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1.

Let G and H be two groups which act on each other on the right hY
and ¢", for all ¢ € G and h € H. Clearly, every group acts on itself
by conjugation. In 1987, Brown et. al. [3] introduced the non-abelian
tensor product of groups, which is denoted by G ® H and it is the group
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generated by the symbols g ® h, satisfying the following relations:

99 @h= (g7 @h9) (g @ h),
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g hh = (g@h)(¢" @),

for all g,¢' € G and h,h' € H. The actions are compatible in the sense
that:

—1
g = (g,
h/gh — (h/)h_lgh_

In the special case, G ® G is said to be the tensor square of GG. Recall
that, the set of all right n-Engel elements of a group G is defined by
R.(G) ={g € G | [g,na] =1, Ya € G}, where [g,a] = g~'a"'ga, and

(9, na]l = [[g,n-10],a] = [g,a,...,al.

n
Using the non-abelian tensor square, the set of all right ng-Engel ele-
ments of G is defined as follows:

RY(G)={ge G | [gn-10] ®a=1g, YaeG}.

See also [2] for the case n = 2. Biddle and Kappe in [2], proved that
RY(G) is always a characteristic subgroup of G contained in Ra(G).
Moravec in [9] determined some further information on R (G) and in-
troduced the concept of 2g-Engel groups. A group G is called 2g-Engel
when [g,a] ® a = 1g, for all g,a € G.

For each element g of a given group G, and an automorphism « of
Aut(G),
lg.0] = g7 alg) = g7 "¢",

is called the autocommutator of g and «. For the group G,
L(G)={g9ge€G:[g,a] =1,Va € Aut(G)},

and
K(G) =[G,Aut(G)] = ([g,0] : g € G, € Aut(GQ)),

are called the absolute centre and autocommutator subgroup of G, respec-
tively. The concepts of absolute centre and autocommutator subgroup
of a group ascend to the works of Baer [1] and Hegarty [5, 6]. Clearly,
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they are both characteristic subgroups and if the automorphism « runs
over the inner automorphisms, then one gets the centre, Z(G), and the
commutator subgroup, G’, respectively.

Moghaddam and Sadeghifard in [8], introduced the concept of 2g-auto
Engel set as follows:

AR (G) ={g€ G | [9,0] @ a = 1g, Ya € Aut(G)}.
They proved that AR (G) is a characteristic subgroup of G' contained
in RY(G).
A smallest positive integer n is called the exponent of G, if g" = 1, for
all g € G and denoted by exp(G).

In 1904, Schur [12] was the first mathematician who studied the con-
nection between the central factor group of a group G and its derived
subgroup, G’. He is credited with the following well-known result and
known as Schur’s Theorem which says that if G/Z(G) is finite then so
is its derived subgroup.

The converse of Schur’s result is also an interesting problem. It is studied
by many authors and show that it is held under some conditions. In fact,
it is not true in general and one may consider the infinite extra special
p-group for any odd prime p as a counterexample.

In the present article we introduce a new notion of tensor absolute centre
and tensor autocommutator of a given group and finally the analogue of
Schur’s result is also proved.

2. Preliminary Results

In this section we state the following facts, which are needed in proving
our main results.

Proposition 2.1. (/3], Proposition 2) Let G and H be groups equipped
with compatible actions on each other. Then

(i) the groups G and H act on G ® H so that

(doh)y=gd’0n, (goh)=don,
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forallg,g € G, h,h € H.

(i1) there are group homomorphisms A : G H — G and N : GQ H —
H such that

ANg@h)=g7"¢",  N(goh)= ("),
forallge G and h € H.
Proposition 2.2. ([4/, Proposition 3 ) Let G and H be groups equipped

with compatible actions on each other. Then the following identities are
satisfied:

(i) (g7'@h)=(gah)t=(gah)
(i) (¢' @ h')9®" = (¢ @ h")loh;
(iii) (g7*g") @ h' = (9@ h)"Hg® h)";
(iv) ¢ @ h™h = (g@h) ™ (g h);
v) g 'g" @ (W)W =[goh,gd @,
forall g,g € G and h,h' € H.

In 2015, Moghaddam and Sadeghifard [8] introduced the action of a
group G on Aut(G) given by a9 = a¥9 = ¢ -1 0 a0 g, and the action
of Aut(G) on G given by g% = (g)a, for all g € G, a € Aut(G) and
¢g € Inn(G). They also showed that the above actions are compatible.

So, the non-abelian tensor product G® Aut(G) generated by the symbols
g ® a such that

9 @a=(¢" ®a’)(g ®a), goaf=(92p)¢"®a),
for all g,¢’ € G and «, 8 € Aut(G).

