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fined as the sum of the two generating curves α(u) and β(v). Therefore,
translation surfaces are made up of quadrilateral, that is, four sided,
facets. Because of this property, translation surfaces are used in architec-
ture to design and construct free-form glass roofing structures. A trans-
lation surface in a Euclidean 3-space E3 formed by translating two curves
lying in orthogonal planes is the graph of a function z(u, v) = f(u)+g(v),
where f(u) and g(v) are smooth functions on some interval of R ([1,11]).

In 1835, H. F. Scherk studied translation surfaces in E3 defined as graph
of the function z(u, v) = f(u) + g(v) and he proved that, besides the
planes, the only minimal translation surfaces are the surfaces given by

z(u, v) =
1
a
log


cos(au)
cos(av)

 =
1
a
log |cos(au)| − 1

a
log |cos(av)| ,

where a is a non-zero constant. These surfaces are now referred as
Scherk’s minimal surfaces ([19]).

Translation surfaces have been investigated from various viewpoints by
many differential geometers. Liu described translation surfaces having
constant Gaussian and mean curvature in the Euclidean and Minkowski
space ([14]). Goemans proved classification theorems of Weingarten trans-
lation surfaces ([11]). Baba-Hamed, Bekkar and Zoubir studied coor-
dinate finite type translation surfaces in a 3-dimensional Minkowski
space ([5]). Yoon classified coordinate finite type translation surfaces
in a 3-dimensional Galilean space ([19]). Bekkar and Senoussi studied
the translation surfaces in the 3-dimensional Euclidean and Lorentz-
Minkowski space under the condition

∆IIIri = µiri,

([6]). Cakmak, Karacan, Kiziltug and Yoon studied the translation sur-
faces in the 3-dimensional Galilean space under the condition

∆IIxi = λixi,

([10]). Sipus described translation surfaces in a simply isotropic space
having constant isotropic Gaussian or mean curvature ([17]). Aydin stud-
ied the translation surfaces generated by a space curve and a planar
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curve in the isotropic 3-space I3 ([4]). Bukcu, Karacan and Yoon classi-
fied translation surfaces of Type 1 and Type 2 that satisfy the condition

∆I,II,IIIxi = λixi,

in the 3-dimensional simply isotropic space ([8,9,13]). Aydin defined
semi-isotropic space SI3 which is Lorentz-Minkowski version of the isotropic
space ([2,3]).

In this work, we describe the translation surfaces of Type 1 that satisfy
the conditions ∆I,II,IIIxi = λixi, λi ∈ R.

2. Preliminaries

The semi-isotropic space SI3 is an a affine 3-space R3 endowed with the
(semi-) norm defined as

u =







(u1)

2 + (u2)
2 , if u1 = 0 or u2 = 0

u3 , if u1 = u2 = 0, u = (u1, u2, u3) ∈ SI3.

The group of motions of SI3 is based a six-parameter group G6 of affine
transformations (x, y, z)→ (x, y, z) ,






x = a+ x coshϕ+ y sinhϕ
y = b+ x sinhϕ+ y coshϕ

z = c+ dx+ ey + z,
(1)

where a, b, c, d, ϕ ∈ R. We call such transformations semi-isotropic con-
gruence transformations or (s − i)-motions. Note that (s − i)-motions
are the composition an affine shear transformation in z-direction and
a Lorentzian motion in xy−plane. By a Lorentzian motion, we mean a
translation and the following Lorentzian rotation


coshϕ sinhϕ
sinhϕ coshϕ


,

which is one of the four kind isometries of the Lorentz-Minkowski plane
R21. In the sequel, many of metric properties in semi-isotropic geometry
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(invariants under (1)) are Lorentzian invariants in their projections onto
R21.

The semi-isotropic scalar product between two vectors u = (u1, u2, u3)
and v = (v1, v2, v3) ∈ SI3 is given by

u, v =

u1v1 − u2v2 , if at least one of ui or vi is non zero, i = 1, 2

u3v3 , if ui = vi = 0, i = 1, 2.

