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Abstract. A larger class of algebraic hyperstructures satisfying the
group-like axioms is the class of Hv-groups. In this paper, without
any condition and in general, we define the Hv-normal subgroup and
the Hv-quotient group of an Hv-group. We introduce the fundamental
equivalence relation of an Hv-quotient group and prove the first and
third isomorphism theorems for Hv-groups.
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1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 dur-
ing the 8th Congress of the Scandinavian Mathematics [10]. This theory
has been studied in the following decades and nowadays by many math-
ematicians. There are applications to the following subjects: geometry,
hypergraphs, binary relations, lattices, fuzzy sets and rough sets, au-
tomata, cryptography, combinatorics, codes, artificial intelligence and
probabilities. The theory of Hv-structures introduced and studied by
Vougiouklis [15]. The concept of Hv-structures not only constitutes a
generalization of the well-known hyperstructures, but it also comprises
a very interesting and deep algebraic theory. Fundamental structures
appeared in [13] which is the crucial point to define the Hv-structures
which first appeared in [14]. Actually some axioms concerning the above
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hyperstructures are replaced by their corresponding weak axioms. This
concepts and the basic definitions of which can be found in [15] has
been investigated in [1, 13, 16]. P-Hv-structures wich is a subclasses of
Hv-structures studied in [13] by S. Spaartalis and T.vougiouhly. The
reader will found in [11, 12] a deep discussion on P-hyperstructiones
theory. The notion of n-ary hypergroups is defined and considered by
Davvas and Vougiouhly in [4], which is a generalization of hypergroups
in the sense of Marty and a generalization of n-ary groups. The reader
will found the notions of n-ary Hv-groups and n-ary P-Hv-groups in
[6, 8]. The concepts of normal subgroups as a fandumental concepts in
hyperstructures and Hv-structures only are disscussed in some special
subclasses of Hv-structures for example P-Hv-structures, n-ary P-Hv-
structures, polygroups and n-ary polygroups see [2, 7, 8]. In this paper
it is introduced the Hv-normal subgroups of an Hv-groups, and it is in-
vestigated the relative concepts. In section 2, it is introduced the notion
of weak homomorphism. Also, we recall basic concepts and modify some
definitions of [3] for the sake of completeness. In section 3, Hv-normal
subgroups and Hv-quotient groups are defined and then some problems
are covered. In section 4, the fundamental relation of an Hv-quotient
group is introduced and the first and third isomorphism theorems for
Hv-groups are presented and proved.

2 Weak Homomorphism and Basic Concepts

Let H be a non-empty set and P∗(H) be the family of non-empty subsets
of H. Every mapping ∗ : H ×H → P∗(H) is called a hyperoperation on
H and (H, ∗) is called a hyperstructure. The hyperstructure (H, ∗) is
called an Hv-group if “ ∗ ” is weak associative: x ∗ (y ∗ z)∩ (x ∗ y) ∗ z 6= ∅
and the reproduction axiom is hold: a∗H = H ∗a = H for every a ∈ H.
The Hv-group H is called weak commutative if for every x, y ∈ H,
x ∗ y∩ y ∗x 6= ∅. The nonempty subset K of H is called an Hv-subgroup
if (K, ∗) is an Hv-group. A mapping φ : H1 −→ H2 on Hv-groups (H1, ∗)
and (H2, ·) is called a strong homomorphism if for every x, y ∈ H1 we
have f(x ∗ y) = f(x) · f(y).

Suppose U is the set of all finite sums of elements of Hv-group H.
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Then the relation β on H defined by:

xβy ⇔ {x, y} ⊆ u, for some u ∈ U,

is reflexive and symmetric, but not transitive necessary. The transitive
closure of β is called β∗. The fundamental relation β∗ is the smallest
equivalence relation on the Hv-group H such that H/β∗ consisting of
all equivalence classes is a group. Suppose that β∗(x) and β∗(y) is the
equivalence class of x, y ∈ H respectively. On H/β∗ the operation ⊕ is
defined as follows that (H/β∗,⊕) is a group:

β∗(x)⊕ β∗(y) = β∗(c), for every c ∈ x + y.

The group (H/β∗,⊕) is called the fundamental group of the Hv-group
H. This concept was introduced on hypergroups by Koskas [9] and
studied mainly by Corsini [1].

