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1. Introduction

Multi-criteria decision-making (MCDM) is the process to rank alterna-
tives or find the best alternative among a set of feasible alternatives. Usu-
ally in real situations, decision-making process deals with the uncertainty
and incomplete, imprecise or conflict information.

In different MCDM methods, one of the main steps is to evaluate the
relative likelihood among alternatives, then a comparison of these al-
ternatives is used to rank them. However, selection of the optimal al-
ternative with respect to several criteria under uncertainty is usually
based on insufficient information and judgment. Therefore, lot of stud-
ies have been devoted to MCDM problems with respect to uncertainty,
which may be arisen with incorrect, incomplete or imprecise data and
information. Uncertain information involved in decision making can be
identified as epistemic and aleatory uncertainties [24]. In this revised
manuscript, the proposed methodology is based on the epistemic uncer-
tainty.

The classification of epistemic uncertainty in four general categories; 1)
randomness, 2) incompleteness, 3) imprecision and 4) conflict evidence
[24], different frameworks are introduced to rank alternatives and find
a best solution in the decision-making process. The fuzzy set theory
and Dempster-Shafer (D-S) or evidence theory are two main classes of
uncertainty theories [3, 24]. The various properties and the associated
relations of these basic forms are presented in some references, such as
[10, 18, 25, 30, 31].

Thus, the MCDM methods are challenging tasks, among different theory
(or methods) with respect to uncertainty handling. The incompleteness,
imprecision and conflict evidence and data, are referred to a lack of
knowledge or epistemic uncertainty [24]. The proper framework to han-
dle imprecise information is the fuzzy logic. Additionally, a D-S frame-
work is used, for incomplete information [22, 24]. Many existing studies
are proposed with imprecise data in a fuzzy environment, (e.g., [2, 6, 7,
11, 15, 17)).

Because of the limitations of the traditional fuzzy set theory dealing
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with vagueness and uncertainty, several extensions and generalization
(e.g., intuitionistic fuzzy sets, vague sets, interval-valued intuitionistic
fuzzy sets, hesitant fuzzy set, neutrosophic sets, and single-valued neu-
trosophic sets [12, 13, 23, 28, 29| are proposed to fully described infor-
mation in MCDM problems. The mathematical frames of these methods
are effective tools to handle uncertainty; however, it not been demon-
strated based on evidential reasoning. This reasoning is considered avail-
able evidence, which is accurate and exact; however it is incomplete and
insufficient.

Thus, in order to improve or develop uncertainty presentation, some of
the studies proposed as a combination of the fuzzy set theory and D-S
theory (e.g.,[16, 26, 32]). In essential, most of the above-mentioned stud-
ies on belief function theory are the generalization of another technique
and theories to solve an MCDM problem, especially fuzzy set theory.

However, these methods are effective tools to handle indeterminate and
inconsistent information, in which most of them are based on approxi-
mate reasoning, imprecise data and information. Additionally, the math-
ematical frameworks of these methods are based on the opinion about
a certain statement, which are provided based on knowledge, experi-
ence experts and expressed preferences for objects and possibility of the
statement.

A cross-entropy method can be used as a useful tool to determine ideal
alternative in comparing with each other in MCDM problems. It is de-
fined to calculate the divergence and discrimination measure between
alternatives and the absolute ideal solutions under an uncertain envi-
ronment. It is an applicable index in MCDM problems and provides the
construction to determine the rank of alternatives with respect to each
criteria under uncertainty.

Accordingly, different extension and application of the cross entropy
method are proposed in MCDM problems and fuzzy fields, such as [14,
27].

A large number of studies have been proposed to develop and improve
the decision-making process in order to achieve more accurate results,
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based on mathematical reasoning and uncertain condition (e.g., entropy
and cross entropy method). Entropy is a tool to measure the amount
of uncertainty in random events and used in many fields and applica-
tions of statistical science and engineering [5]. Additionally, based on the
concept of entropy, relative entropy was first defined by Kullback and
Leibler [8], which is known as a different name, such as the Kullback-
Leibler distance, cross entropy, information diverges and information for
discrimination [21]. Cross entropy is an important and popular method
that has been extended to deal with MCDM problems. It is originally
proposed by Rubinstein [1] as an important factor, in order to deter-
mine importance sampling for estimating rare event probabilities. Then,
it was extended as a Kullback-Leibler distance to present a divergence
measure between a pair of the probability distriion [1] which has been
applied to many areas.

