H_{v}-Normal subgroups and H_{v}-quotient groups

Mansour Ghadiri

Yazd University

Abstract

A larger class of algebraic hyperstructures satisfying the group-like axioms is the class of H_{v}-groups. In this paper, without any condition and in general, we define the H_{v}-normal subgroup and the H_{v}-quotient group of an H_{v}-group. We introduce the fundamental equivalence relation of an H_{v}-quotient group and prove the first and third isomorphism theorems for H_{v}-groups.

AMS Subject Classification: 20N20.
Keywords and Phrases: H_{v}-group, Weak homomorphism, H_{v}-normal subgroup, H_{v}-quotient group, Fundamental relation.

1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the $8^{\text {th }}$ Congress of the Scandinavian Mathematics [10]. This theory has been studied in the following decades and nowadays by many mathematicians. There are applications to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence and probabilities. The theory of H_{v}-structures introduced and studied by Vougiouklis [15]. The concept of H_{v}-structures not only constitutes a generalization of the well-known hyperstructures, but it also comprises a very interesting and deep algebraic theory. Fundamental structures appeared in [13] which is the crucial point to define the H_{v}-structures which first appeared in [14]. Actually some axioms concerning the above

[^0]hyperstructures are replaced by their corresponding weak axioms. This concepts and the basic definitions of which can be found in [15] has been investigated in $[1,13,16]$. $\mathrm{P}-H_{v}$-structures wich is a subclasses of H_{v}-structures studied in [13] by S. Spaartalis and T.vougiouhly. The reader will found in [11, 12] a deep discussion on P-hyperstructiones theory. The notion of n-ary hypergroups is defined and considered by Davvas and Vougiouhly in [4], which is a generalization of hypergroups in the sense of Marty and a generalization of n-ary groups. The reader will found the notions of n -ary H_{v}-groups and n -ary P - H_{v}-groups in $[6,8]$. The concepts of normal subgroups as a fandumental concepts in hyperstructures and H_{v}-structures only are disscussed in some special subclasses of $H_{v^{-}}$-structures for example $\mathrm{P}-H_{v^{-}}$structures, n-ary $\mathrm{P}-H_{v^{-}}$ structures, polygroups and n -ary polygroups see $[2,7,8]$. In this paper it is introduced the H_{v}-normal subgroups of an H_{v}-groups, and it is investigated the relative concepts. In section 2 , it is introduced the notion of weak homomorphism. Also, we recall basic concepts and modify some definitions of [3] for the sake of completeness. In section 3, H_{v}-normal subgroups and H_{v}-quotient groups are defined and then some problems are covered. In section 4, the fundamental relation of an H_{v}-quotient group is introduced and the first and third isomorphism theorems for H_{v}-groups are presented and proved.

2 Weak Homomorphism and Basic Concepts

Let H be a non-empty set and $\mathcal{P}^{*}(H)$ be the family of non-empty subsets of H. Every mapping $*: H \times H \rightarrow \mathcal{P}^{*}(H)$ is called a hyperoperation on H and $(H, *)$ is called a hyperstructure. The hyperstructure $(H, *)$ is called an H_{v}-group if "*" is weak associative: $x *(y * z) \cap(x * y) * z \neq \emptyset$ and the reproduction axiom is hold: $a * H=H * a=H$ for every $a \in H$. The H_{v}-group H is called weak commutative if for every $x, y \in H$, $x * y \cap y * x \neq \emptyset$. The nonempty subset K of H is called an H_{v}-subgroup if $(K, *)$ is an H_{v}-group. A mapping $\phi: H_{1} \longrightarrow H_{2}$ on H_{v}-groups $\left(H_{1}, *\right)$ and $\left(H_{2}, \cdot\right)$ is called a strong homomorphism if for every $x, y \in H_{1}$ we have $f(x * y)=f(x) \cdot f(y)$.

Suppose U is the set of all finite sums of elements of H_{v}-group H.

Then the relation β on H defined by:

$$
x \beta y \Leftrightarrow\{x, y\} \subseteq u, \text { for some } u \in U,
$$

is reflexive and symmetric, but not transitive necessary. The transitive closure of β is called β^{*}. The fundamental relation β^{*} is the smallest equivalence relation on the H_{v}-group H such that H / β^{*} consisting of all equivalence classes is a group. Suppose that $\beta^{*}(x)$ and $\beta^{*}(y)$ is the equivalence class of $x, y \in H$ respectively. On H / β^{*} the operation \oplus is defined as follows that $\left(H / \beta^{*}, \oplus\right)$ is a group:

$$
\beta^{*}(x) \oplus \beta^{*}(y)=\beta^{*}(c) \text {, for every } \mathbf{c} \in \mathbf{x}+\mathbf{y} .
$$

The group $\left(H / \beta^{*}, \oplus\right)$ is called the fundamental group of the H_{v}-group H. This concept was introduced on hypergroups by Koskas [9] and studied mainly by Corsini [1].

The map ϕ from an H_{v}-structure onto it's fundamental structure where x maps to $\beta^{*}(x)$, is called fundamental map. If $\phi: H \longrightarrow H / \beta^{*}$ is the fundamental mapping of the H_{v}-group H, then the core of H is defined by $\omega_{H}=\{x \in H \mid \phi(x)=0\}$, where 0 denotes the unit of the group H / β^{*}. One can show that

$$
\omega_{H} \oplus \beta^{*}(x)=\beta^{*}(x) \oplus \omega_{H}=\beta^{*}(x) \text { for every } x \in H
$$

The following concepts and statements are modified of [3] with the w-homomorphism view that is defined as follows.

