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Abstract. Let L be a complete lattice. Let R be a commutative ring,
M an R-module and v an L-submodule of M. v is called a classical
prime L-submodule of M if for any L-fuzzy points a,,bs € LT and
z, € LM (a,b € R,z € M and r,s,t € L), a,bsz; € v implies that
either a,zy € v or bsx;y € v. Assume that v is an L-submodule of
mmu € L(M). We say that v is a 2-absorbing L-submodule of p if
for any L-fuzzy points a,,bs € LT and =, € L™ (a,b € R,z € M
and r,s,t € L), arbszy € v implies that arbspy C v or a,z: € v or
bsz: € v. In this case every prime L-submodule of M is a classical prime
L-submodule, and every classical prime L-submodule is a 2-absorbing
L-submodule. In this paper we give some basic results concerning these
classes of L-submodules. Finally we topologize L — Cl.Spec(M), the set
of all classical prime L-submodules of M, with Zariski topology.
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1. Introduction

Throughout this paper R is a commutative ring with a nonzero iden-
tity, M is a unitary R-module and L stands for a complete lattice with
least element 0 and greatest element 1. For every submodule N of M,
we denote the annihilator of M/N by (N :p M), ie. (N :g M) =
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{r € RlrM C N}. In his paper [3], Badawi introduced the notion of
2-absorbing ideals of a commutative ring, where a proper ideal A of R is
said to be 2-absorbing provided that whenever a, b, c € R with abc € A
then either ab € A or ac € A or bc € A. In [15] this concept was gen-
eralized to submodules of M by the author and Soheilnia. Let N be a
proper submodule of M. Then, N is said to be a 2-absorbing submodule
of M provided that whenever a,b € R and m € M with abm € N, then
either ab € (N :g M) or am € N or bm € N.

Behboodi and Koohi introduced the notion of weakly prime submodules
in [4], where a proper submodule N of M is said to be weakly prime
if whenever a,b € R and m € M with abm € N, then either am € N
or bm € N. Ebrahimi Atani and Farzalipour gave a different definition
for weakly prime submodules in [8]. According to their definition, a
proper submodule N of M is called weakly prime provided that for
every a € R and m € M with 0 # am € N, then either m € N
ora € (N :g M). To avoid the ambiguity, Behboodi et al. renamed
weakly prime submodules to classical prime submodules [6]. The set of
all classical prime submodules of M is denoted by CI.Spec(M).

We recall that a proper submodule N of M is called a prime submodule
of M if, for every a € R and m € M, am € N implies that either m € N
or a € (N :gp M). The notion of prime submodules was first introduced
and studied in [7] and recently it has received a good deal of attention
from several authors. We denote the set of all prime submodules of M
by Spec(M). Clearly every prime submodule is classical prime and every
classical prime submodule is 2-absorbing.

Let R be a commutative ring and consider Spec(R), the spectrum of all
prime ideals of R. The Zariski topology on Spec(R) is a useful implement
in algebraic geometry. For each ideal I of R, the variety of I is the set
V(I) = {P € Spec(R) : I C P}. Then the set {V(I) : I > R} satisfies
the axioms for the closed sets of a topology on Spec(R), called the
Zariski topology on Spec(R) [2]. Let M be an R-module. In [11], the
Spec(M) topologized with the Zariski topology in a similar way to that
of Spec(R). For any submodule N < M, denote by V() the variety
of N, which is the set V(N) = {P € Spec(M) : N C P}. Then the set
C(M)={V(N): N < M} is not closed under finite unions.
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The R-module M is called a Top-module provided that ((M) is closed
under finite unions, whence (M) constitute the closed sets in a Zariski
topology on Spec(M). Later Behboodi et. al. in [5] generalized the
Zariski topology on Cl.Spec(M). If, for every submodule N < M, we
define the classical variety of N, denoted by V(N), to be the set of all
P € Cl.Spec(M) with N C P, then if C(M) = {V(N) : N < M} is
closed under finite unions, M is called a classical Top-module. In this
case the sets V(IN) satisfy the axioms for the closed sets of a topology
on Cl.Spec(M), called the Zariski topology on Cl.Spec(M).