Lemma 2.3. (/8/, Lemma 2.3 ) The above actions are well-defined and
compatible.

Proposition 2.4. ([8/, Lemma 3.2 ) Let G be a group, then
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(i) (g@a) " =g@al;
(it) (l9, 8] ® @)([g,0] ® B) = 1g;
(iii) 9, 0] ® g = 1g,
for all g € ARZ(G) and o, € Aut(G).

The set of all 2-auto Engel elements of a given group G is defined as
follows (see also [11]).

ARy (G)={9€ G| g2a] =[g9,a,a] = 1,Va € Aut(G)}.

Lemma 2.5. The set of all 2g-auto Engel elements of a given group G
contains L(G) and being contained in the set of 2-auto Engel elements

of G.

Proof. It is obvious that L(G) is a subset of AR (G). Now, by Propo-
sition 2. 1(ii), there exists a homomorphism v : G ® Aut(G) — K(G)
given by v(g ® a) = g~ g% = [g, a], from which the claim follows. [

The next proposition gives some useful properties of AR%@(G), which is
needed in proving our main results.

Proposition 2.6. (/8], Proposition 3.5 ) Let G be a group. Then
(i) 7' ®a=(g®a)l;
(i) lg,a]" @ B = ([g, 0] @ B)";
(iti) g @ a" = (9 ® a)";
(iv) g,0] ® [8,7] = le;
(v) 9@ [a, 6] = ([g,a] ® B)?,
for all o, B,v € Aut(G), g € ARD(G) and n € N.

The following corollary is an immediate consequence of the above propo-
sition.

Corollary 2.7. Let G be any group. Then

[91792] ® [(pglva] = 1®7
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for all g1, g2 in ARS(G) and o € Aut(G).

Proof. By Proposition 2.6(iv), we have
[91, 92] @ [@g,, 0] = [91, pgy] otimes[pg,, 0] =1g. O

The following proposition is an immediate consequence of Propositions
2.4, and 2.6, see also [8].

Proposition 2.8. Let G be a 2g-auto Engel group. Then
(i) G ® Aut(QG) is abelian;

(i) C&(a) ={g € G | g®a=1g, Ya € Aut(G)} is a characteristic
subgroup of G.

Proposition 2.9. ([11], Theorem 3.8) Let G be a 2-auto Engel group. Then
Aut(G) is nilpotent of class at most 2.

Proof. Lemma 3.1(d), (f) in [11] imply that [, [a, 3,7]] = [, [, B],7]? =
1, forallz € G and «, 3,7 € Aut(G). Therefore [, 3,7] = idg and hence
Aut(QG) is nilpotent of class at most 2. [

The following lemma is used in the next section.

Lemma 2.10. (Dicman) Let {x1,...,x,} be a finite normal subset of a
group G where |z;| is finite for each 1 <i < n. Then X = (x1,...,zy) is
a finite normal subgroup of G and | X| < []i; |xil.

Proof. See [10], page 425. O

Definition 2.11. Let G be any group, then
L?(G)={g€e G| g®a=1g, YVaec Aut(G)},
is called tensor absolute centre of G. Also,
K@) =GaAut(G)=(goa | ge G, acAut(q)),

1s called tensor autocommutator of G.
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Lemma 2.12. Let G be an arbitrary group. Then L®(G) is character-
istic subgroup of G.

Proof. By the above definition, for all ¢ € L®(G) and «, 3 € Aut(Q),
we have
-1
Pea=(ged ) =1,
Hence ¢° € L®(G) and so it is characteristic in G. O
Note that, Proposition 2.1(ii) implies that L®(G) < L(G) < Z(G).

3. Main Results

Using the property of L®(G) of a given group G, we may define the
following map

P Aut(G) — Aut(G/L2(Q))

a— a,

where @ : G/L®(G) — G/L®(G) given by a(gL®(G)) = ¢g*L®(G), for
all g € G. Clearly, & and 1 are well-defined and they are automorphism
and homomorphism, respectively. Now we define

Autre)(G) = {a € Aut(G) | [g,a] € L®(G), Vg € G},

which is a normal subgroup of Aut(G), as we have

a) = id}

gL®(G)) = gL?(G), Vg € G}
g*L?(G) = gL®(G), Yg € G}
[9,0a] € L®(G), Vg € G}

Ker(¢) = {a € Aut(G

The following lemma is very useful for our further investigations.

Lemma 3.1. If the factor group G/L®(G) is finite. Then Aut(G) is
finite if and only if Autreq)(G) is finite.
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Proof. Suppose that G/L®(G) is finite, then by the above discussion
Aut(G)/Autre(g)(G) is also finite. Thus the result can be obtained eas-
ily. O

The following theorem is helpful in proving our main results in this
section.