Definition 2.1. Let $(G,+)$ and (H, \oplus) be H_{v}-groups. A mapping $f: G \longrightarrow H$ of H_{v}-groups is called weak homomorphism (w-hom.) if

$$
\beta_{G}^{*}\left(f\left(g_{1}+g_{2}\right)\right)=\beta_{H}^{*}\left(f\left(g_{1}\right)\right) \oplus \beta_{H}^{*}\left(f\left(g_{2}\right)\right), \text { for every } g_{1}, g_{2} \in G,
$$

where β_{G}^{*} and β_{H}^{*} are the fundamental relations of $H_{v^{-}}$group G and H respectively. And the w-hom. f is called w-monic if

$$
f\left(g_{1}\right)=f\left(g_{2}\right) \Rightarrow \beta_{G}^{*}\left(g_{1}\right)=\beta_{G}^{*}\left(g_{2}\right), \text { for every } g_{1}, g_{2} \in G .
$$

Also, f is called w-epic if for every $h \in H$ there exists $g \in G$ such that $\beta_{H}^{*}(h)=\beta_{H}^{*}(f(g))$. Finally the weak homomorphism f is called w-isomorphism if f is w-monic and w-epic, in this case we write $G \stackrel{W}{\cong} H$. It is clear every strong hom. is w-hom. and so if $G \cong H$, then $G \stackrel{W}{\cong} H$.

Theorem 2.2. Let $f: G \longrightarrow H$ be a strong (w-)hom. of H_{v}-groups. Then ω_{G} and kernel of $f, \operatorname{Ker}(f)=\left\{g \in G \mid f(a) \in \omega_{H}\right\}$, are $H_{v^{-}}$ subgroups of G and ω_{G} is contained in $\operatorname{Ker}(f)$.
Lemma 2.3. Let $f: G \longrightarrow H$ be a strong (w-)hom. of H_{v}-groups. The mapping $F: G / \beta_{G}^{*} \longrightarrow H / \beta_{H}^{*}$ defined by $F\left(\beta^{*}(g)\right)=\beta_{H}^{*}(f(g))$ is a homomorphism of groups and the following conditions are equivalent:
(i) F is one to one,
(ii) f is w-monic,
(iii) $\operatorname{Ker}(f)=\omega_{G}$.

Proof. Let f be a w-hom.. We show that F is well-defined. Suppose that $\beta_{G}^{*}(a)=\beta_{G}^{*}(b)$, then there exist $g_{1}, \cdots, g_{m+1} \in G$ and $u_{1}, \cdots, u_{m} \in$ U_{G} with $g_{1}=a, g_{m+1}=b$ such that $\left\{g_{i}, g_{i+1}\right\} \subseteq u_{i}, i=1,2, \cdots, m$.
So $\left\{\beta_{H}^{*}\left(f\left(g_{i}\right)\right), \beta_{H}^{*}\left(f\left(g_{i+1}\right)\right)\right\} \subseteq \beta_{H}^{*}\left(f\left(u_{i}\right)\right)=\beta_{H}^{*}(h)$ for some $h \in H$ since f is w-hom.. Thus $\beta_{H}^{*}\left(f\left(g_{i}\right)\right)=\beta_{H}^{*}\left(f\left(g_{i+1}\right)\right)$ for every $i=1,2, \cdots, m$ and consequently $\beta_{H}^{*}(f(a))=\beta_{H}^{*}(f(b))$. Therefore F is well-defined. Now, we have

$$
\begin{aligned}
F\left(\beta_{G}^{*}(a) \oplus \beta_{G}^{*}(b)\right) & =F\left(\beta_{G}^{*}(a+b)\right)=\beta_{H}^{*}(f(a+b))=\beta_{H}^{*}(f(a)) \oplus \beta_{H}^{*}(f(b)) \\
& =F\left(\beta_{G}^{*}(a)\right) \oplus F\left(\beta_{G}^{*}(b)\right) .
\end{aligned}
$$

Remaining of proof is similar as follows in [3].
Lemma 2.4. Let $\varphi: G \longrightarrow H$ be a strong epimorphism of H_{v}-groups. Then
(i) for $a, b \in G$, $a \beta_{G}^{*} b$ iff $\varphi(a) \beta_{H}^{*} \varphi(b)$,
(ii) for $N \subseteq G, \varphi\left(\beta_{G}^{*}(N)\right)=\beta_{H}^{*}(\varphi(N))$.

Proof. (i) By definition of relations β_{G}^{*} and β_{H}^{*}, the proof is straightforward.
(ii)

$$
\begin{aligned}
h \in \varphi\left(\beta_{G}^{*}(N)\right) & \Leftrightarrow h=\varphi(x), x \in \beta_{G}^{*}(n), \text { for some } n \in N \\
& \Leftrightarrow x \beta_{G}^{*}(n), h=\varphi(x) \\
& \Leftrightarrow \varphi(x) \beta_{H}^{*} \varphi(n), h=\varphi(x), \text { by }(i) \\
& \Leftrightarrow h=\varphi(x) \in \beta_{H}^{*}(\varphi(N)) .
\end{aligned}
$$

Remark 2.5. It is easy to see that, If G_{1}, \cdots, G_{k} be H_{v}-groups with fundamental relations $\beta_{1}^{*}, \cdots, \beta_{k}^{*}$ respectively, then $G=G_{1} \times G_{2} \times \cdots G_{k}$ with hyperoperation induced by hyperoperations of G_{i} as below:

$$
\left(x_{1}, \cdots, x_{k}\right) \cdot\left(y_{1}, \cdots, y_{k}\right)=\left\{\left(t_{1}, \cdots, t_{k}\right) \mid t_{i} \in x_{i} \cdot y_{i}, i=1, \cdots, k\right\}
$$

is an H_{v}-group. Also $\left(x_{1}, \cdots, x_{k}\right) \beta_{g}^{*}\left(y_{1}, \cdots, y_{k}\right)$ iff $x_{i} \beta_{i}^{*} y_{i}$ for $i=$ $1, \cdots, k$.