Zadeh in [16] introduced the notion of a fuzzy subset p of a non-empty
set X as a function p from X to [0,1]. Goguen in [9] generalized the
notion of a fuzzy subset of X to that of an L-fuzzy subset, namely a
function from X to a lattice L. Later Rosenfeld considered the fuzzifica-
tion of algebraic structures [14]. Liu [10], introduced and examined the
notion of a fuzzy ideal of a ring. Since then several authors have obtained
interesting results on L-fuzzy ideals of R and L-fuzzy modules. See [12]
for a comprehensive survey of the literature on these developments. In
[1], Ameri and Mahjoob introduced and studied L — Spec(M), the set
of all prime L-submodules of M, and topologized it in a similar way to
that of Spec(M).

In Sections 3 and 4, we introduce the concepts of 2-absorbing L-submodules
and classical prime L-submodules of M. We denote by L — Cl.Spec(M),
the set of all classical prime L-submodules of M. In Section 5 we de-
fine the concept of L-classical Top-modules and show that an L-classical
Top-module can be equipped with a Zariski topology.

2. Preliminaries

Given a nonempty set X, an L-subset p is a function from X to L. The
set of all L-subsets of X is called the L-power set of X and is denoted by
LX. In particular, when L is [0, 1], the L-subsets of X are called fuzzy
subsets and the set [0, 1]% is referred to as the fuzzy power set of X. For
p,v € LX we say p C v if and only if u(x) < v(z), for all z € X. Also,
i C v if and only if C v and p # v.
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By an L-fuzzy point z, of X, 2 € X; r € L\{0}, we mean z, € LX)

defined by
r, if y=x;
2o (y) = { 0 ot

otherwise.

If , is an L-fuzzy point of X and z, C u € LX, we write =, € p. For
A C X the characteristic function of A, ya € LX, is defined by

1, ifx e A,
0, otherwise.

o) = {

Definition 2.1. Let i € LX. Fort € L, define p; as follows:
pe = A{z € X{u(z) > t},

e s called the t-cut (or t-level set) of p.

We recall the two following basic definitions given in [12].

Definition 2.2. Let ¢ € L®. Then u is called an L-ideal of R if for all
x;y € R,

(1) p(x —y) = p(x) A p(y),

(it) p(zy) = p(z) vV pu(y).
Definition 2.3. Let i € LM. Then p is called an L-submodule of M if
for all x,y € M and for all r € R,

(1) p(z +y) = p() A py),

(i) p(ra) = p(x),

(iii) p(Onr) = 1.
Let L(M) denote the set of all L-submodules of M and LI(R) the set

of all L-ideals of R. We note that when R = M, then p € L(M) if and
only if 44(0) =1 and p € LI(R).

Definition 2.4. For every p € L(M), we define p. as follows:
px ={z € X|pu(z) = pn(0)}.

Definition 2.5. For v, € L(M), v is called an L-submodule of u if
vCu.



CLASSICAL PRIME AND 2-ABSORBING ... )

The following are two basic operations which will be used to define
prime L-submodules, classical prime L-submodules and 2-absorbing L-
submodules.

Definition 2.6. Let ¢ € LT and € LM . Define the composition Eop
and the product Eu respectively as follows: For all w € M,

(éop) (w) = sup{&(r) A p(x)lr € Rz € M,w = ra},

(Ep)(w) = sup{infiL {(ri)Au(zi) Hri € R,xi € M,n € Nyw = X rizi},

where as usual the supremum of an empty set is taken to be 0.

Notice that o is the case n = 1 in the definition of £u. Thus Eou C Ep.

Definition 2.7. Let {u;}icr be a family of L-submodules of M. Then
L-submodule ) ;. pi of M is defined by

(Qier i) (@) = V{ Nier pi(mi)lz = D i Ty v € MVi € T},
forallx € M.

Definition 2.8. Let u € LM. Then the L-submodule of M generated by
1, denoted by < p >, is defined to be the intersection of all L-submodules
of M containing u, i.e.

<p>=\{vlve L(M),n Cv}.