Although, a lot of work has been proposed about cross entropy and its
application in MCDM problems under uncertainty; however, most of
them are proposed in fuzzy fields. They are effective methods based on
imprecise information; however, little attention has been paid regarding
the type of uncertainty with incomplete information. Therefore, in the
existing methods and the extension concepts of cross entropy in MCDM
methods, there are the following shortcomings:

1) Generally, the existing methods are not able to clearly account the
uncertainty for incomplete decision results, when there is incomplete
information.

2) Lots of methods based on the D-S theory, which are proposed to han-
dle uncertainty with incomplete information, are integrated with other
theory (e.g., fuzzy set theory). These are not defined and proposed in
the framework of belief function theory straightly. In the other hand, so
far, there is no investigation on the use of the cross entropy in MCDM
problems based on fundamental belief function in the D-S theory di-
rectly.

Most of the above-mentioned references are studied about applications
of the cross entropy using the D-S theory as a generalization of another
technique or theory, especially fuzzy set theory. They propose the cross
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entropy method and its application under uncertainty. However, they
are not straightly defined in the framework of the D-S theory under
uncertainty and incomplete data. Furthermore, so far, there is no inves-
tigation on the mathematical framework to calculate the cross entropy
measure between different belief degrees and between bodies of evidence
directly, which is evaluated based on belief functions.

However, the relation between the D-S theory using different theory or
mathematical framework can be rarely affected to improve the applica-
tion of a cross entropy in various uncertainty fields; these do not involve
a cross entropy measure or divergence measure among expert’s belief
degrees about an objective or hypothesis as a crucial matter in belief
functions for an incomplete decision. Therefore, the cross entropy mea-
sure based on belief functions may play an important role to analyze
an incomplete information between the objectives. It can be considered
as a divergence between belief degrees, which are included; belief de-
grees of truth, falsity or unknown about a proposition, by using three
belief functions (i.e., belief, uncertainty and disbelief functions), which
is defined in the theory of Dempster-Shafer.

Thus, in this work, a new cross entropy for belief functions is defined and
called the belief cross entropy. It is directly proposed in the framework
of the D-S theory based on the belief function and a new definition of the
belief measure for an objective. Then it is used to establish an MCDM
method based on the cross entropy of belief functions. This paper is
organized as follows. Section 2 presents some concepts of the D-S theory
and belief functions. Section 3 proposes a new cross entropy between two
belief functions as a belief cross entropy measure. Section 4 is presented
a new MCDM based on the proposed belief cross entropy. Section 5
illustrates a numerical example. The comparison results of an illustrative
example in Section 5 and two cross entropy measures for PMVNNs are
summarized in Section 6. Finally, conclusion and some final remarks are
given in the last section.
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2. Dempster-Shafer Theory of Belief Functions

The Dempster-Shafer (D-S) theory (or belief function theory) is a gen-
eralization of the Bayesian theory introduced by Dempster in 1968 [4],
and then it was improved by Shafer in 1976 [18]. This deals with in-
complete data. Let X = {x1,z9, -+ ,z,} be a finite set of N mutually
exclusive hypotheses. All possible sub-sets of this set are constructed
the discernment frame (or power set) defined by Q or 2X(2V). Thus,
the power set is included with the 2V proposition A of , where Q =
{@,{z1},{z2},{zn}, - {1 Uza}, -+, X}, and @ is an empty set.
There are three basic functions in this theory on the discernment frame.
Important concepts in the D-S theory are discussed in the following
definitions, included as the basic belief mass function, belief function,
plausibility function and combination rule.