$3 \quad H_{v}$-Normal Subgroup \& H_{v}-Quotient Group

In this section G and H are H_{v}-groups with fundamental relations $\beta_{G}^{*}(=$ $\left.\beta^{*}\right)$ and β_{H}^{*} respectively. The identity and inverse element that is the essential elements for building the quotient (group and ring) there are not in H_{v}-structures. Since the H_{v}-structures are introduced up to now, the H_{v}-normal subgroup and H_{v}-quotient group were not introduced. In this section it is introduced the normal notion of H_{v}-groups based on corresponding fundamental group.

Lemma 3.1. If H is an H_{v}-subgroup of G, then $\beta^{*}(H)=\left\{\beta^{*}(h) \mid h \in\right.$ $H\}$ is a subgroup of G / β^{*}.

Proof. If $\beta^{*}(x), \beta^{*}(y) \in \beta^{*}(H)$ then there exist $h_{1}, h_{2} \in H$ such that

$$
\beta^{*}(x)=\beta^{*}\left(h_{1}\right), \beta^{*}(y)=\beta^{*}\left(h_{2}\right) .
$$

So, $\beta^{*}(x) \oplus \beta^{*}(y)=\beta^{*}\left(h_{1}\right) \oplus \beta^{*}\left(h_{2}\right)=\beta^{*}(h)$ for some $h \in h_{1}+h_{2}$. Thus $\beta^{*}(x) \oplus \beta^{*}(y) \in \beta^{*}(H)$.

For associativity law, let $\beta^{*}(x), \beta^{*}(y), \beta^{*}(z) \in \beta^{*}(H)$. We have:

$$
\begin{aligned}
& \beta^{*}(x) \oplus\left(\beta^{*}(y) \oplus \beta^{*}(z)\right)=\beta^{*}(x+(y+z)), \\
& \left(\beta^{*}(x) \oplus \beta^{*}(y)\right) \oplus \beta^{*}(z)=\beta^{*}((x+y)+z) .
\end{aligned}
$$

Since H is an H_{v}-group, we have $x+(y+z) \cap(x+y)+z \neq \emptyset$. On the other hand the left sides of above equations are single-member, so

$$
\beta^{*}(x) \oplus\left(\beta^{*}(y) \oplus \beta^{*}(z)\right)=\left(\beta^{*}(x) \oplus \beta^{*}(y)\right) \oplus \beta^{*}(z) .
$$

Suppose $\beta^{*}(x)=\beta^{*}\left(h_{1}\right) \in \beta^{*}(H)$, where $h_{1} \in H$. By reproduction axiom of H there exists $h \in H$ such that $h_{1} \in h_{1}+h$. Thus $\beta^{*}\left(h_{1}\right)=$ $\beta^{*}\left(h_{1}\right) \oplus \beta^{*}(h)$ and $\omega_{G}=\beta^{*}(h) \in \beta^{*}(H)$, so $\beta^{*}(H)$ has zero element.

If $\beta^{*}(y)=\beta^{*}\left(h_{2}\right) \in \beta^{*}(H)$, where $h_{2} \in H$, there exists $h_{3} \in H$ such that $h \in h_{2}+h_{3}$. So $\omega_{G}=\beta^{*}(h)=\beta^{*}\left(h_{2}\right) \oplus \beta^{*}\left(h_{3}\right)$ and $\beta^{*}\left(h_{3}\right)$ is the inverse of $\beta^{*}\left(h_{2}\right)$ in $\beta^{*}(H)$. Therefore $\beta^{*}(H)$ is a subgroup of G / β^{*}.

Definition 3.2. Let N be an $H_{v^{-}}$subgroup of $G . N$ is called an $H_{v^{-}}$ normal subgroup of G if $\beta^{*}(N) \triangleleft G / \beta^{*}$.
Example 3.3. Consider the following H_{v}-group H :

\cdot	a	b	c	d	e	f
a	a	b	c,d	d	f,e	f
b	b	a	e,f	f	c	d,c
c	d,c	f,e	a	e,f	d	b
d	d,c	e	f	a	b	c,d
e	e	d,c	b	c,d	f,e	a
f	f,e	c	d,c	b	a	e,f

We have:

$$
H / \beta_{H}^{*}=\left\{\beta_{H}^{*}(a), \beta_{H}^{*}(b)\right\},
$$

where

$$
\beta_{H}^{*}(a)=\{a, e, f\}, \beta_{H}^{*}(b)=\{b, c, d\} .
$$

Now ($N=\{a, e, f\}, \cdot)$ is an H_{v}-subgroup of (H, \cdot) and by Lemma 3.1 $\beta_{H}^{*}(N)=\left\{\beta_{H}^{*}(a)\right\}$ is a subgroup of the fundamental group H / β_{H}^{*}. We have $\beta_{H}^{*}(N)=\omega_{H} \unlhd H / \beta_{H}^{*}$. Therefore N is an H_{v}-normal subgroup of H.
Lemma 3.4. Let K be a subgroup of G. If for every g and g^{\prime} in G, where $\beta^{*}(g) \oplus \beta^{*}\left(g^{\prime}\right)=\omega_{G}, x \in \beta^{*}(g)$ and $y \in \beta^{*}\left(g^{\prime}\right)$ implies $y+K+x \subseteq K$, then K is an H_{v}-normal subgroup of G.
Proof. Suppose $\beta^{*}(g) \oplus \beta^{*}\left(g^{\prime}\right)=\omega_{G}, x \in \beta^{*}(g)$ and $y \in \beta^{*}\left(g^{\prime}\right)$, then

$$
\begin{aligned}
& \beta^{*}(x) \oplus \beta^{*}(K) \oplus \beta^{*}(y) \subseteq \beta^{*}(K) \\
& \beta^{*}\left(g^{\prime}\right) \oplus \beta^{*}(K) \oplus \beta^{*}(g) \subseteq \beta^{*}(K)
\end{aligned}
$$

Therefore $\beta^{*}(K) \unlhd G / \beta^{*}$ and so K is an H_{v}-normal subgroup of G.

