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Abstract. Let L be a complete lattice. Let R be a commutative ring,
M an R-module and ν an L-submodule of M . ν is called a classical
prime L-submodule of M if for any L-fuzzy points ar, bs ∈ LR and
xt ∈ LM (a, b ∈ R, x ∈ M and r, s, t ∈ L), arbsxt ∈ ν implies that
either arxt ∈ ν or bsxt ∈ ν. Assume that ν is an L-submodule of
mmu ∈ L(M). We say that ν is a 2-absorbing L-submodule of µ if
for any L-fuzzy points ar, bs ∈ LR and xt ∈ LM (a, b ∈ R, x ∈ M
and r, s, t ∈ L), arbsxt ∈ ν implies that arbsµ ⊆ ν or arxt ∈ ν or
bsxt ∈ ν. In this case every prime L-submodule of M is a classical prime
L-submodule, and every classical prime L-submodule is a 2-absorbing
L-submodule. In this paper we give some basic results concerning these
classes of L-submodules. Finally we topologize L−Cl.Spec(M), the set
of all classical prime L-submodules of M , with Zariski topology.
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1. Introduction

Throughout this paper R is a commutative ring with a nonzero iden-
tity, M is a unitary R-module and L stands for a complete lattice with
least element 0 and greatest element 1. For every submodule N of M ,
we denote the annihilator of M/N by (N :R M), i.e. (N :R M) =
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{r ∈ R|rM ⊆ N}. In his paper [3], Badawi introduced the notion of
2-absorbing ideals of a commutative ring, where a proper ideal A of R is
said to be 2-absorbing provided that whenever a, b, c ∈ R with abc ∈ A

then either ab ∈ A or ac ∈ A or bc ∈ A. In [15] this concept was gen-
eralized to submodules of M by the author and Soheilnia. Let N be a
proper submodule of M . Then, N is said to be a 2-absorbing submodule
of M provided that whenever a, b ∈ R and m ∈M with abm ∈ N , then
either ab ∈ (N :R M) or am ∈ N or bm ∈ N .
Behboodi and Koohi introduced the notion of weakly prime submodules
in [4], where a proper submodule N of M is said to be weakly prime
if whenever a, b ∈ R and m ∈ M with abm ∈ N , then either am ∈ N

or bm ∈ N . Ebrahimi Atani and Farzalipour gave a different definition
for weakly prime submodules in [8]. According to their definition, a
proper submodule N of M is called weakly prime provided that for
every a ∈ R and m ∈ M with 0 = am ∈ N , then either m ∈ N

or a ∈ (N :R M). To avoid the ambiguity, Behboodi et al. renamed
weakly prime submodules to classical prime submodules [6]. The set of
all classical prime submodules of M is denoted by Cl.Spec(M).
We recall that a proper submodule N of M is called a prime submodule
of M if, for every a ∈ R and m ∈M , am ∈ N implies that either m ∈ N

or a ∈ (N :R M). The notion of prime submodules was first introduced
and studied in [7] and recently it has received a good deal of attention
from several authors. We denote the set of all prime submodules of M
by Spec(M). Clearly every prime submodule is classical prime and every
classical prime submodule is 2-absorbing.
Let R be a commutative ring and consider Spec(R), the spectrum of all
prime ideals of R. The Zariski topology on Spec(R) is a useful implement
in algebraic geometry. For each ideal I of R, the variety of I is the set
V (I) = {P ∈ Spec(R) : I ⊆ P}. Then the set {V (I) : I  R} satisfies
the axioms for the closed sets of a topology on Spec(R), called the
Zariski topology on Spec(R) [2]. Let M be an R-module. In [11], the
Spec(M) topologized with the Zariski topology in a similar way to that
of Spec(R). For any submodule N  M , denote by V (N) the variety
of N , which is the set V (N) = {P ∈ Spec(M) : N ⊆ P}. Then the set
ζ(M) = {V (N) : N M} is not closed under finite unions.
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The R-module M is called a Top-module provided that ζ(M) is closed
under finite unions, whence ζ(M) constitute the closed sets in a Zariski
topology on Spec(M). Later Behboodi et. al. in [5] generalized the
Zariski topology on Cl.Spec(M). If, for every submodule N  M , we
define the classical variety of N , denoted by V(N), to be the set of all
P ∈ Cl.Spec(M) with N ⊆ P , then if C(M) = {V(N) : N  M} is
closed under finite unions, M is called a classical Top-module. In this
case the sets V(N) satisfy the axioms for the closed sets of a topology
on Cl.Spec(M), called the Zariski topology on Cl.Spec(M).