The map φ from an Hv-structure onto it’s fundamental structure
where x maps to β∗(x), is called fundamental map. If φ : H −→ H/β∗

is the fundamental mapping of the Hv-group H, then the core of H is
defined by ωH = {x ∈ H| φ(x) = 0}, where 0 denotes the unit of the
group H/β∗. One can show that

ωH ⊕ β∗(x) = β∗(x)⊕ ωH = β∗(x) for every x ∈ H.

The following concepts and statements are modified of [3] with the w-
homom-
orphism view that is defined as follows.

Definition 2.1. Let (G,+) and (H,⊕) be Hv-groups. A mapping
f : G −→ H of Hv-groups is called weak homomorphism (w-hom.) if

β∗G(f(g1 + g2)) = β∗H(f(g1))⊕ β∗H(f(g2)), for every g1, g2 ∈ G,

where β∗G and β∗H are the fundamental relations of Hv-group G and H
respectively. And the w-hom. f is called w-monic if

f(g1) = f(g2)⇒ β∗G(g1) = β∗G(g2), for every g1, g2 ∈ G.

Also, f is called w-epic if for every h ∈ H there exists g ∈ G such
that β∗H(h) = β∗H(f(g)). Finally the weak homomorphism f is called

w-isomorphism if f is w-monic and w-epic, in this case we write G
W∼= H.

It is clear every strong hom. is w-hom. and so if G ∼= H, then G
W∼= H.
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Theorem 2.2. Let f : G −→ H be a strong (w-)hom. of Hv-groups.
Then ωG and kernel of f , Ker(f) = {g ∈ G| f(a) ∈ ωH}, are Hv-
subgroups of G and ωG is contained in Ker(f).

Lemma 2.3. Let f : G −→ H be a strong (w-)hom. of Hv-groups. The
mapping F : G/β∗G −→ H/β∗H defined by F (β∗(g)) = β∗H(f(g)) is a ho-
momorphism of groups and the following conditions are equivalent:
(i) F is one to one,
(ii) f is w-monic,
(iii) Ker(f) = ωG.

Proof. Let f be a w-hom.. We show that F is well-defined. Suppose
that β∗G(a) = β∗G(b), then there exist g1, · · · , gm+1 ∈ G and u1, · · · , um ∈
UG with g1 = a, gm+1 = b such that {gi, gi+1} ⊆ ui, i = 1, 2, · · · ,m.
So {β∗H(f(gi)), β

∗
H(f(gi+1))} ⊆ β∗H(f(ui)) = β∗H(h) for some h ∈ H since

f is w-hom.. Thus β∗H(f(gi)) = β∗H(f(gi+1)) for every i = 1, 2, · · · ,m
and consequently β∗H(f(a)) = β∗H(f(b)). Therefore F is well-defined.
Now, we have

F (β∗G(a)⊕ β∗G(b)) = F (β∗G(a+ b)) = β∗H(f(a+ b)) = β∗H(f(a))⊕ β∗H(f(b))
= F (β∗G(a))⊕ F (β∗G(b)).

Remaining of proof is similar as follows in [3]. �

Lemma 2.4. Let ϕ : G −→ H be a strong epimorphism of Hv-groups.
Then
(i) for a, b ∈ G, a β∗G b iff ϕ(a) β∗H ϕ(b),
(ii) for N ⊆ G, ϕ(β∗G(N)) = β∗H(ϕ(N)).

Proof. (i) By definition of relations β∗G and β∗H , the proof is straight-
forward.
(ii)

h ∈ ϕ(β∗G(N)) ⇔ h = ϕ(x), x ∈ β∗G(n), for some n ∈ N
⇔ x β∗G(n), h = ϕ(x)

⇔ ϕ(x) β∗H ϕ(n), h = ϕ(x), by (i)

⇔ h = ϕ(x) ∈ β∗H(ϕ(N)).

�
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Remark 2.5. It is easy to see that, If G1, · · · , Gk be Hv-groups with
fundamental relations β∗1 , · · · , β∗k respectively, then G = G1×G2×· · ·Gk
with hyperoperation induced by hyperoperations of Gi as below:

(x1, · · · , xk) · (y1, · · · , yk) = {(t1, · · · , tk)|ti ∈ xi · yi, i = 1, · · · , k}

is an Hv-group. Also (x1, · · · , xk) β∗g (y1, · · · , yk) iff xi β
∗
i yi for i =

1, · · · , k.