Theorem 3.5. If $f: G \longrightarrow H$ is a strong (w-)hom., then $K=\operatorname{Ker}(f)$ is an H_{v}-normal subgroup of G.

Proof. By Theorem 2.2, $K=\operatorname{Ker}(f)$ is an H_{v}-subgroup of G. Suppose $x \in \beta^{*}(g), y \in \beta^{*}\left(g^{\prime}\right), k \in K$ and $s \in x+k+y$; where

$$
\beta^{*}\left(g^{\prime}\right) \oplus \beta^{*}(g)=\omega_{G} .
$$

So $\beta^{*}(x) \oplus \beta^{*}(y)=\omega_{G}$. For $s \in x+k+y, f(s) \in f(x+k+y)$ and we have

$$
\begin{aligned}
\beta_{H}^{*}(f(s)) \in \beta_{H}^{*}(f(x+k+y)) & =\beta_{H}^{*}(f(x)) \oplus \beta_{H}^{*}(f(k)) \oplus \beta_{H}^{*}(f(y)) \\
& =\beta_{H}^{*}(f(x)) \oplus \omega_{H} \oplus \beta_{H}^{*}(f(y)) \\
& =F\left(\beta^{*}(x)\right) \oplus F\left(\beta^{*}(y)\right) \\
& =F\left(\beta^{*}(x) \oplus \beta^{*}(y)\right) \\
& =F\left(\omega_{G}\right)=\omega_{H} .
\end{aligned}
$$

Thus $f(s) \in \omega_{H}, s \in \operatorname{Ker}(f)$ and $x+k+y \subseteq K$. So by Lemma 3.4 $K=\operatorname{Ker}(f)$ is an H_{v}-normal subgroup of G.

Corollary 3.6. ω_{H} is an H_{v}-normal subgroup of G.
Proof. If $\phi: G \longrightarrow G / \beta^{*}$ be the fundamental mapping, then ϕ is a strong homomorphism of H_{v}-groups and $\operatorname{Ker}(\phi)=\omega_{G}$. So, by Theorem $3.5 \omega_{G}$ is an H_{v}-normal subgroup of G.

Theorem 3.7. Let K be an H_{v}-normal subgroup of G. Define the hyperoperation $\hat{+}$ on $G / K=\{g+K \mid g \in G\}$ by $\left(g_{1}+K\right) \hat{+}\left(g_{2}+K\right)=$ $\beta^{*}\left(g_{1}+g_{2}+K\right)+K$. Then $(G / K, \hat{+})$ is an H_{v}-group. $(G / K, \hat{+})$ is called the H_{v}-quotient group of G on K.
Proof. Suppose $g_{1}+K=g_{1}^{\prime}+K$ and $g_{2}+K=g_{2}^{\prime}+K$. So
$\beta^{*}\left(g_{1}\right) \oplus \beta^{*}(K) \oplus \beta^{*}\left(g_{2}\right) \oplus \beta^{*}(K)=\beta^{*}\left(g_{1}^{\prime}\right) \oplus \beta^{*}(K) \oplus \beta^{*}\left(g_{2}^{\prime}\right) \oplus \beta^{*}(K)$.
Since K is an H_{v}-normal subgroup in G, then $\beta^{*}(K)$ is normal in $\beta^{*}(G)$ and we have:

$$
\begin{aligned}
\beta^{*}\left(g_{1}\right) \oplus \beta^{*}\left(g_{2}\right) \oplus \beta^{*}(K) & =\beta^{*}\left(g_{1}^{\prime}\right) \oplus \beta^{*}\left(g_{2}^{\prime}\right) \oplus \beta^{*}(K), \\
\beta^{*}\left(g_{1}+g_{2}+K\right) & =\beta^{*}\left(g_{1}^{\prime}+g_{2}^{\prime}+K\right),
\end{aligned}
$$

$$
\begin{aligned}
\beta^{*}\left(g_{1}+g_{2}+K\right)+K & =\beta^{*}\left(g_{1}^{\prime}+g_{2}^{\prime}+K\right)+K, \\
\left(g_{1}+K\right) \hat{+}\left(g_{2}+K\right) & =\left(g_{1}^{\prime}+K\right) \hat{+}\left(g_{2}^{\prime}+K\right) .
\end{aligned}
$$

Therefore, $\hat{+}$ is a well defined hyperoperation on G / K.
Let $g_{1}+K, g_{2}+K, g_{3}+K \in G / K$ we have:

$$
\begin{aligned}
{\left[\left(g_{1}+K\right) \hat{+}\left(g_{2}+K\right)\right] \hat{+}\left(g_{3}+K\right) } & =\left[\beta^{*}\left(g_{1}+g_{2}+K\right)+K\right] \hat{+}\left(g_{3}+K\right) \\
& =\left\{x+K \mid x \in \beta^{*}\left(g_{1}+g_{2}+K\right)\right\} \hat{+}\left(g_{3}+K\right) \\
& =\cup \beta^{*}\left(x+g_{3}+K\right)+K ; x \in \beta^{*}\left(g_{1}+g_{2}+K\right) \\
& =\left\{y+K \mid y \in \beta^{*}\left(x+g_{3}+K\right), x \in \beta^{*}\left(g_{1}+g_{2}+K\right)\right\} \\
& =\left\{y+K \mid y \in \beta^{*}\left(g_{1}+g_{2}\right) \oplus \beta^{*}\left(g_{3}\right) \oplus \beta^{*}(K)\right\} \\
& =\left\{y+K \mid y \in \beta^{*}\left(g_{1}+g_{2}+g_{3}+K\right)\right\} \\
& =\left(g_{1}+K\right) \hat{+}\left[\left(g_{2}+K\right) \hat{+}\left(g_{3}+K\right)\right] .
\end{aligned}
$$

