Journal of Mathematical Extension Vol. 12, No. 3, (2018), 131-145

# $H_v$ -Normal subgroups and $H_v$ -quotient groups

#### Mansour Ghadiri

Yazd University

**Abstract.** A larger class of algebraic hyperstructures satisfying the group-like axioms is the class of  $H_v$ -groups. In this paper, without any condition and in general, we define the  $H_v$ -normal subgroup and the  $H_v$ -quotient group of an  $H_v$ -group. We introduce the fundamental equivalence relation of an  $H_v$ -quotient group and prove the first and third isomorphism theorems for  $H_v$ -groups.

**AMS Subject Classification:** 20N20. **Keywords and Phrases:**  $H_v$ -group, Weak homomorphism,  $H_v$ -normal subgroup,  $H_v$ -quotient group, Fundamental relation.

#### 1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8<sup>th</sup> Congress of the Scandinavian Mathematics [10]. This theory has been studied in the following decades and nowadays by many mathematicians. There are applications to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence and probabilities. The theory of  $H_v$ -structures introduced and studied by Vougiouklis [15]. The concept of  $H_v$ -structures not only constitutes a generalization of the well-known hyperstructures, but it also comprises a very interesting and deep algebraic theory. Fundamental structures appeared in [13] which is the crucial point to define the  $H_v$ -structures which first appeared in [14]. Actually some axioms concerning the above

Received: June 2017; Accepted: December 2017

MANSOUR GHADIRI

hyperstructures are replaced by their corresponding weak axioms. This concepts and the basic definitions of which can be found in [15] has been investigated in [1, 13, 16]. P- $H_v$ -structures wich is a subclasses of  $H_v$ -structures studied in [13] by S. Spaartalis and T. vougiouhly. The reader will found in [11, 12] a deep discussion on P-hyperstructiones theory. The notion of n-ary hypergroups is defined and considered by Davvas and Vougiouhly in [4], which is a generalization of hypergroups in the sense of Marty and a generalization of n-ary groups. The reader will found the notions of n-ary  $H_v$ -groups and n-ary P- $H_v$ -groups in [6, 8]. The concepts of normal subgroups as a fandumental concepts in hyperstructures and  $H_v$ -structures only are disscussed in some special subclasses of  $H_v$ -structures for example P- $H_v$ -structures, n-ary P- $H_v$ structures, polygroups and n-ary polygroups see [2, 7, 8]. In this paper it is introduced the  $H_v$ -normal subgroups of an  $H_v$ -groups, and it is investigated the relative concepts. In section 2, it is introduced the notion of weak homomorphism. Also, we recall basic concepts and modify some definitions of [3] for the sake of completeness. In section 3,  $H_v$ -normal subgroups and  $H_{v}$ -quotient groups are defined and then some problems are covered. In section 4, the fundamental relation of an  $H_v$ -quotient group is introduced and the first and third isomorphism theorems for  $H_v$ -groups are presented and proved.

#### 2 Weak Homomorphism and Basic Concepts

Let H be a non-empty set and  $\mathcal{P}^*(H)$  be the family of non-empty subsets of H. Every mapping  $*: H \times H \to \mathcal{P}^*(H)$  is called a hyperoperation on H and (H, \*) is called a hyperstructure. The hyperstructure (H, \*) is called an  $H_v$ -group if "\*" is weak associative:  $x * (y * z) \cap (x * y) * z \neq \emptyset$ and the reproduction axiom is hold: a \* H = H \* a = H for every  $a \in H$ . The  $H_v$ -group H is called weak commutative if for every  $x, y \in H$ ,  $x * y \cap y * x \neq \emptyset$ . The nonempty subset K of H is called an  $H_v$ -subgroup if (K, \*) is an  $H_v$ -group. A mapping  $\phi : H_1 \longrightarrow H_2$  on  $H_v$ -groups  $(H_1, *)$ and  $(H_2, \cdot)$  is called a strong homomorphism if for every  $x, y \in H_1$  we have  $f(x * y) = f(x) \cdot f(y)$ .

Suppose U is the set of all finite sums of elements of  $H_v$ -group H.