The vector product in the sense of semi-isotropic space is

u× v =



e1 −e2 0
u1 u2 u3
v1 v2 v3


,

for e1 = (1, 0, 0) and e2 = (0, 1, 0). It can be easily check that

u× v, w = det (u, v, w) ,

where w denotes the canonical projection of w onto R21. We call the
vectors of the form u = (0, 0, u3) in SI3 isotropic vectors and ones of the
form u = (u = 0, u3) in SI3 non-isotropic vectors. A vector u ∈ SI3 is
called spacelike, timelike and null (or lightlike) respectively if u, u > 0
or u = 0, u, u < 0 and u, u = 0 (u = 0), respectively. We remark that
only non-isotropic vectors have causal character which is the property
to be spacelike, timelike or null.

The set of all null vectors of SI3 is called null-cone, i.e.,

C :

(x, y, z) ∈ SI3| x2 − y2 = 0


−


0 ∈ SI3


.

Timelike-cone is the set of all timelike vectors of SI3,

T :

(x, y, z) ∈ SI3| x2 − y2 < 0


.

The semi-isotropic angle of two timelike non-isotropic vectors u, v ∈
SI3 lying in the same timelike-cone is defined as the Lorentzian angle
between their projections onto R21, i.e.,

u, v = −u v coshϕ.
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For a spacelike plane Γ determined by the non-isotropic vectors u, v the
induced metric on Γ is positive definite and hence the angle between u
and v is the usual Euclidean angle between u and v.
Note that all isotropic vectors are orthonogal to non-isotropic ones. Fur-
ther, two non-isotropic vectors u, v in SI3 are orthonogal if u, v = 0. Let
M be a surface immersed in SI3 without isotropic tangent planes. Then
we call such a surface admissible. Denote g the metric on M induced
from SI3. The surface M is said to be spacelike (resp. timelike, null ) if
g is positive definite (resp.a metric with index 1, degenerate).

Throughout this paper we consider only spacelike and timelike admissi-
ble surfaces in SI3. Assume that M has a local parameterization in SI3

as follows

x :D ⊆ R2→SI3 : (u1, u2)→ (x (u1, u2) , y (u1, u2) , z (u1, u2)) .

If (gij) is the matrical expression of g with respect to the basis {xu1 ,xu2},
then we have

gij =

xui ,xuj


, xui =

∂x
∂ui
, i, j = 1, 2.

The metric g is positive definite if and only if det(gij) > 0. If the surface
M is timelike then det (gij) < 0. If M is a graph surface in SI3 of the
form

x (u1, u2) = (u1, u2, z (u1, u2)) (2)

then the metric on M induced from SI3 is g = du21 − du22 and it always
becomes a at timelike surface. So, its Laplacian turns to

∆ :=
∂2

∂u21
− ∂2

∂u22
.

The unit normal vector field of M is the isotropic vector (0, 0, 1) since
it is perpendicular to all non-isotropic vectors. The coefficients of the
second fundamental form are

hij :=
det

�
xu1 ,xu2 ,xuiuj



det (gij)

, xuiuj =
∂2x
∂ui∂uj

, i, j = 1, 2.
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For the surfaces of the form (2), these coefficients are

hij := zuiuj =
∂2z

∂ui∂uj
, i, j = 1, 2.

Thus the semi-relative curvature and the semi-isotropic mean curvature
of M are defined by

K = −det(hij)
det(gij)

and
H = −g11h22 − 2g12h12 + g22h11

2 det(gij)
,

where  = sgn(det(gij)),respectively. We call a surface semi-isotropic flat
or (s− i)-flat (resp. semi-isotropic minimal or (s− i)-minimal) in SI3 if
K (resp. H) vanishes ([2, 3]).

It is well known in terms of local coordinates {u, v} ofM the Laplacian
operators ∆I, ∆II , ∆III of the first, the second and the third funda-
mental forms on M are defined by ([5, 6, 7, 9, 12, 13, 16])

∆Ix = − 1g11g22 − g212






∂
∂u


g22xu−g12xv
|g11g22−g212|



− ∂
∂v


g12xu−g11xv
|g11g22−g212|






, (3)

∆IIx = − 1h11h22 − h212






∂
∂u


h22xu−h12xv
|h11h22−h2

12|



− ∂
∂v


h12xu−h11xv
|h11h22−h2

12|






, (4)

and

∆IIIx =− 1

h11h22 − h212

g11g22 − g212






∂
∂u


Zxu−Y xv

(h11h22−h2
12)


|g11g22−g212|



− ∂
∂v


Y xu−Xxv

(h11h22−h2
12)


|g11g22−g212|






,

(5)
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where

X = g11h
2
12 − 2g12h11h12 + g22h

2
11,

Y = g11h12h22 − g12h11h22 + g22h11h12 − g12h
2
12,

Z = g22h
2
12 − 2g12h22h12 + g11h

2
22.