3 Hv-Normal Subgroup & Hv-Quotient Group

In this section G and H are Hv-groups with fundamental relations β∗G(=
β∗) and β∗H respectively. The identity and inverse element that is the
essential elements for building the quotient (group and ring) there are
not in Hv-structures. Since the Hv-structures are introduced up to now,
the Hv-normal subgroup and Hv-quotient group were not introduced.
In this section it is introduced the normal notion of Hv-groups based on
corresponding fundamental group.

Lemma 3.1. If H is an Hv-subgroup of G, then β∗(H) = {β∗(h)| h ∈
H} is a subgroup of G/β∗.

Proof. If β∗(x), β∗(y) ∈ β∗(H) then there exist h1, h2 ∈ H such that

β∗(x) = β∗(h1), β
∗(y) = β∗(h2).

So, β∗(x)⊕β∗(y) = β∗(h1)⊕β∗(h2) = β∗(h) for some h ∈ h1 +h2. Thus
β∗(x)⊕ β∗(y) ∈ β∗(H).

For associativity law, let β∗(x), β∗(y), β∗(z) ∈ β∗(H). We have:

β∗(x)⊕ (β∗(y)⊕ β∗(z)) = β∗(x+ (y + z)),

(β∗(x)⊕ β∗(y))⊕ β∗(z) = β∗((x+ y) + z).

Since H is an Hv-group, we have x+ (y + z) ∩ (x+ y) + z 6= ø. On the
other hand the left sides of above equations are single-member, so

β∗(x)⊕ (β∗(y)⊕ β∗(z)) = (β∗(x)⊕ β∗(y))⊕ β∗(z).
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Suppose β∗(x) = β∗(h1) ∈ β∗(H), where h1 ∈ H. By reproduction
axiom of H there exists h ∈ H such that h1 ∈ h1 + h. Thus β∗(h1) =
β∗(h1)⊕ β∗(h) and ωG = β∗(h) ∈ β∗(H), so β∗(H) has zero element.

If β∗(y) = β∗(h2) ∈ β∗(H), where h2 ∈ H, there exists h3 ∈ H such
that h ∈ h2 + h3. So ωG = β∗(h) = β∗(h2) ⊕ β∗(h3) and β∗(h3) is the
inverse of β∗(h2) in β∗(H). Therefore β∗(H) is a subgroup of G/β∗.
�

Definition 3.2. Let N be an Hv-subgroup of G. N is called an Hv-
normal subgroup of G if β∗(N) C G/β∗.

Example 3.3. Consider the following Hv-group H:

· a b c d e f

a a b c,d d f,e f
b b a e,f f c d,c
c d,c f,e a e,f d b
d d,c e f a b c,d
e e d,c b c,d f,e a
f f,e c d,c b a e,f

We have:
H/β∗H = {β∗H(a), β∗H(b)},

where
β∗H(a) = {a, e, f}, β∗H(b) = {b, c, d}.

Now (N = {a, e, f}, ·) is an Hv-subgroup of (H, ·) and by Lemma 3.1
β∗H(N) = {β∗H(a)} is a subgroup of the fundamental group H/β∗H . We
have β∗H(N) = ωH EH/β∗H . Therefore N is an Hv-normal subgroup of
H.

Lemma 3.4. Let K be a subgroup of G. If for every g and g
′

in G, where
β∗(g)⊕ β∗(g′) = ωG, x ∈ β∗(g) and y ∈ β∗(g′) implies y +K + x ⊆ K,
then K is an Hv-normal subgroup of G.

Proof. Suppose β∗(g)⊕ β∗(g′) = ωG, x ∈ β∗(g) and y ∈ β∗(g′), then

β∗(x)⊕ β∗(K)⊕ β∗(y) ⊆ β∗(K),

β∗(g
′
)⊕ β∗(K)⊕ β∗(g) ⊆ β∗(K).

Therefore β∗(K)EG/β∗ and so K is an Hv-normal subgroup of G. �
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Theorem 3.5. If f : G −→ H is a strong (w-)hom., then K = Ker(f)
is an Hv-normal subgroup of G.