Lemma 2.9. For every L-fuzzy points a, € L® and x, € LV we have
<y >< Ty >=< Aps >.

Proof. See [13, Lemma 3.4]. O

Definition 2.10. For a non-constant £ € LI(R), & is called an L-fuzzy
prime ideal of R if for any L-fuzzy points x,,ys € LT, x,y, € € implies
that either x, € £ or ys € €.

Definition 2.11. For u,v € LM and ¢ € L%, we define (1 : v) and
(w2 &) by:

(w:v)=U{n e L v C u},
(n:&) =U{re LM C ).

In the case where v € LM ;i € L(M) and ¢ € LI(R) we have:
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(n:v)=U{n e LI(R)|n.v C pu},
(1 &) =U{A € LIM)|EA € p}

In this case (u:v) € LI(R) and (u: &) € L(M).

Definition 2.12. (/1]) A non-constant L-submodule jv of M is said to
be prime if for every & € LI(R) and v € L(M) such that §&.v C u, then
either v C por & C (u: 1g). The set of all prime L-submodules of M is
denoted by L — Spec(M).

We recall from [1] that, for any L-submodule p of M, V*(u), denotes
the set of all prime L-submodule of M containing p, i.e, V*(u) = {P €
L — Spec(M)|p C P}. Thus if £(M) denotes the collection of all subsets
V*(u) of L — Spec(M), then (M) contains the empty set, and L —
Spec(M) and it is closed under arbitrary intersections. If (M) is also
closed under finite unions, i.e, for any L-submodules p and v of M,
there exists an L-submodule 6 of M, such that V*(u) U V*(v) = V*(0),
then &(M) satisfies the axioms of closed subsets of a topological space,
which is called Zariski topology. An R-module M equipped with Zariski
topology is called L-Top module. An L-submodule p € L(M) is called
L-semiprime if p = (7);c; #s such that p; is a prime L-submodule of M
for all 7 € I, and p is called L-extraordinary if whenever 1, puo € L(M)
are semiprime L-submodules such that p; N ps C p, then either py C p
or p2 € p. It is proved in [1, Theorem 4.5] that an R-module M is
an L-Top module if and only if every prime L-submodule of M is L-
extraordinary if and only if V*(u1) UV™*(u2) = V* (1 Npe), for g, pe €
L(M). For pp € L(M), we define the radical of y, denoted by Rad(u), as
the intersection of all prime L-submodules of M containing p. In other
words, Rad(p) = (pey«(,) P and it is equal to 1y if V() = 0.

Definition 2.13. Let aw € L\{1}. Then « is called a prime element of
L if x Ny < « implies that x < a ory < « for all x,y € a.
3. Classical Prime L-Submodules

In this section we introduce the notion of classical prime L-submodules
of M which is a generalization of prime L-submodules of M. Then we
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provide some basic results on classical prime L-submodules.

Definition 3.1. Let v be an L-submodule of M. v is called a classical
prime L-submodule of M if for any L-fuzzy points a,,bs € L%) and
vy € LM (a,b€ R, 2 € M and r,s,t € L), we have

arbszy € v implies that either arx; € v or bsxy € V.
Clearly, every prime L-submodule of M is a classical prime L-submodule.

Theorem 3.2. Let u be a classical prime L-submodule of M. Then, for
every t € L with py # M, g is a classical prime submodule of M.

Proof. Assume that a,b € R and m € M are such that abm € u;. Then
w(abm) > t. Then we have a;bym; = (abm); € u. Since p is a classical
prime L-submodule of M, we get (am); = agmy € p or (bm)y = bymy €
w. If my € p for some m € M, then u(m) > t. So m € p,. Therefore,
am € ug or bm € . Hence py is a classical prime submodule of M. [

Corollary 3.3. If u is a classical prime L-submodule of M, then p is
a classical prime submodule of M.

Proof. Since p is a non-constant L-fuzzy submodule of M, u. # M.
Now the result follows from Theorem 4.3. [

Theorem 3.4. Let N be a classical prime submodule of M and o a
prime element of L. If n is the L-subset of M defined by

77(33):{ 1, ifxzeN; (1)

«, otherwise.
for allx € M, then n is a classical prime L-submodule of M.