2.1 Translation surfaces in SI3

In order to describe the semi-isotropic analogues of translation surfaces
of constant curvatures, we consider translation surfaces obtained by
translating two planar curves. The local surface parametrization is given
by

x(u, v) = α(u) + β(v). (6)

Therefore, the obtained translation surfaces allow the following parametriza-
tions:

Type 1: The surface M is parametrized by

x(u, v) = (u, v, f(u) + g(v)) , (7)

and the translated curves are α(u) = (u, 0, f(u)), β(v) = (0, v, g(v)) .

Type 2: The surface M is parametrized by

x(u, v) = (u, f(u) + g(v), v) , (8)

and the translated curves are α(u) = (u, f(u), 0), β(v) = (0, g(v), v) . In
order to obtain admissible surfaces, g(v) = 0 is assumed (i.e. g(v) =const.).

Type 3: The surface M is parametrized by

x(u, v) =
1
2
(f(u) + g(v), u− v + π, u+ v) , (9)

and the translated curves are

α(u) =
1
2


f(u), u+

π

2
, u− π

2


, β(v) =


g(v),

π

2
− v,

π

2
+ v


.

In order to obtain admissible surfaces, f (u) + g(v) = 0 is assumed
(i.e. f (u) = −g(v) = a =constant.) ( [17]).

In this paper, we will investigate the translation surface of Type 1 in
the three dimensional semi-isotropic space.
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order to obtain admissible surfaces, g(v) = 0 is assumed (i.e. g(v) =const.).

Type 3: The surface M is parametrized by

x(u, v) =
1
2
(f(u) + g(v), u− v + π, u+ v) , (9)

and the translated curves are

α(u) =
1
2


f(u), u+

π

2
, u− π

2


, β(v) =


g(v),

π

2
− v,

π

2
+ v


.

In order to obtain admissible surfaces, f (u) + g(v) = 0 is assumed
(i.e. f (u) = −g(v) = a =constant.) ( [17]).

In this paper, we will investigate the translation surface of Type 1 in
the three dimensional semi-isotropic space.
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where

X = g11h
2
12 − 2g12h11h12 + g22h

2
11,

Y = g11h12h22 − g12h11h22 + g22h11h12 − g12h
2
12,

Z = g22h
2
12 − 2g12h22h12 + g11h

2
22.

2.1 Translation surfaces in SI3

In order to describe the semi-isotropic analogues of translation surfaces
of constant curvatures, we consider translation surfaces obtained by
translating two planar curves. The local surface parametrization is given
by

x(u, v) = α(u) + β(v). (6)

Therefore, the obtained translation surfaces allow the following parametriza-
tions:

Type 1: The surface M is parametrized by

x(u, v) = (u, v, f(u) + g(v)) , (7)

and the translated curves are α(u) = (u, 0, f(u)), β(v) = (0, v, g(v)) .

Type 2: The surface M is parametrized by

x(u, v) = (u, f(u) + g(v), v) , (8)

and the translated curves are α(u) = (u, f(u), 0), β(v) = (0, g(v), v) . In
order to obtain admissible surfaces, g(v) = 0 is assumed (i.e. g(v) =const.).

Type 3: The surface M is parametrized by

x(u, v) =
1
2
(f(u) + g(v), u− v + π, u+ v) , (9)

and the translated curves are

α(u) =
1
2


f(u), u+

π

2
, u− π

2


, β(v) =


g(v),

π

2
− v,

π

2
+ v


.

In order to obtain admissible surfaces, f (u) + g(v) = 0 is assumed
(i.e. f (u) = −g(v) = a =constant.) ( [17]).

In this paper, we will investigate the translation surface of Type 1 in
the three dimensional semi-isotropic space.
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3. Translation Surfaces of Type 1 Satisfying
∆Ixi= λixi

In this section, we classify translation surface in SI3 satisfying the equa-
tion

∆Ixi= λixi, (10)

where λi∈R, i=1, 2, 3 and

∆Ix =
�
∆Ix1,∆Ix2,∆Ix3


, (11)

where
x1 = u, x2 = v, x3 = f(u) + g(v).

