in \{0, c\}$. Let $0 \sim 1 = 0$. Then E is a good EQ-algebra. Also by Theorem 3.3(i), E is a prelinear EQ-algebra, hence E is an ℓ EQ-algebra(by Theorem 2.5).

Now let $0 \sim 1 = c$. Then by $b = b \sim 1 \le (b \wedge a) \sim (1 \wedge a) = c \sim a$, we get that $c \sim a \in \{1,b\}$. If $c \sim a = 1$, then $a = 1 \otimes a = (c \sim a) \otimes (a \sim 1) \le c \sim 1 = c$, that is a contradiction. Thus $a \sim c = b$ and the inequality (d) holds. Now $a = a \sim 1 \le (a \wedge b) \sim (1 \wedge b) = c \sim b$, implies $c \sim b \in \{1,a\}$. If $c \sim b = 1$, we get a contradiction, because $b = 1 \otimes b = (c \sim b) \otimes (b \sim 1) \le c \sim 1 = c$. Thus $c \sim b = a$ and so the inequality (c) holds. From $0 \le c \le a, b$, we obtain $0 \sim a \le c \sim a = b = b \sim 1$ and $0 \sim b \le c \sim b = a = a \sim 1$, therefore the inequalities (a) and (b) hold. \square

Theorem 4.6. Every non-linearly ordered 5-element EQ-algebra $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ in which $0 \leqslant a, b, c \leqslant 1$, and elements $\{a, b\}$,

 $\{a,c\}$ and $\{b,c\}$ are pairwise incomparable, is an ℓEQ -algebra.

Proof. By $c = c \otimes 1 \leq c \sim 1$, we have two cases:

Case(1). $c \sim 1 = 1$. From $1 = c \sim 1 \leqslant (c \wedge a) \sim (1 \wedge a) = 0 \sim a$ and $1 = c \sim 1 \leqslant (c \wedge b) \sim (1 \wedge b) = 0 \sim b$, we get that $0 \sim a = 0 \sim b = 1$. Therefore $1 = (0 \sim a) \otimes (0 \sim b) \leqslant a \sim b$, implies $a \sim b = 1$. On the other hand, by $b \sim 1 = (a \sim b) \otimes (b \sim 1) \leqslant a \sim 1$ and $a \sim 1 = (b \sim a) \otimes (a \sim 1) \leqslant b \sim 1$, we obtain $a \sim 1 = b \sim 1$. Also we have $a = a \otimes 1 \leqslant a \sim 1 = b \sim 1$ and $b = b \otimes 1 \leqslant b \sim 1 = a \sim 1$, then $a \sim 1 = b \sim 1 = 1$. By $1 = (a \sim 1) \otimes (1 \sim c) \leqslant a \sim c$, we get that $a \sim c = 1$. Similarly we can prove $b \sim c = 1$. Now $1 = b \sim c \leqslant (b \wedge c) \sim (c \wedge c) = 0 \sim c$ and $1 = (0 \sim a) \otimes (a \sim 1) \leqslant 0 \sim 1$, imply $0 \sim c = 0 \sim 1 = 1$. Therefore $a \sim b = 1$, for every $a, b \in E$, that is E is an ℓ EQ-algebra.

Case(2). $c \sim 1 = c$. From the case(1) and $a \leq a \sim 1$, $b \leq b \sim 1$, we get that $a \sim 1 = a$ and $b \sim 1 = b$. Then by Theorem 3.4, $0 \sim 1 = 0$. On the other hand, by Theorem 3.3(iii), E is a prelinear EQ-algebra. Therefore E is an ℓ EQ-algebra(by Theorem 2.5). \square

In the following theorems, we denote ξ_5 by $\xi = (\{0, a, b, c, 1\}, \land, \otimes, \sim, 1)$ a non-linearly ordered 5-element EQ-algebra where $0 \leqslant a, b \leqslant c \leqslant 1$ and a, b are incomparable.

Theorem 4.7. ξ_5 is an ℓEQ -algebra if and only if $0 \sim a = b \sim c$ and $0 \sim b = a \sim c$.

Proof. Let ξ_5 be an ℓ EQ-algebra. Then by Theorem 2.4, $0 \sim a \leq (0 \vee b) \sim (a \vee b) = b \sim c$. Also from (e_4) , we have $b \sim c \leq (b \wedge a) \sim (c \wedge a) = 0 \sim a$. Hence $0 \sim a = b \sim c$. Similarly we can prove $0 \sim b = a \sim c$.

Conversely, let $0 \sim a = b \sim c$ and $0 \sim b = a \sim c$. Then we show that ξ_5 is an ℓ EQ-algebra. Using Theorem 2.4, it is sufficient to show that the relation (I) hold, for $a, b, c \in E$. By properties of EQ-algebras, all possible inequalities of the relation

- (I) hold, except for the following inequalities:
- (a) $0 \sim a \leq (0 \vee b) \sim (a \vee b) = b \sim c$,
- (b) $0 \sim b \leqslant (0 \lor a) \sim (b \lor a) = a \sim c$,
- (c) $a \sim b \leq (a \vee a) \sim (b \vee a) = a \sim c$,
- (d) $a \sim b \leqslant (a \vee b) \sim (b \vee b) = b \sim c$.