Zadeh in [16] introduced the notion of a fuzzy subset µ of a non-empty
set X as a function µ from X to [0, 1]. Goguen in [9] generalized the
notion of a fuzzy subset of X to that of an L-fuzzy subset, namely a
function from X to a lattice L. Later Rosenfeld considered the fuzzifica-
tion of algebraic structures [14]. Liu [10], introduced and examined the
notion of a fuzzy ideal of a ring. Since then several authors have obtained
interesting results on L-fuzzy ideals of R and L-fuzzy modules. See [12]
for a comprehensive survey of the literature on these developments. In
[1], Ameri and Mahjoob introduced and studied L − Spec(M), the set
of all prime L-submodules of M , and topologized it in a similar way to
that of Spec(M).

In Sections 3 and 4, we introduce the concepts of 2-absorbing L-submodules
and classical prime L-submodules of M . We denote by L−Cl.Spec(M),
the set of all classical prime L-submodules of M . In Section 5 we de-
fine the concept of L-classical Top-modules and show that an L-classical
Top-module can be equipped with a Zariski topology.

2. Preliminaries

Given a nonempty set X, an L-subset µ is a function from X to L. The
set of all L-subsets of X is called the L-power set of X and is denoted by
LX . In particular, when L is [0, 1], the L-subsets of X are called fuzzy
subsets and the set [0, 1]X is referred to as the fuzzy power set of X. For
µ, ν ∈ LX we say µ ⊆ ν if and only if µ(x)  ν(x), for all x ∈ X. Also,
µ ⊂ ν if and only if ⊆ ν and µ = ν.
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By an L-fuzzy point xr of X, x ∈ X; r ∈ L\{0}, we mean xr ∈ LX)
defined by

xr(y) =


r, if y=x;
0, otherwise.

If xr is an L-fuzzy point of X and xr ⊆ µ ∈ LX , we write xr ∈ µ. For
A ⊆ X the characteristic function of A, χA ∈ LX , is defined by

χA(x) =


1, if x ∈ A;
0, otherwise.

Definition 2.1. Let µ ∈ LX . For t ∈ L, define µt as follows:

µt = {x ∈ X|µ(x)  t},

µt is called the t-cut (or t-level set) of µ.

We recall the two following basic definitions given in [12].

Definition 2.2. Let ξ ∈ LR. Then µ is called an L-ideal of R if for all
x; y ∈ R,

(i) µ(x− y)  µ(x) ∧ µ(y),
(ii) µ(xy)  µ(x) ∨ µ(y).

Definition 2.3. Let µ ∈ LM . Then µ is called an L-submodule of M if
for all x, y ∈M and for all r ∈ R,

(i) µ(x+ y)  µ(x) ∧ µ(y),
(ii) µ(rx)  µ(x),
(iii) µ(0M ) = 1.

Let L(M) denote the set of all L-submodules of M and LI(R) the set
of all L-ideals of R. We note that when R = M , then µ ∈ L(M) if and
only if µ(0) = 1 and µ ∈ LI(R).

Definition 2.4. For every µ ∈ L(M), we define µ∗ as follows:

µ∗ = {x ∈ X|µ(x) = µ(0)}.

Definition 2.5. For ν, µ ∈ L(M), ν is called an L-submodule of µ if
ν ⊆ µ.
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The following are two basic operations which will be used to define
prime L-submodules, classical prime L-submodules and 2-absorbing L-
submodules.

Definition 2.6. Let ξ ∈ LR and µ ∈ LM . Define the composition ξoµ

and the product ξµ respectively as follows: For all w ∈M ,
(ξoµ)(w) = sup{ξ(r) ∧ µ(x)|r ∈ R, x ∈M,w = rx},
(ξµ)(w) = sup{infni=1{ξ(ri)∧µ(xi)}|ri ∈ R, xi ∈M,n ∈ N, w = Σn

i=1rixi},
where as usual the supremum of an empty set is taken to be 0.