For the translation surface given by (7), the coefficients of the first and
second fundamental forms are

g11 = 1, g12 = 0, g22 = −1, (12)

h11 = f , h12 = 0, h22 = g, (13)

respectively. Since g11g22 − g212 < 0, translation surface of Type 1 is
timelike. The semi relative Gaussian curvatureK and the semi- isotropic
mean curvature H are

K = −f (u)g(v), H =
f (u)− g(v)

2
, (14)

respectively. By a straightforward computation, the Laplacian operator
on M with the help of (3), (11) and (12) turns out to be

∆Ixi =
�
0, 0, f (u)− g(v)


. (15)

Suppose that M satisfies (10). Then from (15), we have
�
f (u)− g(v)


= λ (f(u) + g(v)) , (16)

where λ ∈ R. This means that M is at most of 1-type. We discuss two
cases according to constant λ. First of all, we assume that M satisfies
the condition ∆Ixi = 0. We call a surface satisfying that condition a
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harmonic surface or semi-isotropic minimal. In this case, we get from
(16)

f (u)− g(v) = 0. (17)

Here u and v are independent variables, so each side of (17) must equal
to a constant, call it p. Hence, the two equations

f  = p = g. (18)

Thus we get

f(u) = p
u2

2
+ c1u+ c2,

g(v) = p
v2

2
+ c3v + c4.

(19)

where p, ci ∈ R. In this case, M is parametrized by

x(u, v) =

u, v,


p
u2

2
+ c1u+ c2


+


p
v2

2
+ c3v + c4


. (20)

In particular, if p = 0, we have

f(u) = c1u+ c2,

g(v) = c3u+ c4,
(21)

where ci ∈ R. In this case, M is parametrized by

x(u, v) = (u, v, (c1u+ c2) + (c3v + c4)) . (22)

Theorem 3.1. LetM be a translation surface given by (7) in SI3. If M
is harmonic or semi-isotropic minimal, then it is congruent to an open
part of the surface (20) or (22).

If λ = 0, from (16), we have

f (u)− λf(u) = g(v) + λg(v). (23)

Here u and v are independent variables, so each side of (23) is equal to
a constant, call it p. Hence, we have the two equations

f (u)− λf(u) = p = g(v) + λg(v). (24)
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These equations are second order linear differential equations with con-
stant coefficients. We discuss two cases according to constant λ.

Case 1: λ > 0, from (24), we obtain

f (u)− λf(u) = p,

g(v) + λg(v) = p,
(25)

and
f(u) = −p

λ
+ c1e

u
√
λ + c2e

−u
√
λ,

g(v) =
p

λ
+ c3 cos v

√
λ+ c4 sin v

√
λ,

(26)

where λ, ci = 0 ∈ R. In this case, M is parametrized by

x(u, v) =





u,
v,

− p
λ + c1e

u
√
λ + c2e

−u
√
λ


+

p
λ + c3 cos v

√
λ+ c4 sin v

√
λ





. (27)

In particular, if p = 0, we have

f(u) = c1e
u
√
λ + c2e

−u
√
λ,

g(v) = c3 cos v
√
λ+ c4 sin v

√
λ,

(28)

where ci ∈ R. In this case, M is parametrized by

x(u, v) =





u,
v,

c1e
u
√
λ + c2e

−u
√
λ


+

c3 cos v

√
λ+ c4 sin v

√
λ





. (29)

Case 2: λ < 0, from (23), we obtain

f (u) + λf(u) = p,

g(v)− λg(v) = p,
(30)
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and
f(u) =

p

λ
+ c1 cosu

√
λ+ c2 sinu

√
λ,

g(v) = −p
λ
+ c3e

v
√
−λ + c4e

−v
√
−λ,

(31)

where λ, ci = 0 ∈ R. In this case, M is parametrized by

x(u, v) =





u,
v,

p
λ + c1 cosu

√
λ+ c2 sinu

√
λ


+

− p
λ + c3e

v
√
−λ + c4e

−v
√
−λ





. (32)