By assumption the inequalities (a) and (b) hold. From (e_4) , we obtain $a \sim b \le (a \wedge b) \sim (b \wedge b) = 0 \sim b = a \sim c$ and $a \sim b \le (a \wedge a) \sim (b \wedge a) = a \sim 0 = b \sim c$.

Then the inequalities (c) and (d) hold and the proof is complete. \square

In ξ_5 , we have $b \leqslant c \to b = b \sim c$, and so $b \sim c \in \{b, c, 1\}$.

Theorem 4.8. If $b \sim c = 1$, for $b, c \in \xi_5$, then ξ_5 is an ℓEQ -algebra.

Proof. By $1 = b \sim c \leq (b \wedge a) \sim (c \wedge a) = 0 \sim a$, we get that $b \sim c = 0 \sim a = 1$. From (e_8) and (e_{10}) , we have $a \leq c \rightarrow a = a \sim c$, so we obtain $a \sim c \in \{a, c, 1\}$. Now we have the following cases:

Case(1). $a \sim c = 1$. By $1 = a \sim c \leq (a \wedge b) \sim (c \wedge b) = 0 \sim b$, we get that $a \sim c = 0 \sim b$. Therefore by Theorem 4.7, E is an ℓ EQ-algebra.

Case(2). $a \sim c = a$. From (e_2) and (e_{11}) , we get $a = 1 \otimes a \leq (0 \sim a) \otimes (a \sim c) \leq 0 \sim c \leq a \sim c = a$, thus $0 \sim c = a$. By $a = a \sim c \leq 0 \sim b$, we get that $0 \sim b \in \{a, c, 1\}$. Now assume $0 \sim b = 1$, then $1 = (0 \sim b) \otimes (b \sim c) \leq 0 \sim c = a$, which is a contradiction. If $0 \sim b = c$, then $1 = (0 \sim 0) \otimes (b \sim c) \leq (0 \sim b) \sim (0 \sim c) = c \sim a = a$, that is a contradiction. Therefore $0 \sim b = a$. Hence by Theorem 4.7, E is an ℓ EQ-algebra.

Case(3). $a \sim c = c$. Similar to the proof of case(2), E is an ℓ EQ-algebra. \square

Theorem 4.9. In ξ_5 , if $b \sim c = b$, and $a \sim c \in \{a, 1\}$, then ξ_5 is an ℓEQ -algebra.

Proof. By Theorem 3.7, we have $0 \sim a = b$. Let $a \sim c = a$. Then by (e_{11}) , we get that $0 \sim c \leqslant a \sim c = a$ and $0 \sim c \leqslant b \sim c = b$. So $0 \sim c \leqslant a \wedge b = 0$, that is $0 \sim c = 0$. Also by $a \sim c \leqslant (a \wedge b) \sim (c \wedge b) = 0 \sim b$, we obtain $0 \sim b \in \{a,c,1\}$. Now if $0 \sim b = 1$, then $b = 1 \otimes b = (0 \sim b) \otimes (b \sim c) \leqslant 0 \sim c = 0$, which is a contradiction. If $0 \sim b = c$, then $b = 1 \otimes b = (0 \sim 0) \otimes (b \sim c) \leqslant (0 \sim b) \sim (0 \sim c) = c \sim 0 = 0$, that is a contradiction. Then $0 \sim b = a$ and so by Theorem 4.7, ξ_5 is an ℓ EQ-algebra. Assume $a \sim c = 1$, then by $a \sim c \leqslant 0 \sim b$, we obtain $0 \sim b = 1$. Thus $0 \sim b = a \sim c$, and by Theorem 4.7, ξ_5 is an ℓ EQ-algebra. \square

In ξ_5 , we know $a \sim c \leq 0 \sim b$ and so $a \sim c = c$ implies $0 \sim b \in \{c, 1\}$, now we have the following theorems in ξ_5 :

Theorem 4.10. Let $b \sim c = b$, $a \sim c = c$ and $0 \sim b = c$. Then ξ_5 is an ℓEQ -algebra.

Proof. From $b \sim c = b$ and Theorem 3.7, we get that $0 \sim a = b$. Therefore $0 \sim a = b \sim c = b$ and $a \sim c = 0 \sim b = c$, ξ_5 is an ℓ EQ-algebra, by Theorem 4.7. \square

Theorem 4.11. (i) Let $b \sim c = b$, $a \sim c = c$ and $0 \sim b = 1$. Then we get two fuzzy equalities such that ξ_5 is not an ℓEQ -algebra.

(ii) Let $b \sim c = c$ in ξ_5 . Then we get two fuzzy equalities such that ξ_5 is not an ℓEQ -algebra.