Proof. By Theorem 2.2, K = Ker(f) is an Hv-subgroup of G. Suppose
x ∈ β∗(g), y ∈ β∗(g′), k ∈ K and s ∈ x+ k + y; where

β∗(g
′
)⊕ β∗(g) = ωG.

So β∗(x)⊕ β∗(y) = ωG. For s ∈ x+ k + y, f(s) ∈ f(x+ k + y) and we
have

β∗H(f(s)) ∈ β∗H(f(x+ k + y)) = β∗H(f(x))⊕ β∗H(f(k))⊕ β∗H(f(y))
= β∗H(f(x))⊕ ωH ⊕ β∗H(f(y))
= F (β∗(x))⊕ F (β∗(y))
= F (β∗(x)⊕ β∗(y))
= F (ωG) = ωH .

Thus f(s) ∈ ωH , s ∈ Ker(f) and x + k + y ⊆ K. So by Lemma 3.4
K = Ker(f) is an Hv-normal subgroup of G. �

Corollary 3.6. ωH is an Hv-normal subgroup of G.

Proof. If φ : G −→ G/β∗ be the fundamental mapping, then φ is a
strong homomorphism of Hv-groups and Ker(φ) = ωG. So, by Theorem
3.5 ωG is an Hv-normal subgroup of G. �

Theorem 3.7. Let K be an Hv-normal subgroup of G. Define the hy-
peroperation +̂ on G/K = {g + K| g ∈ G} by (g1 + K)+̂(g2 + K) =
β∗(g1+g2+K)+K. Then (G/K, +̂) is an Hv-group. (G/K, +̂) is called
the Hv-quotient group of G on K.

Proof. Suppose g1 +K = g
′
1 +K and g2 +K = g

′
2 +K. So

β∗(g1)⊕ β∗(K)⊕ β∗(g2)⊕ β∗(K) = β∗(g
′
1)⊕ β∗(K)⊕ β∗(g′2)⊕ β∗(K).

Since K is an Hv-normal subgroup in G, then β∗(K) is normal in β∗(G)
and we have:

β∗(g1)⊕ β∗(g2)⊕ β∗(K) = β∗(g
′
1)⊕ β∗(g

′
2)⊕ β∗(K),

β∗(g1 + g2 +K) = β∗(g
′
1 + g

′
2 +K),
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β∗(g1 + g2 +K) +K = β∗(g
′
1 + g

′
2 +K) +K,

(g1 +K)+̂(g2 +K) = (g
′
1 +K)+̂(g

′
2 +K).

Therefore, +̂ is a well defined hyperoperation on G/K.

Let g1 +K, g2 +K, g3 +K ∈ G/K we have:

[(g1 +K)+̂(g2 +K)]+̂(g3 +K) = [β∗(g1 + g2 +K) +K]+̂(g3 +K)
= {x+K| x ∈ β∗(g1 + g2 +K)}+̂(g3 +K)
= ∪β∗(x+ g3 +K) +K; x ∈ β∗(g1 + g2 +K)
= {y +K| y ∈ β∗(x+ g3 +K), x ∈ β∗(g1 + g2 +K)}
= {y +K| y ∈ β∗(g1 + g2)⊕ β∗(g3)⊕ β∗(K)}
= {y +K| y ∈ β∗(g1 + g2 + g3 +K)}
= (g1 +K)+̂[(g2 +K)+̂(g3 +K)].

Therefore +̂ is an associative hyperoperation.

Now we prove that (G/K, +̂) satisfies the reproduction axiom. We
know

(g1 +K)+̂G/K = {x+K| x ∈ β∗(g1 + g +K), g ∈ G} ⊆ G/K.

if g0 + K ∈ G/K, by the reproduction axiom of G there exists g2 ∈ G
such that

g0 ∈ β∗(g0) = β∗(g1 + g2),

g0 +K ∈ β∗(g1 + g2) +K ⊆ β∗(g1 + g2)⊕ β∗(K)⊕K
= β∗(g1 + g2 +K) +K

Thus g0 + K ∈ β∗(g1 + g2 + K) + K and G/K ⊆ (g1 + K)+̂G/K. So
(G/K, +̂) satisfies the reproduction axiom. �

4 Fundamental Relation of Hv-Quotient Group

Let N be an Hv-normal subgroup of G and U be the set of all finite
sums of elements of G. One can show that every finite sums of elements
of G/N is equal to β∗(u+N) +N for some u ∈ U .