Therefore $\hat{+}$ is an associative hyperoperation.
Now we prove that $(G / K, \hat{+})$ satisfies the reproduction axiom. We know

$$
\left(g_{1}+K\right) \hat{+} G / K=\left\{x+K \mid x \in \beta^{*}\left(g_{1}+g+K\right), g \in G\right\} \subseteq G / K
$$

if $g_{0}+K \in G / K$, by the reproduction axiom of G there exists $g_{2} \in G$ such that

$$
\begin{aligned}
g_{0} \in \beta^{*}\left(g_{0}\right) & =\beta^{*}\left(g_{1}+g_{2}\right), \\
g_{0}+K \in \beta^{*}\left(g_{1}+g_{2}\right)+K & \subseteq \beta^{*}\left(g_{1}+g_{2}\right) \oplus \beta^{*}(K) \oplus K \\
& =\beta^{*}\left(g_{1}+g_{2}+K\right)+K
\end{aligned}
$$

Thus $g_{0}+K \in \beta^{*}\left(g_{1}+g_{2}+K\right)+K$ and $G / K \subseteq\left(g_{1}+K\right) \hat{+} G / K$. So $(G / K, \hat{+})$ satisfies the reproduction axiom.

4 Fundamental Relation of H_{v}-Quotient Group

Let N be an H_{v}-normal subgroup of G and U be the set of all finite sums of elements of G. One can show that every finite sums of elements of G / N is equal to $\beta^{*}(u+N)+N$ for some $u \in U$.

Lemma 4.1. Let β_{q}^{*} be the fundamental relation of G / N. Then for $g_{1}, g_{2} \in G, \beta_{q}^{*}\left(g_{1}+N\right)=\beta_{q}^{*}\left(g_{2}+N\right)$ if and only if $\beta^{*}\left(g_{1}+N\right)=$ $\beta^{*}\left(g_{2}+N\right)$.

Proof. Suppose that $\beta_{q}^{*}\left(g_{1}+N\right)=\beta_{q}^{*}\left(g_{2}+N\right)$. Then there exist $u_{1}, u_{2}, \cdots, u_{m} \in U$ and $x_{1}, x_{2}, \cdots, x_{m+1} \in G$ such that:

$$
x_{1}+N=g_{1}+N, x_{m+1}+N=g_{2}+N
$$

and

$$
\left\{x_{i}+N, x_{i+1}+N\right\} \subseteq u_{i}+N \text { for } i=1,2, \cdots, m
$$

Thus
$\beta^{*}\left(x_{1}\right) \oplus \beta^{*}(N)=\beta^{*}\left(g_{1}\right) \oplus \beta^{*}(N), \beta^{*}\left(x_{m+1}\right) \oplus \beta^{*}(N)=\beta^{*}\left(g_{2}\right) \oplus \beta^{*}(N)$,

$$
\left\{\beta^{*}\left(x_{i}\right) \oplus \beta^{*}(N), \beta^{*}\left(x_{i+1}\right) \oplus \beta^{*}(N)\right\} \subseteq \beta^{*}\left(u_{i}\right) \oplus \beta^{*}(N) \text { for } u_{i} \in U
$$

We have $u_{i}=u_{i_{1}}+u_{i_{2}}+\cdots+u_{i_{n_{i}}}$ where $u_{i_{j}} \in G$ for $j=1,2, \cdots, n_{i}$. Now, by properties of fundamental relation we have

$$
\beta^{*}\left(u_{i}\right)=\beta^{*}\left(u_{i_{1}}\right) \oplus \cdots \oplus \beta^{*}\left(u_{n_{i}}\right)=\beta^{*}\left(t_{i}\right) \text { for every } t_{i} \in u_{i} .
$$

Since $\beta^{*}(N) \triangleleft \beta^{*}(G)$, then $\beta^{*}\left(x_{i}\right) \oplus \beta^{*}(N), \beta^{*}\left(u_{i}\right) \oplus \beta^{*}(N)$ and $\beta^{*}\left(t_{i}\right) \oplus$ $\beta^{*}(N)$ are cosets of $\beta^{*}(N)$ in $\beta^{*}(G)$ and
$\beta^{*}\left(x_{i}\right) \oplus \beta^{*}(N)=\beta^{*}\left(x_{i+1}\right) \oplus \beta^{*}(N)=\beta^{*}\left(u_{i}\right) \oplus \beta^{*}(N)$ for $i=1,2, \cdots, m$.
Therefore $\beta^{*}\left(g_{1}\right) \oplus \beta^{*}(N)=\beta^{*}\left(g_{2}\right) \oplus \beta^{*}(N)$.
Conversly;

$$
\begin{aligned}
\beta^{*}\left(g_{1}+N\right)=\beta^{*}\left(g_{2}+N\right) & \Rightarrow \beta^{*}\left(g_{1}+N\right)+\omega_{G}+N=\beta^{*}\left(g_{2}+N\right)+\omega_{G}+N \\
& \Rightarrow \beta^{*}\left(g_{1}+N+\omega_{G}\right)+N=\beta^{*}\left(g_{2}+N+\omega_{G}\right)+N \\
& \Rightarrow\left(g_{1}+N\right) \hat{+}\left(g_{0}+N\right)=\left(g_{2}+N\right) \hat{+}\left(g_{0}+N\right), \text { for } g_{0} \in \omega_{G} \\
& \Rightarrow \beta_{q}^{*}\left(g_{1}+N\right) \hat{+} \beta_{q}^{*}\left(g_{0}+N\right)=\beta_{q}^{*}\left(g_{2}+N\right) \hat{+} \beta_{q}^{*}\left(g_{0}+N\right) \\
& \Rightarrow \beta_{q}^{*}\left(g_{1}+N\right)=\beta_{q}^{*}\left(g_{2}+N\right) .
\end{aligned}
$$

Theorem 4.2. Let G and H be H_{v}-groups with fundamental relations β^{*} and β_{H}^{*} respectively.
(i) If N is an H_{v}-normal subgroup of G then the map $f: \begin{aligned} & G \longrightarrow G / N \\ & x \longmapsto x+N\end{aligned}$ is a weak and inclusion epimorphism.
(ii) Let $\varphi: G \longrightarrow H$ be a strong epimorphism such that $N \subseteq$ ker φ. Then there exists the strong epimorphism $\bar{\varphi}: \begin{aligned} & G / N \longrightarrow H / \omega_{H} \\ & x+N \longmapsto \varphi(x)+\omega_{H}\end{aligned}$, and $\operatorname{ker} \bar{\varphi}=\operatorname{ker} \varphi / N$.