Definition 2.1. Let

H1 == {xl},Hz == {IEQ},-'- ,HN == {:UN},"- 7I‘IZN == {35'1,%2,-' . ,l‘n},
are subset of the power set (or frame of discernment), which is called
focal elements. The basic probability assignments (or belief mass func-
tions) are denoted by m(H;), (i = 1,2,---,2N) to the subset H; on the
frame of discernment. It represents the level of evidence in support of
hypotheses H; as defined by:

m(H;) : Q — [0,1]. (1)
The conditions of this function are as follows:

> m(H) =1, (2)

m(2) = 0. (3)

Example 2.2. Let us assume that the decision maker reviews invest-
ment documents to choose the best option for investment based on ev-
idence. The decision maker determines the highest level of relative ev-
idence to support the hypothesis H and say 0.6 in the interval [0, 1],
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which the best option to invest really occurred. In the meantime, he/she
reports that different evidence and document have been manually pre-
pared, which may indicate that the good or best investment does not
actually occur. He/she assigns a level of support 0.2 to this hypothesis
(i.e., ~ H).

Using the BPA function, the decision maker can define the all over evi-
dence by:

m(H) =0.6, m(~ H)=0.2, m(H,~H)=0.2,

The statement m(H) = 0.6 represents that the belief degree is 0.6 on
scale 0 — 1, where ‘H’ is true, while m(~ H) = 0.2 is expected belief,
where H is false or ~ H is true based on the evidence and m(H, ~
H) = 0.2 expresses that the belief does not assign to any specific, but
determined to the overall form (H,~ H), which represents uncertainty
and ignorance.

Definition 2.3. Let H;, H; € Q,where m(H;) > 0 and m(H;) > 0.
The belief function is an essential concept with regard to the D-S theory.
It represents the exact belief that a person has obtained based on the
evidence. It is given by:

bel(H;) = Z m(H;), forany H; € . (4)
H;C H;

In the D-S theory, bel(H;) = 0 denotes the deficiency of evidence about
A and bel(H;) = 1 represents that the occurrence of A is certain, while in
probability theory P(A) = 0 presents A is impossible event and P(A) =1
represents that event A is certainty true.

Example 2.4. Continuing the previous example bel(H) = m(H) = 0.6
reflects the exact support to the hypothesis 0.6 or on the other hand, the
belief degree for the occurrence of hypotheses A is 0.6. Also, bel(~ H) =
m(~ H) = 0.2 represents that hypothesis H has not occur, which is 0.2.
bel(H,~ H) = m(H)+m(~ H)+ m(H,~ H) = 0.6+ 0.2+ 0.2 = 1.
bel(H,~ H) is a belief that supports the hypotheses, do not report that
either H or ~ H is true or false.
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Definition 2.5. Let H;, H; € Q,where m(H;) > 0 and m(H;) > 0. Plau-
sibility of A expresses the total support that event A may be occurred,

i.e. the whole amount of the belief that is potentially presented in A is
defined by:

pl(H;) = Z m(H;), foreach H;e€ Q. (5)
H,NH;#2

Plausibility is a complementary belief in the proposition “not A” that is:
pI(H;) = 1 — bel(~ Hy), (6)

pl(H;) expresses the mazximum level of a belief that may be the support
of the set H;. pl(H;) = 1 mention that A is possible and we do not
have any evidence that ‘not H;’ is true. On the other hand, bel(~ H;) =
0. pl(H;) = 0 is similar to p(H;) = 1, in which implies H; that is
improbable. It expresses that if H; is not impossible, ‘not H;’ is true for
sure or bel(~ H;) = 1.

Example 2.6. In Example 2.2, the plausibility of the hypotheses that
investment is not true or hypotheses A have not occurred, which can be
represented by:

pl(H) =m(H) +m(H,~ H) =0.6+0.2=0.8
=1—bel(~H)=1-02=028,
pl(~ H) = m(~ H) +m(H,~ H) = 0.6+ 0.2 = 0.8
=1—bel(~H)=1-02=08.