Proof. Since N is a classical prime submodule of M, N # M. Therefore
n is a non-constant L-fuzzy submodule of M. Suppose that a,,bs € L
and x; € LM are L-fuzzy points such that a,bsz; € n. Then r AsAt =
(abx)ppsnt(abz) = (arbsxy)(abxr) < n(abx). If ayzy ¢ 1 and bsxy & n,
then from r At = (az)ai(ax) £ nlax) we have n(az) = a and so
ax ¢ N. Similarly, sAt = (bz)sat(bz) < n(bx). Son(br) = o and bx ¢ N.
SorAsAt < a since a is assumed to be a prime element of L. Since N
is a classical prime submodule of M, we have abx ¢ N. Consequently,
n(abxr) = a; so r A s At < «, which is a contradiction. [
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Lemma 3.5. (1) Let v be an L-submodule of M. Then v is a classical
prime L-submodule of M if and only if for each L-fuzzy point z, ¢ v,
v:x. is an L-fuzzy prime ideal of R.

(2) Let {n;}ier be a family of classical prime L-submodules of M such
that for each x, ¢ Nicrni, {(mi : ©r)}ier is a chain of L-fuzzy ideals of
R. Then Nijern; is a classical prime L-submodule of M.

(3) Let {p;}icr be a family of prime L-submodules of M such that {(p; :
1a) Yier is a chain of L-ideals of R. Then NMierpi is a classical prime
L-submodule of M.

Proof. (1) It is obvious from the definition.

(2) Assume that a,,bs € L and z; € LM are L-fuzzy points such that
arbszy € Nigrni, but arzy & Niern; and bswy & Niern;. Hence ayxy & g
and bsx; ¢ n; for some k,l € I. In this case a, ¢ (nx : x¢) and bs & (1 :
x¢). Since x¢ ¢ Nierni, we can assume that (ng : x¢) C (n; : x¢). There-
fore a,x; ¢ ni and bsxy ¢ nix while a,bsxy € ni. This contradicts the
assumption that ny is a classical prime L-submodule of M.

(3) Assume that a.bsxy € [);c; pi for some L-fuzzy point a,,bs € LE
and z; € LM, If a,2; ¢ Mier i and bsxy & (g ii, then apzy & py and
bsxy ¢ wy for some k,l € I.In this case a, ¢ (g : 1p7) and bs € (g = 1ar).
We can assume that (g : 1as) € (g ¢ 1ar). By [1, Theorem 3.6], (u :
1pr) is an L-fuzzy prime ideal of R. Therefore a,bs ¢ (p : 1ar). As pug
is a prime L-submodule of M, it follows from a,bsx; € uy that x; € g,
and hence a,x; € pp which is a contradiction. [J

4. 2-Absorbing L-Submodules

In this sections, we introduce the concepts of 2-absorbing L-submodules
and strongly 2-absorbing L-submodules. We give some basic properties of
these classes of L-submodules and then investigate the interplay between
2-absorbing submodules and 2-absorbing L-submodules.
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Definition 4.1. (1) Let v be a non-constant L-submodule of p. v is
called a 2-absorbing L-submodule of u if for any L-fuzzy points a,,bs €
L% and x4 € LM (a,b € R, x € M and r,s,t € L), a.bsx; € v implies
that aybspe C v or ayxy € v or bsxy € v. v is called a 2-absorbing L-
submodule of M if it is a 2-absorbing L-submodule of 1.

(2) Let n be an L-submodule of M. n is said to be an strongly 2-absorbing
L-submodule of M if it is non-constant and whenever u,v € LI(R) and
£ € L(M) with pvé Cn, then pv C (n: 1a) or p& S n or v€ .

Theorem 4.2. (1) Every classical prime L-submodule of M is a 2-
absorbing L-submodule.

(2) Every prime L-submodule of M is an strongly 2-absorbing L-submodule.

(8) Every strongly 2-absorbing L-submodule of M is a 2-absorbing L-
submodule.