Then the relation  $\beta$  on H defined by:

 $x\beta y \Leftrightarrow \{x, y\} \subseteq u$ , for some  $u \in U$ ,

is reflexive and symmetric, but not transitive necessary. The transitive closure of  $\beta$  is called  $\beta^*$ . The fundamental relation  $\beta^*$  is the smallest equivalence relation on the  $H_v$ -group H such that  $H/\beta^*$  consisting of all equivalence classes is a group. Suppose that  $\beta^*(x)$  and  $\beta^*(y)$  is the equivalence class of  $x, y \in H$  respectively. On  $H/\beta^*$  the operation  $\oplus$  is defined as follows that  $(H/\beta^*, \oplus)$  is a group:

$$\beta^*(x) \oplus \beta^*(y) = \beta^*(c)$$
, for every  $c \in x + y$ .

The group  $(H/\beta^*, \oplus)$  is called the fundamental group of the  $H_v$ -group H. This concept was introduced on hypergroups by Koskas [9] and studied mainly by Corsini [1].

The map  $\phi$  from an  $H_v$ -structure onto it's fundamental structure where x maps to  $\beta^*(x)$ , is called fundamental map. If  $\phi: H \longrightarrow H/\beta^*$ is the fundamental mapping of the  $H_v$ -group H, then the core of H is defined by  $\omega_H = \{x \in H | \phi(x) = 0\}$ , where 0 denotes the unit of the group  $H/\beta^*$ . One can show that

$$\omega_H \oplus \beta^*(x) = \beta^*(x) \oplus \omega_H = \beta^*(x)$$
 for every  $x \in H$ .

The following concepts and statements are modified of [3] with the whomom-

orphism view that is defined as follows.

**Definition 2.1.** Let (G, +) and  $(H, \oplus)$  be  $H_v$ -groups. A mapping  $f: G \longrightarrow H$  of  $H_v$ -groups is called weak homomorphism (w-hom.) if

$$\beta_G^*(f(g_1+g_2)) = \beta_H^*(f(g_1)) \oplus \beta_H^*(f(g_2)), \text{ for every } g_1, g_2 \in G_1$$

where  $\beta_G^*$  and  $\beta_H^*$  are the fundamental relations of  $H_v$ -group G and H respectively. And the w-hom. f is called w-monic if

$$f(g_1) = f(g_2) \Rightarrow \beta_G^*(g_1) = \beta_G^*(g_2), \text{ for every } g_1, g_2 \in G.$$

Also, f is called w-epic if for every  $h \in H$  there exists  $g \in G$  such that  $\beta_H^*(h) = \beta_H^*(f(g))$ . Finally the weak homomorphism f is called w-isomorphism if f is w-monic and w-epic, in this case we write  $G \stackrel{W}{\cong} H$ . It is clear every strong hom. is w-hom. and so if  $G \cong H$ , then  $G \stackrel{W}{\cong} H$ .

**Theorem 2.2.** Let  $f: G \longrightarrow H$  be a strong (w-)hom. of  $H_v$ -groups. Then  $\omega_G$  and kernel of f,  $Ker(f) = \{g \in G | f(a) \in \omega_H\}$ , are  $H_v$ -subgroups of G and  $\omega_G$  is contained in Ker(f).

**Lemma 2.3.** Let  $f: G \longrightarrow H$  be a strong (w-)hom. of  $H_v$ -groups. The mapping  $F: G/\beta_G^* \longrightarrow H/\beta_H^*$  defined by  $F(\beta^*(g)) = \beta_H^*(f(g))$  is a homomorphism of groups and the following conditions are equivalent: (i) F is one to one, (ii) f is w-monic,

(iii)  $Ker(f) = \omega_G$ .

**Proof.** Let f be a w-hom.. We show that F is well-defined. Suppose that  $\beta_G^*(a) = \beta_G^*(b)$ , then there exist  $g_1, \dots, g_{m+1} \in G$  and  $u_1, \dots, u_m \in U_G$  with  $g_1 = a, g_{m+1} = b$  such that  $\{g_i, g_{i+1}\} \subseteq u_i, i = 1, 2, \dots, m$ . So  $\{\beta_H^*(f(g_i)), \beta_H^*(f(g_{i+1}))\} \subseteq \beta_H^*(f(u_i)) = \beta_H^*(h)$  for some  $h \in H$  since f is w-hom.. Thus  $\beta_H^*(f(g_i)) = \beta_H^*(f(g_{i+1}))$  for every  $i = 1, 2, \dots, m$  and consequently  $\beta_H^*(f(a)) = \beta_H^*(f(b))$ . Therefore F is well-defined. Now, we have

$$F(\beta_{G}^{*}(a) \oplus \beta_{G}^{*}(b)) = F(\beta_{G}^{*}(a+b)) = \beta_{H}^{*}(f(a+b)) = \beta_{H}^{*}(f(a)) \oplus \beta_{H}^{*}(f(b)) = F(\beta_{G}^{*}(a)) \oplus F(\beta_{G}^{*}(b)).$$