Proof. (i) By $0 \le a, b \le c$ and (e_{11}) , we get $0 \sim c \le b \sim c = b$ and $0 \sim c \le a \sim c = c$, so $0 \sim c \le b \wedge c = b$, therefore $0 \sim c \in \{0,b\}$. Now if $0 \sim c = 0$, then by (e_2) $b = 1 \otimes b = (0 \sim b) \otimes (b \sim c) \le 0 \sim c = 0$, which is a contradiction. Thus $0 \sim c = b$. By (E7) and (e_{11}) , we obtain $b = b \otimes 1 \le b \sim 1 \le b \sim c = b$ that is $b \sim 1 = b$. From $b = 1 \otimes b = (0 \sim b) \otimes (b \sim 1) \le 0 \sim 1 \le b \sim 1 = b$, we obtain $0 \sim 1 = b$. By $0 \le a \le 1$ and (e_{11}) , we have $b = 0 \sim 1 \le a \sim 1$. On the other hand $a = a \otimes 1 \le a \sim 1$, therefore $c = a \vee b \le a \sim 1$, thus $a \sim 1 \in \{c, 1\}$. Now if $a \sim 1 = 1$, then from $a \le c \le 1$ and (e_{11}) , we get $1 = a \sim 1 \le a \sim c = c$, which is a contradiction. Hence $a \sim 1 = c$. By $b \sim c = b$ and Theorem 3.7, we get that $0 \sim a = b$. From (e_4) , we have $a \sim b \le (a \wedge a) \sim (b \wedge a) = a \sim 0 = b$, so $a \sim b \le b$. Thus by $b = 1 \otimes b = (b \sim 0) \otimes (0 \sim a) \le b \sim a \le b$, we get that $a \sim b = b$. We have $c = c \otimes 1 \le c \sim 1$, then $c \sim 1 \in \{c, 1\}$. Hence we can form two fuzzy equalities, say \sim_1 and \sim_2 such that ξ_5 with either \sim_1 or \sim_2 is not an ℓ EQ-algebra, because $1 = 0 \sim b \le (0 \vee a) \sim (b \vee a) = a \sim c = c$:

\sim_1	0	a	b	c	1	\sim_2	0	a	b	c	1
0	1	b	1	b	b	0	1	b	1	b	b
a	b	1	b	c	c	a	b	1	b	c	c
b	1	b	1	b	b	b	1	b	1	b	b
c	b	c	b	1	c	c	b	c	b	1	1
1	b	c	b	c	1	1	b	c	b	1	1

(ii) Let $b \sim c = c$. Then by (e_4) , we have $c = b \sim c \leq (b \wedge a) \sim (c \wedge a) = 0 \sim a$, therefore $0 \sim a \in \{c, 1\}$. If $0 \sim a = c$, then similar to the proof of Theorem 4.10, ξ_5 is an ℓ EQ-algebra. If $0 \sim a = 1$, similar to the proof of (i) we can obtain two the following fuzzy equalities \sim_3 and \sim_4 such that ξ_5 with either \sim_3 or \sim_4 is not an ℓ EQ-algebra: \square

\sim_3	0	a	b	c	1	\sim_4	0	a	b	c	1
0	1	1	a	a	a	0	1	1	a	a	a
a	1	1	a	a	a	a	1	1	a	a	a
b	a	a	1	c	c	b	a	a	1	c	c
c	a	a	c	1	c	c	a	a	c	1	1
1	a	a	c	c	1	1	a	a	c	1	1

References

[1] C. C. Chang, Algebraic analysis of many valued logics, *Trans Am Math Soc*, (1958), 467-490.

- [2] M. El-Zekey, Representable good EQ-algebras, Soft Computing, (2010), 1011-1023.
- [3] M. El-Zekey and V. Novák, Semicopula-based EQ-algebras, submitted.
- [4] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, *Fuzzy Sets Systems*, (2001), 271-288.
- [5] J. A. Goguen, The logic of inexact concepts, Synthese, (1968-69), 325-373.
- [6] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, (1998).
- [7] V. Novák, EQ-algebras: primary concepts and properties, in: *Proc. Czech-Japan Seminar*, Ninth Meeting. Kitakyushu and Nagasaki, Graduate school of information, Waseda university, (2006), 18-22.
- [8] V. Novák, EQ-algebra-based fuzzy type theory and its extensions. *Logic Journal of the IGPL*, (2011), 512-542.
- [9] V. Novák, On Fuzzy Type Theory, Fuzzy Sets and Systems, (2005), 235-273.
- [10] V. Novák and B. De Baets, EQ-algebras. Fuzzy sets and systems, (2009), 2956-2978.
- [11] E. Turunen, Mathematics Behind Fuzzy Logic. Physica-Verlag, Heidelberg, (1999).
- [12] L. A. Zadeh, Is there a need for fuzzy logic?, Inform Science, (2008), 2751-2779.

Leila Abbasian

Ph.D student of Mathematics Department of Mathematics Kerman Branch, Islamic Azad university Kerman, Iran E-mail: leila_abbasian6@yahoo.com

Lida Torkzadeh

Associate Professor of Mathematics Department of Mathematics Kerman Branch, Islamic Azad university Kerman, Iran E-mail: ltorkzadeh@yahoo.com