In particular, if p = 0, we have

f(u) = c1 cosu
√
λ+ c2 sinu

√
λ,

g(v) = c3e
v
√
−λ + c4e

−v
√
−λ,

(33)

where ci ∈ R. In this case, M is parametrized by

x(u, v) =





u,
v,

c1 cosu
√
λ+ c2 sinu

√
λ


+

c3e

v
√
−λ + c4e

−v
√
−λ





. (34)

Theorem 3.2. Let M be a non harmonic translation surface given by
(7) in the three dimensional semi-isotropic space SI3. If the surface M
satisfies the condition ∆Ixi=λixi, where λi∈R, i=1, 2, 3, then it is con-
gruent to an open part of the surfaces (27), (29), (32) or (34).

4. Translation Surfaces of Type 1 Satisfying
∆IIxi= λixi

In this section, we classify translation surfaces with non-degenerate sec-
ond fundamental form in SI3 satisfying the equation

∆IIxi= λixi, (35)
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where λi∈R, i=1, 2, 3 and

∆IIx =
�
∆IIx1,∆IIx2,∆IIx3


. (36)

By a straightforward computation, the Laplacian operator on M with
the help of (4), (14) and (36) turns out to be

∆IIx =

f 

2f 2
,
g

2g2
,−2 + ff 

2f 2
+
gg

2g2


. (37)

The equation (35) by means of (37) gives rise to the following system of
ordinary differential equations

f 

2f 2
= λ1u, (38)

g

2g2
= λ2v, (39)

−2 + f 
f 

2f 2
+ g

g

2g2
= λ3 (f(u) + g(v)) , (40)

where λi ∈ R. This means that M is at most of 3- types. Combining
equations (38), (39) and (40), we have

λ1uf
 − λ3f − 2 = −λ2vg + λ3g. (41)

Here u and v are independent variables, so each side of (41) is equal to
a constant, call it p. Hence, we have the two equations

λ1uf
 − λ3f − 2 = p = −λ2vg + λ3g. (42)

Thus we get

f(u) = −2 + p

λ3
+ c1u

λ3
λ1 ,

g(v) =
p

λ3
+ c2v

λ3
λ2 ,

(43)

where for some constants ci = 0 and λi = 0. In particular, if p = 0,
then we have

f(u) = − 2
λ3

+ c1u
λ2
λ1 ,

g(v) = c2v
−λ3
λ2 .

(44)
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We discuss seven cases according to constants λ1, λ2, λ3.

Case 1: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

−λ3f − 2 = p = −λ2vg + λ3g. (45)

This differential equations admit the solutions

f(u) = −2 + p

λ3
,

g(v) = c1v
λ3
λ2 +

p

λ3
,

(46)

where p, c1 = 0 ∈ R.
Case 2: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

−λ3f − 2 = p = λ3g. (47)

We can get easily

f(u) = −2 + p

λ3
,

g(v) =
p

λ3
,

(48)

where p ∈ R.
Case 3: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

−2 = −λ2vg. (49)

We can get easily

g(v) = c1 +
2 log v
λ2

, (50)

where c1 ∈ R. Here, the function f(u) independent of selection of the
function g(v). We can choose the function f(u) as below

f(u) = c2u
2 + c3u+ c4. (51)

Case 4: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

λ1uf
 − 2 = 0. (52)
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Also, the general solution of (52) can be given by

f(u)=c1 +
2 log u
λ1

, (53)

where c1 ∈ R. Here, the function g(v) independent of selection of the
function f(u). We can choose the function g(v) as below

g(v) = c2v
2 + c3v + c4. (54)

Case 5: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

λ1uf
 − 2 = p = −λ2vg. (55)

Hence, the general solutions of (55) are given by

f(u) = c1 +
(2 + p) log u

λ1
,

g(v) = c2 −
p log v
λ2

,

(56)

where c1, c2, p ∈ R .

Case 6: Let λ1 = 0, λ2 = 0, λ3 = 0, from (42), we obtain

λ1uf
 − λ3f − 2 = p = λ3g. (57)

and its general solutions are

f(u) = −2 + p

λ3
+ c1u

λ3
λ1 ,

g(v) =
p

λ3
,

(58)

where c1, p ∈ R.
Case 7: Let λ1 = λ2 = λ3 = 0, from (42), we obtain −2 = 0. We obtain
a contradiction.