Remaining of proof is similar as follows in [3].  $\Box$ 

**Lemma 2.4.** Let  $\varphi : G \longrightarrow H$  be a strong epimorphism of  $H_v$ -groups. Then

(i) for  $a, b \in G$ ,  $a \beta_G^* b$  iff  $\varphi(a) \beta_H^* \varphi(b)$ , (ii) for  $N \subseteq G$ ,  $\varphi(\beta_G^*(N)) = \beta_H^*(\varphi(N))$ .

**Proof.** (i) By definition of relations  $\beta_G^*$  and  $\beta_H^*$ , the proof is straightforward.

(ii)

$$\begin{split} h &\in \varphi(\beta_G^*(N)) &\Leftrightarrow h = \varphi(x), \; x \in \beta_G^*(n), \; for \; some \; n \in N \\ &\Leftrightarrow \; x \; \beta_G^*(n), \; h = \varphi(x) \\ &\Leftrightarrow \; \varphi(x) \; \beta_H^* \; \varphi(n), \; h = \varphi(x), \; by \; (i) \\ &\Leftrightarrow \; h = \varphi(x) \in \beta_H^*(\varphi(N)). \end{split}$$

**Remark 2.5.** It is easy to see that, If  $G_1, \dots, G_k$  be  $H_v$ -groups with fundamental relations  $\beta_1^*, \dots, \beta_k^*$  respectively, then  $G = G_1 \times G_2 \times \dots \otimes G_k$  with hyperoperation induced by hyperoperations of  $G_i$  as below:

$$(x_1, \cdots, x_k) \cdot (y_1, \cdots, y_k) = \{(t_1, \cdots, t_k) | t_i \in x_i \cdot y_i, i = 1, \cdots, k\}$$

is an  $H_v$ -group. Also  $(x_1, \dots, x_k) \beta_g^* (y_1, \dots, y_k)$  iff  $x_i \beta_i^* y_i$  for  $i = 1, \dots, k$ .

### 3 $H_v$ -Normal Subgroup & $H_v$ -Quotient Group

In this section G and H are  $H_v$ -groups with fundamental relations  $\beta_G^* (= \beta^*)$  and  $\beta_H^*$  respectively. The identity and inverse element that is the essential elements for building the quotient (group and ring) there are not in  $H_v$ -structures. Since the  $H_v$ -structures are introduced up to now, the  $H_v$ -normal subgroup and  $H_v$ -quotient group were not introduced. In this section it is introduced the normal notion of  $H_v$ -groups based on corresponding fundamental group.

**Lemma 3.1.** If H is an  $H_v$ -subgroup of G, then  $\beta^*(H) = \{\beta^*(h) | h \in H\}$  is a subgroup of  $G/\beta^*$ .

**Proof.** If  $\beta^*(x), \beta^*(y) \in \beta^*(H)$  then there exist  $h_1, h_2 \in H$  such that

$$\beta^*(x) = \beta^*(h_1), \ \beta^*(y) = \beta^*(h_2).$$

So,  $\beta^*(x) \oplus \beta^*(y) = \beta^*(h_1) \oplus \beta^*(h_2) = \beta^*(h)$  for some  $h \in h_1 + h_2$ . Thus  $\beta^*(x) \oplus \beta^*(y) \in \beta^*(H)$ .