Theorem 3.2. Let G be any group, Then

9192 ® @ = (91 ® @) (g2 ® @)([g1, 92] ® ),
for all g1, 92 € ARY(G), and a € Aut(G).

Proof. One can easily check that ¢y, 4,1(z) = [@g;l,@g;l]((ﬁ), for all x
in GG. Proposition 2.6 and Corollary 2.7 imply that

(97* ® a®)(g2 ® a)

= (g1lg1, 92] ® a¥92) (g2 ® )

= (g1 ® a¥92)l9192) (g1, go] @ a¥92)(go ® @)
= (g1 ® a¥92)([g1, g2] ® a¥2)(g2 ® )
=(
= (

g192 @ o =

91 ® afa, pg,])([91, 92] @ ala, g,]) (92 ® )
g1 ®@a)(g2 ® a)([g1,92] ® ). O

Corollary 3.3. Let G be any group, then
J"®a=(g®a)",
for all g € ARS(G), o € Aut(G) and n € N.

Proof. The result is trivially true for n = 1. Using induction on n, and
assume the result holds for n — 1 , then by the above theorem

"Ra= ¢" lgoa
=" '@a)g®a)(g9" ' ®a)
=(gea)". O

Theorem 3.4. For any finite 2g-auto Engel group G, exp(K®(Q)) di-
vides exp(G) and exp(Aut(G)).
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Proof. Assume exp(G) = n then ¢" = 1, for all ¢ € G. On the other
hand, Corollary 3.3 implies that 1y = ¢" ® a = (¢ ® )™, for every « in
Aut(G). Therefore exp(K®(Q)) | exp(G).

Now assume exp(Aut(G)) = m, then o = id, for all @ € Aut(G). So by
Proposition 2.6(iii), we have 1g = g®a™ = (9®a)™. Thus exp(K®(G)) |
exp(Aut(G)). O

Lemma 3.5. Let G be a 2g-auto Engel group with | G/L®(G) |= n.
Then the exponent of K®(G) divides n.

Proof. Take any generator g ® o of K®(G), where g € G and a €
Aut(G). By the assumption, ¢" € L®(G). Hence using Corollary 3.3,
lg = ¢" ® a = (9 ® @)™, which gives the result. [

Proposition 3.6. For any 2g-auto Engel group G, there exists a monomor-
phism from Autpe ) (G) into Hom(G/L®(G), L®(G)).

Proof. Consider the map
Y Autpe g (G) — Hom(G/L®(G), L®(G))
o — af,

where o* : G/L®(G) — L%(QG) given by o*(gL®(G)) = g, ], for all
g € G. Clearly, o™ is well-defined homomorphism, since for all g; and
g2 in G, if g1L®(G) = g2L®(G) then gi1g5' € L®(G) < Z(G), which
implies that [g1, g5 '] = 1. By the definition of L?(G) and Theorem 3.2,
g1 @ a = go ® a and so a*(¢1 L?(G)) = a*(g2L®(G)). On the other
hand, o is a homomorphism, as for all g1, g2 € G,

o (g1 L2 (G)g2L®(G)) = a*(9192L%(G)) = 9192, 0] = [g1, @] [g2, o).
Clearly, the map v is a well-defined homomorphism,
(araz) = (a1a2)" (9L (G)) = [g, 1az] = [g, aa][g, 1] = [g, ][, a2,

for all a1, a2 € Autze()(G). One can easily check that 1 is a monomor-
phism. O
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Now, we are in a position to prove the following result.

Theorem 3.7. Let the tensor absolute central factor group G/L®(G) of
a 2g-auto Engel group G is finite. Then K®(G) is finite if and only if
Autre e (G) is finite.

Proof. Suppose that K% (QG) is finite, and Aute(g)(G) is infinite. Propo-
sition 3.6 implies that the image o*(G/L®(G)) must be infinite subgroup
of L®(G). Hence, L®(@G) contains infinite number elements of the form
9, a.

Now, we remind the well known epimorphism
k: K%G) =G Aut(G) — K(G),

given by k(9 ® a) = [g,a]. Therefore K®(G) has infinite number of
generators of the form g ® «, which contradicts the assumption.

Conversely, assume the subgroup Autze ) (G) is finite, then by Lemma
3.1, Aut(G) is also finite. Now, the finiteness property of G/L®(G) im-
plies that the set £ = {g @ a|g € G, a € Aut(G)} is finite. Thus,
Proposition 2.2(ii) and Corollary 3.3 imply that the set K is a normal
subset of K®(G) and each element of K is of finite order. Hence, by
Dicman’s Lemma K®(G) = (K) is finite. O
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