Notice that ξoµ is the case n = 1 in the definition of ξµ. Thus ξoµ ⊆ ξµ.

Definition 2.7. Let {µi}i∈I be a family of L-submodules of M . Then
L-submodule


i∈I µi of M is defined by

(


i∈I µi)(x) =

{

i∈I µi(xi)|x =


i∈I xi, xi ∈M∀i ∈ I},

for all x ∈M .

Definition 2.8. Let µ ∈ LM . Then the L-submodule of M generated by
µ, denoted by < µ >, is defined to be the intersection of all L-submodules
of M containing µ, i.e.

< µ >=

{ν|ν ∈ L(M), µ ⊆ ν}.

Lemma 2.9. For every L-fuzzy points ar ∈ LR and xs ∈ LN we have
< ar >< xs >=< arxs >.

Proof. See [13, Lemma 3.4]. 

Definition 2.10. For a non-constant ξ ∈ LI(R), ξ is called an L-fuzzy
prime ideal of R if for any L-fuzzy points xr, ys ∈ LR, xrys ∈ ξ implies
that either xr ∈ ξ or ys ∈ ξ.

Definition 2.11. For µ, ν ∈ LM and ξ ∈ LR, we define (µ : ν) and
(µ : ξ) by:

(µ : ν) =

{η ∈ LR|η.ν ⊆ µ},

(µ : ξ) =

{λ ∈ LM |ξ.λ ⊆ µ}.

In the case where ν ∈ LM , µ ∈ L(M) and ξ ∈ LI(R) we have:
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(µ : ν) =

{η ∈ LI(R)|η.ν ⊆ µ},

(µ : ξ) =

{λ ∈ L(M)|ξ.λ ⊆ µ}.

In this case (µ : ν) ∈ LI(R) and (µ : ξ) ∈ L(M).

Definition 2.12. ([1]) A non-constant L-submodule µ of M is said to
be prime if for every ξ ∈ LI(R) and ν ∈ L(M) such that ξ.ν ⊆ µ, then
either ν ⊆ µ or ξ ⊆ (µ : 1R). The set of all prime L-submodules of M is
denoted by L− Spec(M).

We recall from [1] that, for any L-submodule µ of M , V ∗(µ), denotes
the set of all prime L-submodule of M containing µ, i.e, V ∗(µ) = {P ∈
L−Spec(M)|µ ⊆ P}. Thus if ξ(M) denotes the collection of all subsets
V ∗(µ) of L − Spec(M), then ξ(M) contains the empty set, and L −
Spec(M) and it is closed under arbitrary intersections. If ξ(M) is also
closed under finite unions, i.e, for any L-submodules µ and ν of M ,
there exists an L-submodule θ of M , such that V ∗(µ) ∪ V ∗(ν) = V ∗(θ),
then ξ(M) satisfies the axioms of closed subsets of a topological space,
which is called Zariski topology. An R-module M equipped with Zariski
topology is called L-Top module. An L-submodule µ ∈ L(M) is called
L-semiprime if µ =


i∈I µi such that µi is a prime L-submodule of M

for all i ∈ I, and µ is called L-extraordinary if whenever µ1, µ2 ∈ L(M)
are semiprime L-submodules such that µ1 ∩ µ2 ⊆ µ, then either µ1 ⊆ µ

or µ2 ⊆ µ. It is proved in [1, Theorem 4.5] that an R-module M is
an L-Top module if and only if every prime L-submodule of M is L-
extraordinary if and only if V ∗(µ1)∪V ∗(µ2) = V ∗(µ1 ∩µ2), for µ1, µ2 ∈
L(M). For µ ∈ L(M), we define the radical of µ, denoted by Rad(µ), as
the intersection of all prime L-submodules of M containing µ. In other
words, Rad(µ) =


P∈V ∗(µ) P and it is equal to 1M if V ∗(µ) = ∅.

Definition 2.13. Let α ∈ L\{1}. Then α is called a prime element of
L if x ∧ y  α implies that x  α or y  α for all x, y ∈ α.