For associativity law, let  $\beta^*(x), \beta^*(y), \beta^*(z) \in \beta^*(H)$ . We have:

$$\beta^*(x) \oplus (\beta^*(y) \oplus \beta^*(z)) = \beta^*(x + (y + z)),$$
$$(\beta^*(x) \oplus \beta^*(y)) \oplus \beta^*(z) = \beta^*((x + y) + z).$$

Since H is an  $H_v$ -group, we have  $x + (y + z) \cap (x + y) + z \neq \emptyset$ . On the other hand the left sides of above equations are single-member, so

$$\beta^*(x) \oplus (\beta^*(y) \oplus \beta^*(z)) = (\beta^*(x) \oplus \beta^*(y)) \oplus \beta^*(z).$$

Suppose  $\beta^*(x) = \beta^*(h_1) \in \beta^*(H)$ , where  $h_1 \in H$ . By reproduction axiom of H there exists  $h \in H$  such that  $h_1 \in h_1 + h$ . Thus  $\beta^*(h_1) = \beta^*(h_1) \oplus \beta^*(h)$  and  $\omega_G = \beta^*(h) \in \beta^*(H)$ , so  $\beta^*(H)$  has zero element.

If  $\beta^*(y) = \beta^*(h_2) \in \beta^*(H)$ , where  $h_2 \in H$ , there exists  $h_3 \in H$  such that  $h \in h_2 + h_3$ . So  $\omega_G = \beta^*(h) = \beta^*(h_2) \oplus \beta^*(h_3)$  and  $\beta^*(h_3)$  is the inverse of  $\beta^*(h_2)$  in  $\beta^*(H)$ . Therefore  $\beta^*(H)$  is a subgroup of  $G/\beta^*$ .  $\Box$ 

**Definition 3.2.** Let N be an  $H_v$ -subgroup of G. N is called an  $H_v$ normal subgroup of G if  $\beta^*(N) \triangleleft G/\beta^*$ .

| Example 3.3. | C | lonsider | the | follc | owing | $H_v$ -grou | р <i>Н</i> : |
|--------------|---|----------|-----|-------|-------|-------------|--------------|
|--------------|---|----------|-----|-------|-------|-------------|--------------|

| • | a            | b            | с            | d            | e   | $\mathbf{f}$ |
|---|--------------|--------------|--------------|--------------|-----|--------------|
| a | a            | b            | c,d          | d            | f,e | f            |
| b | b            | a            | e,f          | f            | с   | $^{\rm d,c}$ |
| с | $^{\rm d,c}$ | f,e          | a            | e,f          | d   | b            |
| d | $^{\rm d,c}$ | e            | $\mathbf{f}$ | a            | b   | $^{\rm c,d}$ |
| е | е            | $^{\rm d,c}$ | b            | $^{\rm c,d}$ | f,e | a            |
| f | f,e          | c            | $^{\rm d,c}$ | b            | a   | e,f          |

We have:

$$H/\beta_{H}^{*} = \{\beta_{H}^{*}(a), \beta_{H}^{*}(b)\},\$$

where

$$\beta_H^*(a) = \{a, e, f\}, \ \beta_H^*(b) = \{b, c, d\}.$$

Now  $(N = \{a, e, f\}, \cdot)$  is an  $H_v$ -subgroup of  $(H, \cdot)$  and by Lemma 3.1  $\beta_H^*(N) = \{\beta_H^*(a)\}$  is a subgroup of the fundamental group  $H/\beta_H^*$ . We have  $\beta_H^*(N) = \omega_H \leq H/\beta_H^*$ . Therefore N is an  $H_v$ -normal subgroup of H.

**Lemma 3.4.** Let K be a subgroup of G. If for every g and g' in G, where  $\beta^*(g) \oplus \beta^*(g') = \omega_G$ ,  $x \in \beta^*(g)$  and  $y \in \beta^*(g')$  implies  $y + K + x \subseteq K$ , then K is an  $H_v$ -normal subgroup of G.

**Proof.** Suppose  $\beta^*(g) \oplus \beta^*(g') = \omega_G$ ,  $x \in \beta^*(g)$  and  $y \in \beta^*(g')$ , then

$$\beta^*(x) \oplus \beta^*(K) \oplus \beta^*(y) \subseteq \beta^*(K),$$
  
$$\beta^*(g') \oplus \beta^*(K) \oplus \beta^*(g) \subseteq \beta^*(K).$$

Therefore  $\beta^*(K) \leq G/\beta^*$  and so K is an  $H_v$ -normal subgroup of G.  $\Box$ 

**Theorem 3.5.** If  $f : G \longrightarrow H$  is a strong (w-)hom., then K = Ker(f) is an  $H_v$ -normal subgroup of G.