Proof. (1) and (2) Immediate consequences of definition.

(3) Let n be an strongly 2-absorbing L-submodule of M. Assume that
ar,bs € L and z; € LM be L-fuzzy points with a,bsx; € 1. Then, by
Lemma 2.9, we have < a, >< b >< 2y >=< a,bsxy >C n. Since 7
is an strongly 2-absorbing L-submodule , we have < a,bs >=< a, ><
bs >C (n:1py) or < apxy >=< a, >< 2 >C nor < bgzy >=< by ><
xy >C n. Therefore a,bs1y; C n or arxy € 1 or bgxy € 7, that is ) is a
2-absorbing L-submodule of M. [

Example 4.3. By Theorem 4.2, every prime L-submodule is 2-absorbing,
but the converse does not necessarily true. For example consider the case
where R = M = Z. Let p and g be a pair of distinct prime numbers,
and set A = pqZ. Clearly, A is a 2-absorbing ideal of Z. Now define

n:Z—[0,1] by
_ 1, if pglz;
n(w) = { 0, otherwise.

Then 7 is a fuzzy 2-absorbing ideal of R. Moreover 9 = A is a 2-
absorbing ideal of Z that is not a prime ideal. Hence 1 is not a fuzzy
prime ideal of R.

Theorem 4.4. If v is a 2-absorbing L-submodule of wp, then vy is a



10 A. YOUSEFIAN DARANI

2-absorbing submodule of py for everyt € L with vy # .

Proof. Let abm € 1y for some a,b € R and m € M. In this case
from v(abm) > t we get a;bymy = (abm); € v. As v is a 2-absorbing
L-submodule, we have (ab)ip = aibyp C v or (am); = aymy € v or
(bm)y = bymy € v. If (ab)yu C v, then for every w € abu; we have
w = abz for some z € p;. Then from u(z) > ¢ we have

E= A (=) < supuanedt A p()} = (@)p(w) < v(w).
Therefore
v(w) Z2t=w € v = abuy C vy = ab € (v g ).

If (am); € v, then v(am) > t. Hence am € vy. Similarly, if (bm); € n
then bm € v;. This implies that 1, is a 2-absorbing submodule of y;. [

Corollary 4.5. If v is an 2-absorbing L-submodule of M, then v, is a
2-absorbing submodule of M.

Proof. The result follows from Theorem 4.3 since v is L-fuzzy 2-absorbing;
hence it is a non-constant L-fuzzy submodule of M and so v, # M. [

Definition 4.6. Let o € L\{1}. Then « is called a 2-absorbing element
of Life NyNz < aimpliesthattANy<aorzAhz<aoryNhz<a
forall x,y,z € a.

Theorem 4.7. Assume that N is a 2-absorbing submodule of M and let
«a be a 2-absorbing element of L. If n is the L-subset of M defined by

1, ifxz e N;
n(m) =

«, otherwise.

for allm € M, then n is a 2-absorbing L-submodule of M.

Proof. Assume that N is a 2-absorbing submodule of M. Then N is
a proper submodule of M. Therefore 7 is a non-constant L-submodule
of M. Suppose that a,,bs € LT and x; € L™ are L-fuzzy points such
that a,bsxy € n but a,xy ¢ n and bsxy ¢ 1. In this case n(ax) = « and
n(bz) = a. Therefore ax ¢ N and bz ¢ N. Moreover from a,bsz; € 1 we
have
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(abx)paspe(abz) < p(abz) = r A s At < n(abx).

If n(abx) = 1, then from abxr € N, axr ¢ N and bx ¢ N we get ab €
(N :p M) since N is a 2-absorbing submodule of M. Then n(abm) = 1
for every m € M. Now we have a,bs1p7(abm) =r A s < n(abm).

If n(abx) = «, then from r AsAt < o, r ANt £ aand sAt £ «
we get 7 A s < « since « is a 2-absorbing element of L. In this case
arbslpy(w) =7 As < a<n(w) for all w e M.