3. Classical Prime L-Submodules

In this section we introduce the notion of classical prime L-submodules
of M which is a generalization of prime L-submodules of M . Then we
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provide some basic results on classical prime L-submodules.

Definition 3.1. Let ν be an L-submodule of M . ν is called a classical
prime L-submodule of M if for any L-fuzzy points ar, bs ∈ LR) and
xt ∈ LM (a, b ∈ R, x ∈M and r, s, t ∈ L), we have

arbsxt ∈ ν implies that either arxt ∈ ν or bsxt ∈ ν.

Clearly, every prime L-submodule ofM is a classical prime L-submodule.

Theorem 3.2. Let µ be a classical prime L-submodule of M . Then, for
every t ∈ L with µt = M , µt is a classical prime submodule of M .

Proof. Assume that a, b ∈ R and m ∈M are such that abm ∈ µt. Then
µ(abm)  t. Then we have atbtmt = (abm)t ∈ µ. Since µ is a classical
prime L-submodule of M , we get (am)t = atmt ∈ µ or (bm)t = btmt ∈
µ. If mt ∈ µ for some m ∈ M , then µ(m)  t. So m ∈ µt. Therefore,
am ∈ µt or bm ∈ µt. Hence µt is a classical prime submodule of M . 

Corollary 3.3. If µ is a classical prime L-submodule of M , then µ∗ is
a classical prime submodule of M .

Proof. Since µ is a non-constant L-fuzzy submodule of M , µ∗ = M .
Now the result follows from Theorem 4.3. 

Theorem 3.4. Let N be a classical prime submodule of M and α a
prime element of L. If η is the L-subset of M defined by

η(x) =


1, if x ∈ N ;
α, otherwise.

(1)

for all x ∈M , then η is a classical prime L-submodule of M .

Proof. Since N is a classical prime submodule of M , N = M . Therefore
η is a non-constant L-fuzzy submodule of M . Suppose that ar, bs ∈ LR

and xt ∈ LM are L-fuzzy points such that arbsxt ∈ η. Then r ∧ s ∧ t =
(abx)r∧s∧t(abx) = (arbsxt)(abx)  η(abx). If arxt /∈ η and bsxt /∈ η,
then from r ∧ t = (ax)r∧t(ax)  η(ax) we have η(ax) = α and so
ax /∈ N . Similarly, s∧t = (bx)s∧t(bx)  η(bx). So η(bx) = α and bx /∈ N .
So r ∧ s∧ t  α since α is assumed to be a prime element of L. Since N
is a classical prime submodule of M , we have abx /∈ N . Consequently,
η(abx) = α; so r ∧ s ∧ t  α, which is a contradiction. 
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Lemma 3.5. (1) Let ν be an L-submodule of M . Then ν is a classical
prime L-submodule of M if and only if for each L-fuzzy point xr /∈ ν,
ν : xr is an L-fuzzy prime ideal of R.

(2) Let {ηi}i∈I be a family of classical prime L-submodules of M such
that for each xr /∈ ∩i∈Iηi, {(ηi : xr)}i∈I is a chain of L-fuzzy ideals of
R. Then ∩i∈Iηi is a classical prime L-submodule of M .

(3) Let {µi}i∈I be a family of prime L-submodules of M such that {(µi :
1M )}i∈I is a chain of L-ideals of R. Then ∩i∈Iµi is a classical prime
L-submodule of M .

Proof. (1) It is obvious from the definition.

(2) Assume that ar, bs ∈ LR and xt ∈ LM are L-fuzzy points such that
arbsxt ∈ ∩i∈Iηi, but arxt /∈ ∩i∈Iηi and bsxt /∈ ∩i∈Iηi. Hence arxt /∈ ηk
and bsxt /∈ ηl for some k, l ∈ I. In this case ar /∈ (ηk : xt) and bs /∈ (ηl :
xt). Since xt /∈ ∩i∈Iηi, we can assume that (ηk : xt) ⊆ (ηl : xt). There-
fore arxt /∈ ηk and bsxt /∈ ηK while arbsxt ∈ ηk. This contradicts the
assumption that ηk is a classical prime L-submodule of M .