Definition 2.7. Let X = {x1,x9, - ,x,} be a finite set of N mutually
exclusive hypotheses, a belief set A of reference set X is characterized
through the belief function or belief degree bel 4(H;), uncertainty function

or uncertainty degree ua(H;) and disbelief function or disbelief degree
belo(~ H;). Then a belief set A can be denoted by:

A = {bels(H;),ua(Hi),bels(~ H;)|H; € Q}, (7)

where bel A(H;),us(Hi),belg(~ H;) € [0,1] for each H; €  and
0 < bela(H;) +ua(Hi) + bela(~ H;) < 1.
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According to Definition 2.7 and Eq. 7, the belief set of H; can also be
described as shown in Fig. 1.

Uncertainty degree

b
5 -
1 1 1 1
] ] 1 |
0 bel, (H;) pla(H,) 1
b e S
Belief degree Disbelief degree

Figure 1. Description of a belief set.

Example 2.8. Let X = {x1,x2, -+ ,2,} be the belief set of hypotheses

Hy = {z1, 22} with respect to the given mass assignment in Table 1.
which is determined.

Table 1: BPA to the focal element or hypotheses.

Hi  {xi} {ze} {zs} {z1,22} {z1,23} {wo,23} {21,22,23}
m(H,) 0.1 0.2 0.1 0.1 0.1 0.3 0.1

bel(Hy) = bel({z1, 22}) = m({z1}) + m({z2}) + m({z1, z2})
=0.14+0.2+0.1=0.4,

pl(Hy) = pl({21, 22})
=m({z1}) + m({z2}) + m({z1, z2})
+m({z1, z3}) + m({we, 23}) + m({z1, 22, 23})
=014+0240140.14+0.3+0.1=0.9,

bel(~ Hy) = bel(~ {x1,22}) =1 — pl({x1,22}) =1 — 0.9,
u(Hy) = u({z1,22}) = 1 = bel({x1,x2}) — bel(~ {x1,z2})

= 1 — bel(Hy) — bel(~ Hy) =1 — 0.4 — 0.1 = 0.5.

Therefore, the belief set of hypotheses Hy = {x1,z2} is defined as
A=(0.4,0.5,0.1).
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Definition 2.9. Two or more different bodies of evidence are combined
by the Dempster’s rule [4]. Accordingly, two or more belief set A and B
can be aggregated with the corresponding belief functions by:

bela(H;) @ belp(H;) =

belA(Hi)belB(Hi) + belA(Hl-)uB(Hi) + belB(HZ-)uA(Hi)
1-— belA(HZ)belB(N Hl) - belB(HZ)belA(N Hz)

(8)

belA(N Hz) ) belB(N Hz) =
belA(N Hz)belB(N HZ) + belA(N Hl)uB(HZ) + belB(N Hl)’UJA(HZ)
1-— belA(Hl)belB(N Hl) — belB(HZ)belA(N Hl)

9)

UA(HZ)’U,B(HZ)

H; H;) = '
UA( )@UB( ) 1—b€lA(Hi)belB(N Hi)—belB(Hi)belA(N Hi)

(10)

3. Cross Entropy for a Divergence Measure Be-
tween Belief Sets

A considerable mentioned is that the cross-entropy measures for belief
sets have not been studied, this section defines cross-entropy measures
for belief sets based on the equivalenttrans formation function.

3.1 Basic concepts

A value of the cross entropy is measured the divergence among two
probability distributions P and Q. Let X = {z1,z9, -+ ,2z,}, P =
{p1,p2, -+ ,pn} and Q@ = {q1,4G2, -+ ,qn}, the cross entropy or Kullbak-
Libler distance is defined as follows, when n = 2 and P = {p,1 — p},

Q= {a.1-q} [200

p(xi) p(z;)
E(P,Q) =p(x;)In . 11
Because of undefined point g(x;) = 0 and p(x;) = 0 for each z; € X Lin
[9] proposed a new method to modify the cross entropy measure.

+ (1 = p(zi)) In
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It indicates the discrimination degree of probability distributions P. From
probability distributions Q, as follows:

L e p(xi)
BP.Q) = 3 pleoss o B0

1 — p(w;) .
1— 2(p(z) + q(z))

+ (1 = p(z:) logy (12)

Equation 12 with respect to its argument is not symmetric, thus a sym-
metric measure has also defined in Shang and Jiang [19] to obtain dis-
criminations information by:

I(P,Q) = H(P,Q)+ H(Q, P), (13)

where I(P,Q) > 0 and I(P,Q) =0 only if P = Q.