Therefore a,bs € (n : 1p7), that is n is a 2-absorbing L-submodule of
M. O

5. Classical L — Top-Modules

The set of all classical prime L-submodules of M is called the L-fuzzy
classical prime spectrum of M and denoted by L — Cl.Spec(M). In this
section we introduce and study a topology on L — Cl.Spec(M) which is
analogous to that of L — Spec(M), the spectrum of prime L-submodules
of M. For every u € LM let V*(u), to be the set of all classical prime
L-submodules P of M such that y C P. Then:

Proposition 5.1. Let {y;}; € I be a family of L-submodules of M. Then
(1) V¥*(140y) = L — Cl.Spec(M) and V*(151) = 0;

(2) Mier V(i) = V*(Xies 1)
(3) V*(pu) UV*(v) CV*(uNv) for every p,v € L(M).
Proof. (1) is obvious. For (2), assume that P € V*(}_..; pi). Then,
pi € > ier i © P for every i € I. Hence P € V*(u;) for every i € I, and
hence V*(3 ;7 1i) € ;e V*(pi). For the reverse containment, assume
that P € (;c; V*(@i). Then p; € P for every i € I. Now, for every
m € M, we have

(Xier mi)(m)

= V{ Aicr i(mi)| >-;c;mi = m, and m; € M for every i € I}

< VA{Aicr P(mi)| Y ;e mi = m, and m; € M for every i € I'}

< P(m).
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It follows that >, ;u; € P, that is P € V*(3_,.;pi). Therefore
Mier V*(1i) € V*(3_;c; ii). Hence we have the equality. (3) For every
P e V*(u) UV*(v), either 4 C P or v C P. Hence pNv C P. Therefore
PeV*(unwv). O

The inclusion in (3) in general is not an equality. In this section we study
R-modules for which the last inclusion is an equality.

Definition 5.2. Let M be a non-zero unitary R-module. M 1is called a
L-classical Top-module (briefly L — Cl.Top module) if V*(u) UV*(v) =
V*(unNv) for every p,v € L(M).

For an L — Cl.Top module, the set
L —o"(M) ={V*(u)lp € L(M)},

satisfies the axioms for closed sets in a topology ¢* on L — Cl.Spec(M).
We call this topology the quasi-Zariski topology on L — Cl.Spec(M).

Let u be an L-submodule of M. We define the classical L-prime radical
of p, denoted by Cl.Rad(u), to be the intersection of all classical prime
L-submodules of M containing p. In the other words, Cl.Rad(p) =
Npevs(u P> and it is equal to 1y if V*(p) = 0.

Definition 5.3. (1) An L-fuzzy submodule p € L(M) is called a classical
semiprime L-submodule of M if p is an intersection of classical prime
L-submodules.

(2) A classical prime L-submodule i of M is called L—Cl.-extraordinary
if for any two classical semiprime L-submodules A1 and Ao of M, A1 N
Ao C p implies that A1 C p or Ao C p.

We immediately have:

Lemma 5.4. Let p be a non-constant L-fuzzy submodule of M. Then
(1) Cl.Rad(p) € L(M);

(2) V*(p) = V*(Cl.Rad(p));

(8) Cl.Rad(u) is a classical semiprime L-submodule of M.

(4) 1 € Cl.Rad(p) € Rad(p);

(5) Cl.Rad(p) N Cl.Rad(v) = Cl.Rad(p N v) for every p,v € L(M).
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We provide a condition on L-fuzzy classical prime submodules under
which the inclusion of (3) in Proposition 5.1 becomes an equality.

Proposition 5.5. Let M be an R-module. The following statements are
equivalent

(i) M is an L — Cl.Top module.

(ii) Every classical prime L-submodule if M is L-extraordinary.

(ii3) V*(pu) U V*(v) = V*(unv) for every classical semiprime L-
submodules p1,v € L(M).

Proof. The result is clear when Cl.Spec(M) = (). So assume that
Cl.Spec(M) # 0.