(3) Assume that arbsxt ∈

i∈I µi for some L-fuzzy point ar, bs ∈ LR

and xt ∈ LM . If arxt /∈

i∈I µi and bsxt /∈


i∈I µi, then arxt /∈ µk and

bsxt /∈ µl for some k, l ∈ I. In this case ar /∈ (µk : 1M ) and bs ∈ (µl : 1M ).
We can assume that (µk : 1M ) ⊆ (µl : 1M ). By [1, Theorem 3.6], (µk :
1M ) is an L-fuzzy prime ideal of R. Therefore arbs /∈ (µk : 1M ). As µk
is a prime L-submodule of M , it follows from arbsxt ∈ µk that xt ∈ µk,
and hence arxt ∈ µk which is a contradiction. 

4. 2-Absorbing L-Submodules

In this sections, we introduce the concepts of 2-absorbing L-submodules
and strongly 2-absorbing L-submodules. We give some basic properties of
these classes of L-submodules and then investigate the interplay between
2-absorbing submodules and 2-absorbing L-submodules.
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Definition 4.1. (1) Let ν be a non-constant L-submodule of µ. ν is
called a 2-absorbing L-submodule of µ if for any L-fuzzy points ar, bs ∈
LR and xt ∈ LM (a, b ∈ R, x ∈ M and r, s, t ∈ L), arbsxt ∈ ν implies
that arbsµ ⊆ ν or arxt ∈ ν or bsxt ∈ ν. ν is called a 2-absorbing L-
submodule of M if it is a 2-absorbing L-submodule of 1M .

(2) Let η be an L-submodule of M . η is said to be an strongly 2-absorbing
L-submodule of M if it is non-constant and whenever µ, ν ∈ LI(R) and
ξ ∈ L(M) with µνξ ⊆ η, then µν ⊆ (η : 1M ) or µξ ⊆ η or νξ ⊆ η.

Theorem 4.2. (1) Every classical prime L-submodule of M is a 2-
absorbing L-submodule.

(2) Every prime L-submodule of M is an strongly 2-absorbing L-submodule.

(3) Every strongly 2-absorbing L-submodule of M is a 2-absorbing L-
submodule.

Proof. (1) and (2) Immediate consequences of definition.

(3) Let η be an strongly 2-absorbing L-submodule of M . Assume that
ar, bs ∈ LR and xt ∈ LM be L-fuzzy points with arbsxt ∈ η. Then, by
Lemma 2.9, we have < ar >< bs >< xt >=< arbsxt >⊆ η. Since η

is an strongly 2-absorbing L-submodule , we have < arbs >=< ar ><

bs >⊆ (η : 1M ) or < arxt >=< ar >< xt >⊆ η or < bsxt >=< bs ><

xt >⊆ η. Therefore arbs1M ⊆ η or arxt ∈ η or bsxt ∈ η, that is η is a
2-absorbing L-submodule of M . 

Example 4.3. By Theorem 4.2, every prime L-submodule is 2-absorbing,
but the converse does not necessarily true. For example consider the case
where R = M = Z. Let p and q be a pair of distinct prime numbers,
and set A = pqZ. Clearly, A is a 2-absorbing ideal of Z. Now define
η : Z→ [0, 1] by

η(x) =


1, if pq|x;
0, otherwise.

Then η is a fuzzy 2-absorbing ideal of R. Moreover η0 = A is a 2-
absorbing ideal of Z that is not a prime ideal. Hence η is not a fuzzy
prime ideal of R.

Theorem 4.4. If ν is a 2-absorbing L-submodule of µ, then νt is a
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2-absorbing submodule of µt for every t ∈ L with νt = µt.

Proof. Let abm ∈ νt for some a, b ∈ R and m ∈ M . In this case
from ν(abm)  t we get atbtmt = (abm)t ∈ ν. As ν is a 2-absorbing
L-submodule, we have (ab)tµ = atbtµ ⊆ ν or (am)t = atmt ∈ ν or
(bm)t = btmt ∈ ν. If (ab)tµ ⊆ ν, then for every w ∈ abµt we have
w = abz for some z ∈ µt. Then from µ(z)  t we have

t = t ∧ µ(z)  supw=abx{t ∧ µ(x)} = (ab)tµ(w)  ν(w).