3.2 Generalized cross entropy for belief sets

According to the basic concepts in Subsection 3.1, with the aim of the
extension of a measure of the cross entropy into belief sets, we con-
sider pair exploit information carried by both belief and disbelief func-
tions. Let us consider X = {x1, 2, -+ ,z,} to be a finite set and Q =
{H1,Hs, - ,Hyn} are focal elements as alternatives or hypotheses and
2 to be a frame of discernment in the D-S theory. A = {bela(H;),ua(H,),
bela(~ H;))|H; € Q}, B = {belg(H;),up(H;),belg(~ H;))|H; € Q} are two
belief sets. Thus, by using Eq 12, the discrimination measure of A against
Bis given by Eqs. 14 to 16. According to solely on the belief function,
these equations are as the expected information, respectively.

n

Ebel(A,B) = Z |:b€lA(Hl)

i=1

lo belA(HZ)
82 bel s (H;)
1-— belA(HZ)
1— L(bela(H;) + belp(H;)) |’
(14)

+ (1 — bela(H;)) log,
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n

Eu(A,B) =) [UA(HZ-) logy

=1

ua(H;)
UB(Hz)

1 —ua(H;)
+ (1= ua(H;)) logy 1— S(ua(H;) + UB(HZ'))], )
E-a(A, B) :Z [belA 10g2m
i=1
1 — bela(~ H;)
+ (1 — belg(~ Hi)) logy 1— %(belA(N H;) + belg(~ H ))]'

(16)

Therefore, a novel belief valued cross entropy measure between A and
B is achieved as the summation of the individual quantities Eye;(A, B),
E.(A,B), E (A, B) as follows:

E(A,B)=)_ [belA( 5) log, Z(i;AH
=1

. ) 1 — bels(H;)
+ (1 — bela(H, ))1g2 — 2(bela(H;) + belp(H ))]

+ Z {UA 1) log, uA(H:)

up(H;)
— U ; (0] - UA(HZ)
(1= wa(Hi)) logy T— T(ua(Hy) + UB(HZ'))]
n bela(~ H;)
+ Z [belA 62 belp(~ Hy)
1 — belg(~ H;)
+ (1 — bela(~ )) logg - %(belA(N H;) + belp(~ H))} .

(17)

According to the Shannon entropy [18], E(A,B) > 0 and E(A,B) =0
if only if bela(H;) = belp(H;), ua(H;) = up(H;) and bely(~ H;) =
belp(~ H;). For any H; € Q. Moreover E(A¢, B¢) = E(A, B), where A¢
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and B¢ are denoted as complementary sets of A and B, where based on
Eq. 7, A and B¢ are defined by:

A€ = {belA(N Hi),uA(Hi),belA(Hi)\Hi S Q}, (18)

B¢ = {belp(~ H;),up(H;),belp(H;)|H; € Q}. (19)

Then the proposed belief cross entropy can be defined as a symmetric
discrimination by:

I(A, B) = E(A°, B°) + E(A, B). (20)

4. Proposed MCDM Model Based on the Cross
Entropy of the Beliefs Value

In this section, the fundamental conception of cross entropy are con-
sidered to use in an MCDM model. Then, this concept is extended
and proposed through a belief function. The belief function and mea-
sure can be handle the uncertainty environment in MCDM problems
when the provided information is incomplete and inconsistence. Let
A be a set of alternatives, which is discrete and infinite, where A =

{41, Aq, -+, A, }. Also, C is a set of criteria with finite elements, where
C ={C1,Cq, -+ ,Cyp}. The criteria weight of each decision maker can
m

be determined by w; € [0,1], where ij = 1. Thus, the belief set
j=1

S; of the alternativeA;(i = 1,2,--- ,n) with respect to criteria C;(j =

1,2,--- ,m) is characterized by:

Si = {bela,(Cy),ua,(Cy), bela,(~ C;)|C; € C}, (21)

where bel4,(Cj),ua,(Cj),bela,(~ Cj) € [0,1], (i =1,2,--- ,n,j =1,2,

- ,m); For the sake of simplicity, a belief value(bel 4,(C;), ua, (C;),
bela, (~ C'j)) is denoted by the symbol a;; = (belsj, uij, ~ bel;j).
For example, let us consider the decision-making problem with two al-
ternatives (companyA;, companyAs) and three criteria (Cy(cost), Cs
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(risk),Cs(growth)). When the expert’s opinion about company A; or
alternative A; with respect to cost (criteria C4) is asked, he/she may
present his/her belief value based on evidence, which supports his/her
opinion or past experience as a1 = (0.5,0.2,0.3). In this case, the frame
of discernment is {7, F'}, where T means a true solution and F or ~ T
means a false solution for investment in company A; with respect to
cost (criteria C), the BPAs value of the belief function supports the
following hypothesis:

e Company A; is a proper and positive ideal solution for investment
with respect to the cost criteria with a belief degree of 0.5.

e Company A; is a negative ideal solution for investment with re-
spect to the cost criteria with a belief degree of 0.3.

e We do not know company A is a positive or negative ideal solution
with a belief degree of 0.2, thus the belief degree of our uncertainty
is 0.2.

Accordingly, in continuation of the discussion, a belief value decision
matrix A = (a;j)nxm can be concluded by:

aixz a2 - Qim
a21 a2 -+ aA2m
A= .
Gn1 An2 - Anpm
(belllaulh ~ beln) (b6112,U12, ~ belm) te (bellma Uim, ™~ bellm)
(belzh U21, ~ 56121) (b€l227 U22, ~ 56122) e (b€l2m, U2m, ~ belzm)
(bEInla Un1, ~ belnl) (beln27 Un2, ~ bean) te (belnmy Unm, ™~ belnm,)

(22)

The MCDM procedure helps to detect the best alternative between a
set of feasible alternative. Generally, the best alternative is chosen based
on the shortest discrimination or distance from a favor or positive ideal
solution. However, in the real world, the ideal solution does not exist, a
useful construct can provide a framework to make a preference decision
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using prioritization the alternatives. Hence, the ideal value for selecting
the alternative A; with respect to criteria is a} = (bel*,u*, ~ bel*) =
(1,0,0). Thus, by using Eqgs. 17 and 20, the weighted cross entropy can
be obtained amongst alternatives A; and A*, which is the positive ideal
alternative, as follows:

" 1
D;(A*, A;) = w-[log2+log2
; ’ 3 (1 + belij) 1 — 5(uij)
o 1]
52 T3~ belyy)
T bel;; 1 — bel;;
+ w; |bel;i logy ———2—— + (1 — bel;;) lo ”}
+ i wj -Uij + (1 — ’LLZ']') log2 1_%:| (23)
i=1 L 1= 5
" [ 1— ~ bel;,;
+ |~ bely; + (1— ~ bel;;) logy —————— 9|
;wj_ elij + ( eliz) 0g21_%(w belij)}

The smallest value of D;(A*, A;) is shown the alternative A; is closer to
the positive ideal alternative against other alternatives. Therefore, the
alternative can be ranked to determine and choose the best one.

5. Illustrative Example

Now we concern a decision-making problem about a computer center
to select a new information system according to a production compa-
nies. Suppose that there is a set of four production companies A =
{A1, Ay, A3, A4} that remain in the candidate list. They are evaluated
by means of the four criteria (C1, Cs, C3,Cy) as follows:

e The cost of hardware and software investment (C)
o The level of service (Cs)

e The quality and performance (C3)
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e The reliability and lifetime of hardware and software (Cy)

The proposed weight for four criteria are w = (0.3,0.3,0.2,0.2).