**Proof.** By Theorem 2.2, K = Ker(f) is an  $H_v$ -subgroup of G. Suppose  $x \in \beta^*(g), y \in \beta^*(g'), k \in K$  and  $s \in x + k + y$ ; where

$$\beta^*(g') \oplus \beta^*(g) = \omega_G.$$

So  $\beta^*(x) \oplus \beta^*(y) = \omega_G$ . For  $s \in x + k + y$ ,  $f(s) \in f(x + k + y)$  and we have

$$\beta_{H}^{*}(f(s)) \in \beta_{H}^{*}(f(x+k+y)) = \beta_{H}^{*}(f(x)) \oplus \beta_{H}^{*}(f(k)) \oplus \beta_{H}^{*}(f(y))$$
$$= \beta_{H}^{*}(f(x)) \oplus \omega_{H} \oplus \beta_{H}^{*}(f(y))$$
$$= F(\beta^{*}(x)) \oplus F(\beta^{*}(y))$$
$$= F(\beta^{*}(x) \oplus \beta^{*}(y))$$
$$= F(\omega_{G}) = \omega_{H}.$$

Thus  $f(s) \in \omega_H$ ,  $s \in Ker(f)$  and  $x + k + y \subseteq K$ . So by Lemma 3.4 K = Ker(f) is an  $H_v$ -normal subgroup of G.  $\Box$ 

**Corollary 3.6.**  $\omega_H$  is an  $H_v$ -normal subgroup of G.

**Proof.** If  $\phi: G \longrightarrow G/\beta^*$  be the fundamental mapping, then  $\phi$  is a strong homomorphism of  $H_v$ -groups and  $Ker(\phi) = \omega_G$ . So, by Theorem 3.5  $\omega_G$  is an  $H_v$ -normal subgroup of G.  $\Box$ 

**Theorem 3.7.** Let K be an  $H_v$ -normal subgroup of G. Define the hyperoperation  $\hat{+}$  on  $G/K = \{g + K | g \in G\}$  by  $(g_1 + K) \hat{+} (g_2 + K) = \beta^*(g_1 + g_2 + K) + K$ . Then  $(G/K, \hat{+})$  is an  $H_v$ -group.  $(G/K, \hat{+})$  is called the  $H_v$ -quotient group of G on K.

**Proof.** Suppose  $g_1 + K = g'_1 + K$  and  $g_2 + K = g'_2 + K$ . So

$$\beta^{*}(g_{1}) \oplus \beta^{*}(K) \oplus \beta^{*}(g_{2}) \oplus \beta^{*}(K) = \beta^{*}(g_{1}^{'}) \oplus \beta^{*}(K) \oplus \beta^{*}(g_{2}^{'}) \oplus \beta^{*}(K).$$

Since K is an  $H_v$ -normal subgroup in G, then  $\beta^*(K)$  is normal in  $\beta^*(G)$  and we have:

$$\beta^{*}(g_{1}) \oplus \beta^{*}(g_{2}) \oplus \beta^{*}(K) = \beta^{*}(g_{1}^{'}) \oplus \beta^{*}(g_{2}^{'}) \oplus \beta^{*}(K),$$
$$\beta^{*}(g_{1} + g_{2} + K) = \beta^{*}(g_{1}^{'} + g_{2}^{'} + K),$$

$$\beta^{*}(g_{1} + g_{2} + K) + K = \beta^{*}(g_{1}^{'} + g_{2}^{'} + K) + K,$$
$$(g_{1} + K)\hat{+}(g_{2} + K) = (g_{1}^{'} + K)\hat{+}(g_{2}^{'} + K).$$

Therefore,  $\hat{+}$  is a well defined hyperoperation on G/K. Let  $g_1 + K, g_2 + K, g_3 + K \in G/K$  we have:

$$\begin{split} [(g_1+K)\hat{+}(g_2+K)]\hat{+}(g_3+K) &= [\beta^*(g_1+g_2+K)+K]\hat{+}(g_3+K) \\ &= \{x+K| \ x \in \beta^*(g_1+g_2+K)\}\hat{+}(g_3+K) \\ &= \cup \beta^*(x+g_3+K)+K; \ x \in \beta^*(g_1+g_2+K) \\ &= \{y+K| \ y \in \beta^*(x+g_3+K), \ x \in \beta^*(g_1+g_2+K)\} \\ &= \{y+K| \ y \in \beta^*(g_1+g_2) \oplus \beta^*(g_3) \oplus \beta^*(K)\} \\ &= \{y+K| \ y \in \beta^*(g_1+g_2+g_3+K)\} \\ &= (g_1+K)\hat{+}[(g_2+K)\hat{+}(g_3+K)]. \end{split}$$

Therefore  $\hat{+}$  is an associative hyperoperation.