The solutions (48) and (58) give a contradiction with our assumption
saying that the solution must be non-degenerate second fundamental
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form. The solutions (43), (44), (46) do not satisfy (38) and (39) simul-
taneously. The solutions (50), (51), (53), (54) and (56) satisfy (38) and
(39) simultaneously.

Definition 4.1. A surface in the three dimensional semi-isotropic space
SI3 is said to be II−harmonic if it satisfies the condition ∆IIx = 0.

Corollary 4.2. There is no II−harmonic translation surface of Type 1
given by (7) in the three dimensional semi- isotropic space SI3.

Theorem 4.3. LetM be a non II-harmonic translation surface of Type
1 with non-degenerate second fundamental form given by (7) in the three
dimensional semi-isotropic space SI3. If the surface M satisfies the con-
dition ∆IIxi=λixi, where λi∈R, i=1, 2, 3, then it is congruent to an open
part of the following surfaces:

x(u, v) =

u, v,

�
c2u

2 + c3u+ c4

+


c1 +

p log v
λ2


,

x(u, v) =

u, v,


c1 +

2 log u
λ1


+

�
c2v

2 + c3u+ c4


,

or

x(u, v) =

u, v,


c1 +

(2 + p) log u
λ1


+


c2 −

p log v
λ2


.

5. Translation Surfaces of Type 1 Satisfying
∆IIIxi= λixi

In this section, we classify translation surface of Type 1 with non-
degenerate second fundamental form in SI3 satisfying the equation

∆IIIxi= λixi, (59)

where λi∈R, i=1, 2, 3 and

∆IIIx =
�
∆IIIx1,∆IIIx2,∆IIIx3


. (60)
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Using (60), the Laplacian of M can be expressed as follows

∆IIIx =


−f 

f 3
,
+g

g3
,
−f 3g2 + f 

2
g

3 − f g
3
f  + gf 

3
g

f 3g3


.

(61)
By using (59) and (61), we have the following equations

−

f 

f 3


= λ1u, (62)


+
g

g3


= λ2v, (63)

−f 3g2 + f 
2
g

3 − f g
3
f  + gf 

3
g

f 3g3
= λ3 (f(u) + g(v)) , (64)

where λ1, λ2 and λ3 ∈ R. This means thatM is at most of 3- types. Com-
bining equations (62), (63) and (64), we have

f λ1u+
1
f 
− λ3f = −gλ2v +

1
g

+ λ3g. (65)

Here u and v are independent variables, so each side of (65) is equal to
constant, call it p. Hence, we have

f λ1u+
1
f 
− λ3f = p = −gλ2v +

1
g

+ λ3g. (66)

If we choose p = 0, then we get

f λ1u+
1
f 
− λ3f = 0 = −gλ2v +

1
g

+ λ3g, (67)

where ci, λi ∈ R.
We discuss only one case according to constants λ1, λ2, λ3. Because, there
are no any suitable solutions for the functions f(u) and g(v) satisfying
the equation ∆IIIxi= λixi in the other cases.

Case 1: Let λ1 = λ2 = λ3 = 0, from (62), (63) and (68), we obtain

f (u) = 0,

g(v) = 0,

− 1
f 

+
1
g

= 0.

(68)
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Their common solutions are given by

f(u) =
u2

2p
+ c1u+ c2

g(v) =
v2

2p
+ c3v + c4,

(69)

where ci, p ∈ R. In this case, M is parametrized by

x(u, v) =

u, v,


u2

2p
+ c1u+ c2


+


v2

2p
+ c3v + c4


. (70)

Definition 5.1. A surface in the three dimensional semi-isotropic space
SI3 is said to be III-harmonic if it satisfies the condition ∆IIIx = 0.

Theorem 5.2. Let M be a translation surface of Type 1 with non-
degenerate second fundamental form given by (7) in the three dimen-
sional semi-isotropic space SI3. The surface M satisfies the condition
∆IIIxi=0, then it is congruent to an open part of the surface (74).

Theorem 5.3. (Classification)Let M be a translation surface of Type 1
with non-degenerate second fundamental form given by (7) in the three
dimensional semi-isotropic space SI3. There is no surface M satisfies
the condition ∆IIIxi=λixi, where λi∈R.
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