Therefore

ν(w)  t⇒ w ∈ νt ⇒ abµt ⊆ νt ⇒ ab ∈ (νt :R µt).

If (am)t ∈ ν, then ν(am)  t. Hence am ∈ νt. Similarly, if (bm)t ∈ η

then bm ∈ νt. This implies that νt is a 2-absorbing submodule of µt. 

Corollary 4.5. If ν is an 2-absorbing L-submodule of M , then ν∗ is a
2-absorbing submodule of M .

Proof. The result follows from Theorem 4.3 since ν is L-fuzzy 2-absorbing;
hence it is a non-constant L-fuzzy submodule of M and so ν∗ = M . 
Definition 4.6. Let α ∈ L\{1}. Then α is called a 2-absorbing element
of L if x ∧ y ∧ z  α implies that x ∧ y  α or x ∧ z  α or y ∧ z  α

for all x, y, z ∈ α.

Theorem 4.7. Assume that N is a 2-absorbing submodule of M and let
α be a 2-absorbing element of L. If η is the L-subset of M defined by

η(m) =


1, if x ∈ N ;
α, otherwise.

for all m ∈M , then η is a 2-absorbing L-submodule of M .

Proof. Assume that N is a 2-absorbing submodule of M . Then N is
a proper submodule of M . Therefore η is a non-constant L-submodule
of M . Suppose that ar, bs ∈ LR and xt ∈ LM are L-fuzzy points such
that arbsxt ∈ η but arxt /∈ η and bsxt /∈ η. In this case η(ax) = α and
η(bx) = α. Therefore ax /∈ N and bx /∈ N . Moreover from arbsxt ∈ η we
have
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(abx)r∧s∧t(abx)  η(abx)⇒ r ∧ s ∧ t  η(abx).

If η(abx) = 1, then from abx ∈ N , ax /∈ N and bx /∈ N we get ab ∈
(N :R M) since N is a 2-absorbing submodule of M . Then η(abm) = 1
for every m ∈M . Now we have arbs1M (abm) = r ∧ s  η(abm).

If η(abx) = α, then from r ∧ s ∧ t  α, r ∧ t  α and s ∧ t  α

we get r ∧ s  α since α is a 2-absorbing element of L. In this case
arbs1M (w) = r ∧ s  α  η(w) for all w ∈M .

Therefore arbs ∈ (η : 1M ), that is η is a 2-absorbing L-submodule of
M . 

5. Classical L− Top-Modules
The set of all classical prime L-submodules of M is called the L-fuzzy
classical prime spectrum of M and denoted by L−Cl.Spec(M). In this
section we introduce and study a topology on L−Cl.Spec(M) which is
analogous to that of L−Spec(M), the spectrum of prime L-submodules
of M . For every µ ∈ LM let V∗(µ), to be the set of all classical prime
L-submodules P of M such that µ ⊆ P . Then:

Proposition 5.1. Let {µi}i ∈ I be a family of L-submodules of M . Then

(1) V∗(1{0}) = L− Cl.Spec(M) and V∗(1M ) = ∅;
(2)


i∈I V∗(µi) = V∗(


i∈I µi);

(3) V∗(µ) ∪ V∗(ν) ⊆ V∗(µ ∩ ν) for every µ, ν ∈ L(M).

Proof. (1) is obvious. For (2), assume that P ∈ V∗(


i∈I µi). Then,
µi ⊆


i∈I µi ⊆ P for every i ∈ I. Hence P ∈ V∗(µi) for every i ∈ I, and

hence V∗(


i∈I µi) ⊆

i∈I V∗(µi). For the reverse containment, assume

that P ∈

i∈I V∗(µi). Then µi ⊆ P for every i ∈ I. Now, for every

m ∈M , we have
(


i∈I µi)(m)
=

{

i∈I µi(mi)|


i∈I mi = m, and mi ∈M for every i ∈ I}



{

i∈I P (mi)|


i∈I mi = m, and mi ∈M for every i ∈ I}

 P (m).
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It follows that


i∈I µi ⊆ P , that is P ∈ V∗(


i∈I µi). Therefore
i∈I V∗(µi) ⊆ V∗(


i∈I µi). Hence we have the equality. (3) For every

P ∈ V∗(µ) ∪V∗(ν), either µ ⊆ P or ν ⊆ P . Hence µ ∩ ν ⊆ P . Therefore
P ∈ V∗(µ ∩ v). 
The inclusion in (3) in general is not an equality. In this section we study
R-modules for which the last inclusion is an equality.