Proof. (i) $x=y \Rightarrow x+N=y+N \Rightarrow f(x)=f(y)$.

$$
\begin{aligned}
f(x+y)=x+y+N & \subseteq \beta^{*}(x+y+N)+N \\
& =(x+N) \hat{+}(y+N) \\
& =f(x) \hat{+} f(y) .
\end{aligned}
$$

since $\beta^{*}((x+y)+N)=\beta^{*}\left(\beta^{*}((x+y)+N)+N\right)$, by Lemma 4.1, we have $\beta_{q}^{*}(x+y+N)=\beta_{q}^{*}((x+N) \hat{+}(y+N))$ and so $\beta_{q}^{*}(f(x+y))=$ $\beta_{q}^{*}(f(x)) \hat{+} \beta_{q}^{*}(f(y))$. (ii) For $x+N, y+N \in G / N$,

$$
x+N=y+N \Rightarrow \varphi(x+N)=\varphi(y+N)
$$

$$
\Rightarrow \varphi(x)+\varphi(N)=\varphi(y)+\varphi(N) ; \quad \varphi \text { is strong hom. }
$$

$$
\Rightarrow \varphi(x)+\varphi(N)+\omega_{H}=\varphi(y)+\varphi(N)+\omega_{H}
$$

$$
\Rightarrow \quad \varphi(x)+\omega_{H}=\varphi(y)+\omega_{H}, \quad N \subseteq \operatorname{ker} \varphi \subset \omega_{H}
$$

$$
\Rightarrow \quad \bar{\varphi}(x)=\bar{\varphi}(y)
$$

$$
\begin{align*}
\bar{\varphi}((x+N) \hat{+}(y+N))= & \bar{\varphi}\left(\beta^{*}(x+y+N)+N\right) \\
& =\left\{\varphi(t)+\omega_{H} \mid t \in \beta^{*}(x+y+N)\right\} \\
& =\left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y+N)\right)\right\} \\
& =\left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y) \oplus \beta^{*}(N)\right)\right\} \\
& =\left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y)\right) \oplus \varphi\left(\beta^{*}(N)\right)\right\}, \varphi \text { is strong hom. } \\
& =\left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y)\right) \oplus \beta_{H}^{*}(\varphi(N))\right\}, \text { by lemma } 2.4 \text { (ii) } \\
& =\left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y)\right) \oplus \beta_{H}^{*}\left(\omega_{H}\right)\right\}, \text { since } N \subseteq \text { ker } \varphi \\
= & \left\{s+\omega_{H} \mid s \in \varphi\left(\beta^{*}(x+y)\right)\right\} . \tag{1}\\
& \\
& =\begin{aligned}
\bar{\varphi}(x+N) \hat{+} \bar{\varphi}(y+N) & =\left(\varphi(x)+\omega_{H}\right) \hat{+}\left(\varphi(y)+\omega_{H}\right) \\
& =\beta_{H}^{*}\left(\varphi(x)+\varphi(y)+\omega_{H}\right)+\omega_{H} \\
& =\left\{s+\omega_{H} \mid s \in \beta_{H}^{*}\left(\varphi(x)+\varphi(y)+\omega_{H}\right)\right\} \\
& =\left\{s+\omega_{H} \mid s \in \beta_{H}^{*}(\varphi(x+y))\right\} .
\end{aligned}
\end{align*}
$$

By (ii) of Lemma 2.4 and (1), (2) the proof is completed.
Example 4.3. Consider the H_{v}-group H and it's H_{v}-normal subgroup N in Example 3.3. We have:

$$
H / N=\{a+N, b+N\}
$$

and
$(a+N) \hat{+}(a+N)=\beta^{*}(a+a+N)+N=\beta^{*}(N)+N=\{a+N\}$,
$(a+N) \hat{+}(b+N)=\beta^{*}(a+b+N)+N=\beta^{*}(b)+N=\{b+N\}$,
$(b+N) \hat{+}(a+N)=\beta^{*}(b+a+N)+N=\beta^{*}(b)+N=\{b+N\}$,
$(b+N) \hat{+}(b+N)=\beta^{*}(b+b+N)+N=\beta^{*}(a)+N=\{a+N\}$.
Also, by Lemma 4.1 we have $\frac{H / N}{\beta_{q}^{*}}=\left\{\beta_{q}^{*}(a+N), \beta_{q}^{*}(b+N)\right\}$.
For inclusion canonical epimorphis $f: H \longrightarrow H / N$ we have

$$
f(b+c)=(b+c)+N=N,
$$

and

$$
f(b)+f(c)=(b+N) \hat{+}(c+N)=\beta^{*}(b+c+N)+N=N,
$$

because
$\beta^{*}(b+c+N)=\beta^{*}(\{e, f\}+N)=\beta^{*}((e+N) \cup(f+N))=\beta^{*}(N)=N$
Theorem 4.4. If $\beta_{q K}^{*}$ and β^{*} are the fundamental relations of G / K and G respectively, then $\frac{G}{K} / \beta_{q K}^{*} \cong \frac{\beta^{*}(G)}{\beta^{*}(K)}$.