Lemma 4.1. Let β∗q be the fundamental relation of G/N . Then for
g1, g2 ∈ G, β∗q (g1 + N) = β∗q (g2 + N) if and only if β∗(g1 + N) =
β∗(g2 +N).



Hv-NORMAL SUBGROUPS AND Hv-QUOTIENT GROUPS 139

Proof. Suppose that β∗q (g1 + N) = β∗q (g2 + N). Then there exist
u1, u2, · · · , um ∈ U and x1, x2, · · · , xm+1 ∈ G such that:

x1 +N = g1 +N, xm+1 +N = g2 +N

and
{xi +N, xi+1 +N} ⊆ ui +N for i = 1, 2, · · · ,m.

Thus

β∗(x1)⊕β∗(N) = β∗(g1)⊕β∗(N), β∗(xm+1)⊕β∗(N) = β∗(g2)⊕β∗(N),

{β∗(xi)⊕ β∗(N), β∗(xi+1)⊕ β∗(N)} ⊆ β∗(ui)⊕ β∗(N) for ui ∈ U.
We have ui = ui1 + ui2 + · · · + uini

where uij ∈ G for j = 1, 2, · · · , ni.
Now, by properties of fundamental relation we have

β∗(ui) = β∗(ui1)⊕ · · · ⊕ β∗(uni) = β∗(ti) for every ti ∈ ui.

Since β∗(N) / β∗(G), then β∗(xi)⊕ β∗(N), β∗(ui)⊕ β∗(N) and β∗(ti)⊕
β∗(N) are cosets of β∗(N) in β∗(G) and

β∗(xi)⊕β∗(N) = β∗(xi+1)⊕β∗(N) = β∗(ui)⊕β∗(N) for i = 1, 2, · · · ,m.
Therefore β∗(g1)⊕ β∗(N) = β∗(g2)⊕ β∗(N).
Conversly;

β∗(g1 +N) = β∗(g2 +N) ⇒ β∗(g1 +N) + ωG +N = β∗(g2 +N) + ωG +N

⇒ β∗(g1 +N + ωG) +N = β∗(g2 +N + ωG) +N

⇒ (g1 +N)+̂(g0 +N) = (g2 +N)+̂(g0 +N), for g0 ∈ ωG

⇒ β∗q (g1 +N)+̂β∗q (g0 +N) = β∗q (g2 +N)+̂β∗q (g0 +N)

⇒ β∗q (g1 +N) = β∗q (g2 +N).

�

Theorem 4.2. Let G and H be Hv-groups with fundamental relations
β∗ and β∗H respectively.

(i) If N is an Hv-normal subgroup of G then the map f :
G −→ G/N
x 7−→ x+N

is a weak and inclusion epimorphism.
(ii) Let ϕ : G −→ H be a strong epimorphism such that N ⊆ kerϕ.

Then there exists the strong epimorphism ϕ̄ :
G/N −→ H/ωH
x+N 7−→ ϕ(x) + ωH

,

and kerϕ̄ = kerϕ/N.
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Proof. (i) x = y ⇒ x+N = y +N ⇒ f(x) = f(y).

f(x+ y) = x+ y +N ⊆ β∗(x+ y +N) +N

= (x+N)+̂(y +N)

= f(x)+̂f(y).

since β∗((x + y) + N) = β∗(β∗((x + y) + N) + N), by Lemma 4.1, we
have β∗q (x + y + N) = β∗q ((x + N)+̂(y + N)) and so β∗q (f(x + y)) =
β∗q (f(x))+̂β∗q (f(y)). (ii) For x+N, y +N ∈ G/N,

x+N = y +N ⇒ ϕ(x+N) = ϕ(y +N)

⇒ ϕ(x) + ϕ(N) = ϕ(y) + ϕ(N); ϕ is strong hom.

⇒ ϕ(x) + ϕ(N) + ωH = ϕ(y) + ϕ(N) + ωH

⇒ ϕ(x) + ωH = ϕ(y) + ωH , N ⊆ kerϕ ⊂ ωH
⇒ ϕ̄(x) = ϕ̄(y).