One expert is estimated each alternative A;(i = 1,2,3,4) according to
criteriaC(j = 1,2, 3,4) based on insufficient existence evidence and doc-
ument. For example, he/she considers about alternative A; with respect
to criterion Cy, say (0.6,0.2,0.2) using opinion and knowledge, which
may be insufficient. It means that evidence supports that company A;
with respect to C are acceptable with a belief degree of 0.6, in which it
is not proper with a belief degree of 0.2 and is uncertain with 0.2. Ac-
cordingly, the extracted decision matrix based on a belief function is
presented by:

(0.6,0.2,0.2) (0.5,0.2,0.3) (0.7,0.1,0.2) (0.3,0.2,0.4)
A | (05,02,03) (03,02,05) (0.8,0.1,0.1) (05,0.3,02)
~1(0.4,0.2,0.4) (0.4,0.3,0.3) (0.5,0.1,0.4) (0.7,0.2,0.1)
(0.6,0.2,0.2) (0.3,0.3,0.4) (0.6,0.3,0.1) (0.6,0.3,0.1)

By applying Eq. 20, we obtain the following cross entropy values be-
tween an alternative A; (i = 1,2,3,4) and the positive ideal valueA* :
D(Ay, A*) = 0.73941, D(Ay, A*) = 0.81731, D(As, A*) = 0.84588,
D(Ay4, A*) = 0.79330. Hence, the ranking order of four alternatives with
respect to four criteria, according to the cross-entropy is Az < A <
Ay < A;. Thus, the best alternative is Aj. The result is applicable be-
cause it can handle incomplete and inconsistence information using a
belief function, which exists commonly in the real situation.

6. A Comparison Result

In order to show the validity and effectiveness of our proposed method of
MCDM problems, our method using the cross entropy measure based on
a belief set is compared with two cross-entropy measures for probability
multi-valued neutrosophic sets (PMVNSs) [12] in a neutrosophic set.
The defined cross entropy measure for PMVNNs can be found with
Peng et.al. [12] and Wu et.al. [29].

In the table 2, The final ranking of alternatives obtained by the proposed
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method and two similar important methods of investment is the same.

Table 2: Numerical results of three cross entropy measures.

Alternatives D(A, A¥) CEy (A, A) CE(A, AY)
Ay 0.73941 0.276246 0.650854
A 0.81731 0.345415 0.787231
A3 0.84588 0.351466 0.791818
Ay 0.79330 0.31527 0.72311

Ranking A3 <Ay < Ag < Ay A3 <Ay < Ap < Ay A3 <Ag < Ag < Ay

It is clear that the ranking orders of three similarity measures (i.e.,
cross entropy based on a belief degree in the D-S theory and two types
of cross-entropy measures of PMVNSs) are the same ranking of all alter-
natives. Also, comparison of them is shown that the most desirable alter-
native for investing with respect to three criteria is Company A;. Addi-
tionally, the decision results of different similarity measures based on new
definition of the belief set are demonstrated that the proposed method
under uncertainty and insufficient information are applicable and effec-
tive.

7. Conclusion

This paper defined a new aspect of three belief measures in the D-S the-
ory based on their investigated properties. The new presented method
about belief cross entropy was focused on a belief degree based on incom-
plete information and epistemic uncertainty using a belief function. Then
a new multi-criteria decision-making (MCDM) problem was proposed
based on a belief cross entropy. Three belief values were demonstrated
as belief degree, disbelief degree and uncertainty degree in the structure
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of the cross entropy, which were considered the divergence a decision al-
ternative from the positive ideal alternative in MCDM problems. There-
fore, a discrimination amount of two belief sets could measure to rank
alternatives based on the belief cross entropy, which was used to choose
the best option and the most desirable one. The proposed method was
logically reasonable as an approximate reasoning which can be applied
in many fields (e.g decision-making), when we needed to use the D-
S framework to handle uncertainty. Thus, it could provide a flexible
environment to deal with incomplete information by using belief func-
tions. Finally, a practical example illustrated to present the efficiency of
the new decision-making method.

Then, the results of the proposed cross entropy measure in the D-S
framework are compared with the existing similarity measure as PMVNN
-s in neutrosophic logic. PMVNNs measure have similar elements with
the concept of belief sets in the D-S theory and belief set can be consid-
ered as a special case of PMVNNs as a probability concept. Considering
the ability of the neutrosophic logic and similarity of this logic with
belief sets and cross entropy measure can be an interesting topic for fu-
ture research. Furthermore, development of both methods for MCDM
problems and reduction of the uncertainty can be considered as future
studies.
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