Definition 5.2. Let M be a non-zero unitary R-module. M is called a
L-classical Top-module (briefly L− Cl.Top module) if V∗(µ) ∪ V∗(ν) =
V∗(µ ∩ ν) for every µ, ν ∈ L(M).

For an L− Cl.Top module, the set

L− ∗(M) = {V∗(µ)|µ ∈ L(M)},

satisfies the axioms for closed sets in a topology ς∗ on L−Cl.Spec(M).
We call this topology the quasi-Zariski topology on L− Cl.Spec(M).

Let µ be an L-submodule of M . We define the classical L-prime radical
of µ, denoted by Cl.Rad(µ), to be the intersection of all classical prime
L-submodules of M containing µ. In the other words, Cl.Rad(µ) =
P∈V∗(µ) P , and it is equal to 1M if V∗(µ) = ∅.

Definition 5.3. (1) An L-fuzzy submodule µ ∈ L(M) is called a classical
semiprime L-submodule of M if µ is an intersection of classical prime
L-submodules.

(2) A classical prime L-submodule µ of M is called L−Cl.-extraordinary
if for any two classical semiprime L-submodules λ1 and λ2 of M , λ1 ∩
λ2 ⊆ µ implies that λ1 ⊆ µ or λ2 ⊆ µ.

We immediately have:

Lemma 5.4. Let µ be a non-constant L-fuzzy submodule of M . Then
(1) Cl.Rad(µ) ∈ L(M);
(2) V∗(µ) = V∗(Cl.Rad(µ));
(3) Cl.Rad(µ) is a classical semiprime L-submodule of M .
(4) µ ⊆ Cl.Rad(µ) ⊆ Rad(µ);
(5) Cl.Rad(µ) ∩ Cl.Rad(ν) = Cl.Rad(µ ∩ ν) for every µ, ν ∈ L(M).
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We provide a condition on L-fuzzy classical prime submodules under
which the inclusion of (3) in Proposition 5.1 becomes an equality.

Proposition 5.5. Let M be an R-module. The following statements are
equivalent

(i) M is an L− Cl.Top module.
(ii) Every classical prime L-submodule if M is L-extraordinary.
(iii) V∗(µ) ∪ V∗(ν) = V∗(µ ∩ ν) for every classical semiprime L-

submodules µ, ν ∈ L(M).

Proof. The result is clear when Cl.Spec(M) = ∅. So assume that
Cl.Spec(M) = ∅.
(i)⇒ (ii) Let M be an L−Cl.Top-module. Assume that P is a classical
prime L-submodule of M and that λ1, λ2 are classical semiprime L-
submodules of M with λ1 ∩ λ2 ⊆ P . By assumption, there exists µ ∈
L(M) with V∗(λ1) ∪ V∗(λ2) = V∗(µ). Since λ1 is classical semiprime
L-submodule, λ1 =


i∈I Pi in which {Pi}i∈I is a collection of classical

prime L-submodules of M . For every i ∈ I, we have

Pi ∈ V∗(λ1) ⊆ V∗(µ)⇒ µ ⊆ Pi ⇒ µ ⊆

i∈I Pi = λ1.

Similarly, µ ⊆ λ2. So µ ⊆ λ1 ∩ λ2. Now we have

V∗(λ1) ∪ V∗(λ2) ⊆ V∗(λ1 ∩ λ2) ⊆ V∗(µ) = V∗(λ1) ∪ V∗(λ2).