ϕ̄((x+N)+̂(y +N)) = ϕ̄(β∗(x+ y +N) +N)

= {ϕ(t) + ωH | t ∈ β∗(x+ y +N)}
= {s+ ωH | s ∈ ϕ(β∗(x+ y +N))}
= {s+ ωH | s ∈ ϕ(β∗(x+ y)⊕ β∗(N))}
= {s+ ωH | s ∈ ϕ(β∗(x+ y))⊕ ϕ(β∗(N))}, ϕ is strong hom.

= {s+ ωH | s ∈ ϕ(β∗(x+ y))⊕ β∗H(ϕ(N))}, by lemma 2.4 (ii)

= {s+ ωH | s ∈ ϕ(β∗(x+ y))⊕ β∗H(ωH)}, since N ⊆ kerϕ
= {s+ ωH | s ∈ ϕ(β∗(x+ y))}. (1)

ϕ̄(x+N)+̂ϕ̄(y +N) = (ϕ(x) + ωH)+̂(ϕ(y) + ωH)

= β∗H(ϕ(x) + ϕ(y) + ωH) + ωH

= {s+ ωH | s ∈ β∗H(ϕ(x) + ϕ(y) + ωH)}
= {s+ ωH | s ∈ β∗H(ϕ(x+ y))}. (2)

By (ii) of Lemma 2.4 and (1), (2) the proof is completed. �

Example 4.3. Consider the Hv-group H and it’s Hv-normal subgroup
N in Example 3.3. We have:

H/N = {a+N, b+N},
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and
(a+N)+̂(a+N) = β∗(a+ a+N) +N = β∗(N) +N = {a+N},
(a+N)+̂(b+N) = β∗(a+ b+N) +N = β∗(b) +N = {b+N},
(b+N)+̂(a+N) = β∗(b+ a+N) +N = β∗(b) +N = {b+N},
(b+N)+̂(b+N) = β∗(b+ b+N) +N = β∗(a) +N = {a+N}.
Also, by Lemma 4.1 we have H/N

β∗q
= {β∗q (a+N), β∗q (b+N)}.

For inclusion canonical epimorphis f : H −→ H/N we have

f(b+ c) = (b+ c) +N = N,

and

f(b) + f(c) = (b+N)+̂(c+N) = β∗(b+ c+N) +N = N,

because

β∗(b+ c+N) = β∗({e, f}+N) = β∗((e+N) ∪ (f +N)) = β∗(N) = N

Theorem 4.4. If β∗qK and β∗ are the fundamental relations of G/K

and G respectively, then G
K /β

∗
qK
∼= β∗(G)

β∗(K) .

Proof. Define θ : β∗qK(G/K) −→ β∗(G)/β∗(K) by θ(β∗K(g + K)) =
β∗(g) ⊕ β∗(K). By Lemma 4.1, θ is an one-to-one mapping. If g1 +
K, g2 +K ∈ G/K, we have:

θ(β∗qK(g1 +K)⊕ β∗qK(g2 +K)) = θ(β∗qK(β∗(g1 + g2 +K) +K)

= {θ(β∗qK(x+K))| x ∈ β∗(g1 + g2 +K)}
= {β∗(x)⊕ β∗(K)| x ∈ β∗(g1 + g2 +K)}
= β∗(g1 + g2)⊕ β∗(K)
= β∗(g1)⊕ β∗(g2)⊕ β∗(K)
= [β∗(g1)⊕ β∗(K)]⊕ [β∗(g2)⊕ β∗(K)].

Therefore θ is a homomorphism and it is clear that θ is epic. �

Corollary 4.5. If G is an Hv-group and K C G, then:

(i) ωG/K = β∗(K) +K(=
β∗(K)

K
= {x+K| x ∈ β∗(K)}),

(ii) ω G
ωG

= ωG.
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Proof. (i) By Theorem 4.4

ωG/K = {g +K| θ(β∗N (g +K)) = β∗(K)}
= {g +K| β∗(g)⊕ β∗(K) = β∗(K)}
= {g +K| β∗(g) ∈ β∗(K)}
= β∗(K) +K.