Proof. Define $\theta: \beta_{q K}^{*}(G / K) \longrightarrow \beta^{*}(G) / \beta^{*}(K)$ by $\theta\left(\beta_{K}^{*}(g+K)\right)=$ $\beta^{*}(g) \oplus \beta^{*}(K)$. By Lemma 4.1, θ is an one-to-one mapping. If $g_{1}+$ $K, g_{2}+K \in G / K$, we have:

$$
\begin{aligned}
\theta\left(\beta_{q K}^{*}\left(g_{1}+K\right) \oplus \beta_{q K}^{*}\left(g_{2}+K\right)\right) & =\theta\left(\beta_{q K}^{*}\left(\beta^{*}\left(g_{1}+g_{2}+K\right)+K\right)\right. \\
& =\left\{\theta\left(\beta_{q K}^{*}(x+K)\right) \mid x \in \beta^{*}\left(g_{1}+g_{2}+K\right)\right\} \\
& =\left\{\beta^{*}(x) \oplus \beta^{*}(K) \mid x \in \beta^{*}\left(g_{1}+g_{2}+K\right)\right\} \\
& =\beta^{*}\left(g_{1}+g_{2}\right) \oplus \beta^{*}(K) \\
& =\beta^{*}\left(g_{1}\right) \oplus \beta^{*}\left(g_{2}\right) \oplus \beta^{*}(K) \\
& =\left[\beta^{*}\left(g_{1}\right) \oplus \beta^{*}(K)\right] \oplus\left[\beta^{*}\left(g_{2}\right) \oplus \beta^{*}(K)\right] .
\end{aligned}
$$

Therefore θ is a homomorphism and it is clear that θ is epic.
Corollary 4.5. If G is an H_{v}-group and $K \triangleleft G$, then:
(i) $\omega_{G / K}=\beta^{*}(K)+K\left(=\frac{\beta^{*}(K)}{K}=\left\{x+K \mid x \in \beta^{*}(K)\right\}\right)$,
(ii) $\omega_{\frac{G}{\omega_{G}}}=\omega_{G}$.

Proof. (i) By Theorem 4.4

$$
\begin{aligned}
\omega_{G / K} & =\left\{g+K \mid \theta\left(\beta_{N}^{*}(g+K)\right)=\beta^{*}(K)\right\} \\
& =\left\{g+K \mid \beta^{*}(g) \oplus \beta^{*}(K)=\beta^{*}(K)\right\} \\
& =\left\{g+K \mid \beta^{*}(g) \in \beta^{*}(K)\right\} \\
& =\beta^{*}(K)+K .
\end{aligned}
$$

(ii) By (i) we have $\omega_{\frac{G}{\omega_{K}}}=\beta^{*}\left(\omega_{G}\right)+\omega_{G}=\omega_{G}+\omega_{G}=\omega_{G}$.

Lemma 4.6. Let H be an H_{v}-group, for $a \in H$, if $a+\omega_{H}=\omega_{H}$ then $a \in \omega_{H}$.

Proof.

$$
\begin{aligned}
a+\omega_{H}=\omega_{H} & \Rightarrow \beta^{*}\left(a+\omega_{H}\right)=\beta^{*}\left(\omega_{H}\right) \\
& \Rightarrow \beta_{H}^{*}(a) \oplus \beta_{H}^{*}\left(\omega_{H}\right)=\beta_{H}^{*}\left(\omega_{H}\right) \\
& \Rightarrow \beta_{H}^{*}(a)=\omega_{H} \\
& \Rightarrow a \in \omega_{H} .
\end{aligned}
$$

Now, we extend the first isomorphism theorem to H_{v}-groups.
Theorem 4.7. (First isomorphism theorem of H_{v}-groups) If $f: G \longrightarrow H$ is a strong epimorphism of H_{v}-groups and $K=\operatorname{Ker}(f)$ then $G / K \xlongequal{w} H /$ ω_{H}.

Proof. We define $\theta: G / K \longrightarrow H / \omega_{H}$ by $\theta(g+K)=f(g)+\omega_{H}$. Then by (ii) of Theorem 4.2θ is a strong epimorphism.
Now, we show that θ is w-monic:

$$
\begin{aligned}
\theta\left(g_{1}+K\right) & =\theta\left(g_{2}+K\right) \\
& \Rightarrow f\left(g_{1}\right)+\omega_{H}=f\left(g_{2}\right)+\omega_{H} \\
& \Rightarrow f\left(g_{1}\right)+\omega_{H}+f(K)=f\left(g_{2}\right)+\omega_{H}+f(K) \\
& \Rightarrow \beta_{H}^{*}\left(f\left(g_{1}\right)\right) \oplus \beta_{H}^{*}\left(\omega_{H}\right) \oplus \beta_{H}^{*}(f(K)) \\
& =\beta_{H}^{*}\left(f\left(g_{2}\right)\right) \oplus \beta_{H}^{*}\left(\omega_{H}\right) \oplus \beta_{H}^{*}(f(K)) \\
& \Rightarrow \beta_{H}^{*}\left(f\left(g_{1}\right)\right)=\beta_{H}^{*}\left(f\left(g_{2}\right)\right) ; \text { since } f(K) \subseteq \omega_{H} \\
& \Rightarrow F\left(\beta^{*}\left(g_{1}\right)\right)=F\left(\beta^{*}\left(g_{2}\right)\right), \text { by Lemma } 2.3 \\
& \Rightarrow \beta^{*}\left(g_{1}\right) \oplus \beta^{*}(K)=\beta^{*}\left(g_{2}\right) \oplus \beta^{*}(K) ; \text { since } \beta^{*}(K)=\operatorname{Ker}(F) \\
& \Rightarrow \beta^{*}\left(g_{1}+K\right)=\beta^{*}\left(g_{2}+K\right) \\
& \Rightarrow \beta_{q}^{*}\left(g_{1}+K\right)=\beta_{q}^{*}\left(g_{2}+K\right), \text { by Lemma 4.1. }
\end{aligned}
$$