Consequently, V∗(λ1) ∪ V∗(λ2) = V∗(λ1 ∩ λ2). Now from λ1 ∩ λ2 ⊆ P

we have P ∈ V∗(λ1 ∩ λ2) = V∗(λ1) ∪ V∗(λ2). Hence either P ∈ V∗(λ1)
or P ∈ V∗(λ2), that is either λ1 ⊆ P or λ2 ⊆ P . So P is L − Cl.-
extraordinary.

(ii) ⇒ (iii) Suppose that every classical prime L-submodule of M is
L−Cl.-extraordinary. Assume that µ and ν are two classical semiprime
L-submodules of M . By Proposition 5.1, V∗(µ)∪V∗(ν) ⊆ V∗(µ∩ν). For
the other containment, choose P ∈ V∗(µ ∩ ν). Then µ ∩ ν ⊆ P . By
assumption, P is L − Cl.-extraordinary. So µ ⊆ P or ν ⊆ P , that is
either P ∈ V∗(µ) or P ∈ V∗(ν). Therefore V∗(µ ∩ ν) ⊆ V∗(µ) ∪ V∗(ν),
and so V∗(µ) ∪ V∗(ν) = V∗(µ ∩ ν).
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(iii) ⇒ (i) Let µ, ν be two L-submodules of M . We can assume that
V∗(µ) and V∗(ν) are both nonempty, for otherwise V∗(µ) ∩ V∗(ν) =
V∗(µ) or V∗(µ)∪V∗(ν) = V∗(ν). We know that Cl.Rad(µ) and Cl.Rad(ν)
are both classical semiprime L-submodules ofM . Setting η = Cl.Rad(µ)∩
Cl.Rad(ν) we have η = Cl.Rad(µ ∩ ν). Now

V∗(µ) ∪ V∗(ν) = V∗(Cl.Rad(µ)) ∪ V∗(Cl.Rad(ν)) =
V∗(Cl.Rad(µ) ∩Cl.Rad(ν)) = V∗(η) = V∗(Cl.Rad(µ ∩ ν)) = V∗(µ ∩ ν),

by (iii) and Lemma 5.4. Hence M is L− Cl.Top module. 

Corollary 5.6. Every L− Cl.Top module is an L− Top module.

Proof. Assume that M is an L − Cl.Top module. Let P be a prime
L-submodule of M . As every prime L-submodule is a classical prime
L-submodule, P is L−Cl.-extraordinary by Proposition 5.5. Hence it is
L-extraordinary. Now the result follows from [1, Theorem 4.5]. 

6. Zariski-Like Topology on the Spectrum of L-
Fuzzy Classical Prime Submodules

Now assume that C∗(M) denotes the collection of all subsets V∗(N) of
L− Cl.Spec(M). In this case
(i) ∅ ∈ C∗(M), L− Cl.Spec(M) ∈ C∗(M),
(ii) C∗(M) is closed under arbitrary intersections, and
(iii) C∗(M) is not necessarily closed under finite unions.

From (i)− (iii) above, we can see easily that there exists a topology, τ∗
say, on L−Cl.Spec(M) having C∗(M) as the collection of closed sets if
and only if C∗(M) is closed under finite union.

Definition 6.1. An R-module M is is called a classical L-Top-module
provided that C∗(M) is closed under finite unions, i.e., for very µ, ν ∈
L(M), there exists ξ ∈ L(M) such that V∗(µ) ∪ V∗(ν) = V∗(ξ).

Definition 6.2. Let M be a non-zero unitary R-module. For every µ ∈
L(M) let U∗(µ) = L − Cl.Spec(M) \ V∗(µ) and B∗(M) = {U∗(µ) :
µ ∈ L(M)}. Then, we define T∗(M) to be the collection of all unions of
finite intersections of elements of B∗(M). In fact, T∗(M) is the topology
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on L− Cl.Spec(M) by the sub-basis B∗(M). We say that T∗(M) is the
Zariski-like topology on L− Cl.Spec(M).

Let M be an R-module. Then the set

{U∗(µ1) ∩ U∗(µ2) ∩ ... ∩ U∗(µn) : k ∈ N and µi ∈ L(M) for every 1  i  k}
is a basis for the Zariski-like topology on L − Cl.Spec(M), and for a
ring R, the Zariski-like topology of R as an R-module and the Zariski
topology of L− Spec(R) coincide.
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