(ii) By (i) we have ω G
ωK

= β∗(ωG) + ωG = ωG + ωG = ωG. �

Lemma 4.6. Let H be an Hv-group, for a ∈ H, if a + ωH = ωH then
a ∈ ωH .

Proof.

a+ ωH = ωH ⇒ β∗(a+ ωH) = β∗(ωH)
⇒ β∗H(a)⊕ β∗H(ωH) = β∗H(ωH)
⇒ β∗H(a) = ωH
⇒ a ∈ ωH .

�
Now, we extend the first isomorphism theorem to Hv-groups.

Theorem 4.7. (First isomorphism theorem of Hv-groups) If f : G −→ H

is a strong epimorphism of Hv-groups and K = Ker(f) then G/K
w∼= H/

ωH .

Proof. We define θ : G/K −→ H/ωH by θ(g +K) = f(g) + ωH . Then
by (ii) of Theorem 4.2 θ is a strong epimorphism.
Now, we show that θ is w-monic:

θ(g1 +K) = θ(g2 +K)
⇒ f(g1) + ωH = f(g2) + ωH
⇒ f(g1) + ωH + f(K) = f(g2) + ωH + f(K)
⇒ β∗H(f(g1))⊕ β∗H(ωH)⊕ β∗H(f(K))
= β∗H(f(g2))⊕ β∗H(ωH)⊕ β∗H(f(K))
⇒ β∗H(f(g1)) = β∗H(f(g2)); since f(K) ⊆ ωH
⇒ F (β∗(g1)) = F (β∗(g2)), by Lemma 2.3
⇒ β∗(g1)⊕ β∗(K) = β∗(g2)⊕ β∗(K); since β∗(K) = Ker(F )
⇒ β∗(g1 +K) = β∗(g2 +K)
⇒ β∗q (g1 +K) = β∗q (g2 +K), by Lemma 4.1.
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Thus, θ is w-monic, it is straightforward that θ is w-epic. Therefore, θ
is w-isomorphism. �

Theorem 4.8. (Third isomorphis theorem) Let G be an Hv-group

and LEK EG such that β∗(L) = β∗(K), then
G/L

β∗(K)/L

w∼=
G/K

ωG/K
.

Proof. Defin ϕ :
G/L −→ G/K
x+ L 7−→ x+K

and prove that ϕ is a weak epimor-

phis with ker ϕ = β∗(K)/L, then by first isomorphism theorem, proof
is completed. If x + L = y + L, then x + L + K = y + L + K and by
reproduction axiom x+K = y +K. For x+ L and y + L in G/L;

ϕ((x+ L)+̂(y + L)) = ϕ(β∗(x+ y + L) + L) = β∗(x+ y + L) +K,

ϕ(x+ L)+̂ϕ(y + L) = (x+K)+̂(y +K) = β∗(x+ y +K) +K.

Since β∗(L) = β∗(K), we have β∗(x+ y +L) = β∗(x+ y +K) and so ϕ
is strong hom.. Also

ker ϕ = {x+ L| x+K ∈ ωG/K}
= {x+ L| x+K ∈ β∗(K)/K}, by (i) of corollary 4.5

= β∗(K)/L.

�

Example 4.9. Consider the Hv-groups H and N as in Example 3.3.
Set G = H × H × H, K = N × H × H, L = N × N × H. Then
G/β∗ = H/β∗H ×H/β∗H ×H/β∗H ' Z2×Z2×Z2. Therefor by definition
3.2 LEK EG. Also

G/K = {(x, y, z) + (N ×H ×H)| x ∈ {b, c, d}}
= {(x, y, z) + (N ×H ×H)| x, y, z ∈ {b, c, d}},

because b+N = c+N = d+N = {b, c, d} and a+N = e+N = f+N =

N . By theorem 4.4 G/K
β∗N
∼= β∗(G)

β∗(K) '
Z2 × Z2 × Z2

{0} × Z2 × Z2
' Z2. By corollary

4.5

ωG/K =
β∗(K)

K
=
β∗(N)× β∗(H)× β∗(H)

K

=
N ×H ×H

K
= {(x, y, z) + (N ×H ×H)| x ∈ N}

= {(a, a, a) +K, (e, e, e) +K, (f, f, f) +K},
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because y +H = H, for every y ∈ H.
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