(i) = (ii) Let M be an L — Cl.Top-module. Assume that P is a classical
prime L-submodule of M and that Ai, Ao are classical semiprime L-
submodules of M with Ay N A2 C P. By assumption, there exists u €
L(M) with V*(A1) U V*(X\y) = V*(u). Since A; is classical semiprime
L-submodule, A\; = (,c; P; in which {P;}ics is a collection of classical
prime L-submodules of M. For every ¢ € I, we have

Pe Vi (M) V() = pC P i C ey B = Ar.
Similarly, 4 C Aa. So u € A1 N Ao. Now we have
V*(Al) UV*()\Q) - V*()\l N )\2) C V*(,u) = V*(Al) U V*()\Q)

Consequently, V*(A1) U V*(A2) = V*(A1 N A2). Now from A\; N Ay C P
we have P € V*(A\1 N Aa) = V*(A\1) UV*(A2). Hence either P € V*(\;)
or P € V*(\2), that is either Ay C P or Ay C P. So P is L — Cl.-
extraordinary.

(ii) = (vi7) Suppose that every classical prime L-submodule of M is
L — Cl.-extraordinary. Assume that p and v are two classical semiprime
L-submodules of M. By Proposition 5.1, V*(u) UV*(v) C V*(uNv). For
the other containment, choose P € V*(uNwv). Then puNv C P. By
assumption, P is L — Cl.-extraordinary. So y C P or v C P, that is
either P € V*(u) or P € V*(v). Therefore V*(uNv) C V*(u) U V*(v),
and so V*(u) UV*(v) = V¥(uNv).
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(791) = (i) Let p,v be two L-submodules of M. We can assume that
V*(u) and V*(v) are both nonempty, for otherwise V*(u) N V*(v) =
V*(u) or V¥(pu)UV*(v) = V*(v). We know that Cl.Rad(u) and Cl.Rad(v)
are both classical semiprime L-submodules of M. Setting n = Cl.Rad(u)N
Cl.Rad(v) we have n = Cl.Rad(pNv). Now

V*(p) UV*(v) = V¥(Cl.Rad(p)) UV*(Cl.Rad(v)) =
V*(Cl.Rad(p) N Cl.Rad(v)) = V*(n) = V(Cl.Rad(pNv)) = V*(uNv),

by (7i7) and Lemma 5.4. Hence M is L — Cl.Top module. O
Corollary 5.6. Every L — Cl.Top module is an L — Top module.

Proof. Assume that M is an L — Cl.Top module. Let P be a prime
L-submodule of M. As every prime L-submodule is a classical prime
L-submodule, P is L — Cl.-extraordinary by Proposition 5.5. Hence it is
L-extraordinary. Now the result follows from [1, Theorem 4.5]. O

6. Zariski-Like Topology on the Spectrum of L-
Fuzzy Classical Prime Submodules

Now assume that C*(M) denotes the collection of all subsets V*(N) of
L — Cl.Spec(M). In this case

(i) 0 € C*(M), L — Cl.Spec(M) € C*(M),

(ii) C*(M) is closed under arbitrary intersections, and

(iii) C*(M) is not necessarily closed under finite unions.

From (z) — (iii) above, we can see easily that there exists a topology, 7*
say, on L — Cl.Spec(M) having C*(M) as the collection of closed sets if
and only if C*(M) is closed under finite union.

Definition 6.1. An R-module M 1is is called a classical L-Top-module
provided that C*(M) is closed under finite unions, i.e., for very u,v €
L(M), there exists £ € L(M) such that V*(u) UV*(v) = V*(§).

Definition 6.2. Let M be a non-zero unitary R-module. For every p €
L(M) let U*(u) = L — Cl.Spec(M) \ V*(u) and B*(M) = {U*(n) :
w e L(M)}. Then, we define T*(M) to be the collection of all unions of
finite intersections of elements of B*(M). In fact, T*(M) is the topology
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on L — Cl.Spec(M) by the sub-basis B*(M). We say that T*(M) is the
Zariski-like topology on L — Cl.Spec(M).

Let M be an R-module. Then the set

{U*(p1) NU*(p2) N ... NU* () : k € N and p; € L(M) for every 1 <14 < k}
is a basis for the Zariski-like topology on L — Cl.Spec(M), and for a

ring R, the Zariski-like topology of R as an R-module and the Zariski
topology of L — Spec(R) coincide.
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