Thus, θ is w-monic, it is straightforward that θ is w-epic. Therefore, θ is w -isomorphism.
Theorem 4.8. (Third isomorphis theorem) Let G be an H_{v}-group and $L \unlhd K \unlhd G$ such that $\beta^{*}(L)=\beta^{*}(K)$, then $\frac{G / L}{\beta^{*}(K) / L} \stackrel{w}{\cong} \frac{G / K}{\omega_{G / K}}$.
Proof. Defin $\varphi: \begin{aligned} & G / L \longrightarrow G / K \\ & x+L \longmapsto x+K\end{aligned}$ and prove that φ is a weak epimorphis with $\operatorname{ker} \varphi=\beta^{*}(K) / L$, then by first isomorphism theorem, proof is completed. If $x+L=y+L$, then $x+L+K=y+L+K$ and by reproduction axiom $x+K=y+K$. For $x+L$ and $y+L$ in G / L;

$$
\begin{gathered}
\varphi((x+L) \hat{+}(y+L))=\varphi\left(\beta^{*}(x+y+L)+L\right)=\beta^{*}(x+y+L)+K \\
\varphi(x+L) \hat{+} \varphi(y+L)=(x+K) \hat{+}(y+K)=\beta^{*}(x+y+K)+K .
\end{gathered}
$$

Since $\beta^{*}(L)=\beta^{*}(K)$, we have $\beta^{*}(x+y+L)=\beta^{*}(x+y+K)$ and so φ is strong hom.. Also

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{x+L \mid x+K \in \omega_{G / K}\right\} \\
& =\left\{x+L \mid x+K \in \beta^{*}(K) / K\right\}, \quad \text { by }(i) \text { of corollary } 4.5 \\
& =\beta^{*}(K) / L .
\end{aligned}
$$

Example 4.9. Consider the H_{v}-groups H and N as in Example 3.3. Set $G=H \times H \times H, K=N \times H \times H, L=N \times N \times H$. Then $G / \beta^{*}=H / \beta_{H}^{*} \times H / \beta_{H}^{*} \times H / \beta_{H}^{*} \simeq Z_{2} \times Z_{2} \times Z_{2}$. Therefor by definition $3.2 L \unlhd K \unlhd G$. Also

$$
\begin{aligned}
G / K & =\{(x, y, z)+(N \times H \times H) \mid x \in\{b, c, d\}\} \\
& =\{(x, y, z)+(N \times H \times H) \mid x, y, z \in\{b, c, d\}\},
\end{aligned}
$$

because $b+N=c+N=d+N=\{b, c, d\}$ and $a+N=e+N=f+N=$ N. By theorem $4.4 \frac{G / K}{\beta_{N}^{*}} \cong \frac{\beta^{*}(G)}{\beta^{*}(K)} \simeq \frac{Z_{2} \times Z_{2} \times Z_{2}}{\{0\} \times Z_{2} \times Z_{2}} \simeq Z_{2}$. By corollary 4.5

$$
\begin{aligned}
\omega_{G / K} & =\frac{\beta^{*}(K)}{K}=\frac{\beta^{*}(N) \times \beta^{*}(H) \times \beta^{*}(H)}{K} \\
& =\frac{N \times H \times H}{K}=\{(x, y, z)+(N \times H \times H) \mid x \in N\} \\
& =\{(a, a, a)+K,(e, e, e)+K,(f, f, f)+K\},
\end{aligned}
$$

because $y+H=H$, for every $y \in H$.

References

[1] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993.
[2] B. Davvaz, Isomorphism theorems of polygroups, Bull. Malays. Math. Sci. Soc., 33(3) (2010), 385-392.
[3] B. Davvaz and M. Ghadiri, Weak equality and exact sequences in H_{v}-modules, Southeast Asian Bull. Math., 25(3) (2001) 403-411.
[4] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci., 30(2) (2006) 165-174.
[5] M. Ghadiri and B. Davvaz, Direct system and direct limit of $H_{v^{-}}$ modules, Iran. J. Sci. Technol. Trans. A Sci., 28(2) (2004) 267-275.
[6] M. Ghadiri and B. N. waphare, n-ary P- H_{v}-groups, J. Appl. Math. E Informatics, 26(5-6) (2008) 445-959.
[7] M. Ghadiri and B. N. waphare, n-ary polygroups, Iran. J. Sci. Technol. Trans. A Sci., 33(2) (2009) 145-158.
[8] M. Ghadiri, B. N. waphare and B. Davvaz, n-ary H_{v}-structures, Southeast Asian Bull. Math., 34(1), (2010) 243-255.
[9] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures et Appl., 49 (1970), 155-192.
[10] F. Marty, Sur une generalization de la notion de groupe, $8^{\text {th }}$ Congress Math. Scandinaves, Stockholm (1934), 45-49.
[11] S. Spartalis, On the number of H_{v}-rings with P-hyperoperations, Discrete Math., 155(1-3) (1996) 225-231.
[12] S. Spartalis, Quotients of P- H_{v}-rings, New frontiers in hyperstructures(Molise, 1995), 167-177, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, (1996).
[13] S. Spartalis and T. Vougiouklis, The Fundamental Relations in $H_{v^{-}}$ rings, Rivista Math. Pura Appl., 14 (1994) 7-20.
[14] T. Vougiouklis, The fundamental relations in hyperrings. the general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), Scientific (1991) 203-211.
[15] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., Florida, 1994.
[16] T. Vougiouklis, On H_{v}-rings and H_{v}-representations, Discrete Math., 208-209 (1999) 615-620.

Mansour Ghadiri

Assistant Professor of Mathematics
Department of Mathematics
Yazd University
89195-741, Yazd, City, Iran
E-mail: mghadiri@yazd.ac.ir

[^0]: Received: June 2017; Accepted: December 2017