Now we prove that  $(G/K, \hat{+})$  satisfies the reproduction axiom. We know

$$(g_1 + K) + G/K = \{x + K | x \in \beta^* (g_1 + g + K), g \in G\} \subseteq G/K.$$

if  $g_0 + K \in G/K$ , by the reproduction axiom of G there exists  $g_2 \in G$  such that

$$g_0 \in \beta^*(g_0) = \beta^*(g_1 + g_2),$$
  
$$g_0 + K \in \beta^*(g_1 + g_2) + K \quad \subseteq \beta^*(g_1 + g_2) \oplus \beta^*(K) \oplus K$$
  
$$= \beta^*(g_1 + g_2 + K) + K$$

Thus  $g_0 + K \in \beta^*(g_1 + g_2 + K) + K$  and  $G/K \subseteq (g_1 + K) + G/K$ . So (G/K, +) satisfies the reproduction axiom.  $\Box$ 

## 4 Fundamental Relation of H<sub>v</sub>-Quotient Group

Let N be an  $H_v$ -normal subgroup of G and U be the set of all finite sums of elements of G. One can show that every finite sums of elements of G/N is equal to  $\beta^*(u+N) + N$  for some  $u \in U$ .

**Lemma 4.1.** Let  $\beta_q^*$  be the fundamental relation of G/N. Then for  $g_1, g_2 \in G$ ,  $\beta_q^*(g_1 + N) = \beta_q^*(g_2 + N)$  if and only if  $\beta^*(g_1 + N) = \beta^*(g_2 + N)$ .

**Proof.** Suppose that  $\beta_q^*(g_1 + N) = \beta_q^*(g_2 + N)$ . Then there exist  $u_1, u_2, \dots, u_m \in U$  and  $x_1, x_2, \dots, x_{m+1} \in G$  such that:

$$x_1 + N = g_1 + N, \ x_{m+1} + N = g_2 + N$$

and

$${x_i + N, x_{i+1} + N} \subseteq u_i + N \text{ for } i = 1, 2, \cdots, m.$$

Thus

$$\beta^*(x_1) \oplus \beta^*(N) = \beta^*(g_1) \oplus \beta^*(N), \ \beta^*(x_{m+1}) \oplus \beta^*(N) = \beta^*(g_2) \oplus \beta^*(N),$$
$$\{\beta^*(x_i) \oplus \beta^*(N), \ \beta^*(x_{i+1}) \oplus \beta^*(N)\} \subseteq \beta^*(u_i) \oplus \beta^*(N) \text{ for } u_i \in U.$$

We have  $u_i = u_{i_1} + u_{i_2} + \cdots + u_{i_{n_i}}$  where  $u_{i_j} \in G$  for  $j = 1, 2, \cdots, n_i$ . Now, by properties of fundamental relation we have

$$\beta^*(u_i) = \beta^*(u_{i_1}) \oplus \cdots \oplus \beta^*(u_{n_i}) = \beta^*(t_i)$$
 for every  $t_i \in u_i$ .

Since  $\beta^*(N) \triangleleft \beta^*(G)$ , then  $\beta^*(x_i) \oplus \beta^*(N)$ ,  $\beta^*(u_i) \oplus \beta^*(N)$  and  $\beta^*(t_i) \oplus \beta^*(N)$  are cosets of  $\beta^*(N)$  in  $\beta^*(G)$  and

$$\beta^*(x_i) \oplus \beta^*(N) = \beta^*(x_{i+1}) \oplus \beta^*(N) = \beta^*(u_i) \oplus \beta^*(N) \text{ for } i = 1, 2, \cdots, m.$$
  
Therefore  $\beta^*(g_1) \oplus \beta^*(N) = \beta^*(g_2) \oplus \beta^*(N).$   
Conversity;

$$\begin{aligned} \beta^{*}(g_{1}+N) &= \beta^{*}(g_{2}+N) &\Rightarrow & \beta^{*}(g_{1}+N) + \omega_{G} + N = \beta^{*}(g_{2}+N) + \omega_{G} + N \\ &\Rightarrow & \beta^{*}(g_{1}+N + \omega_{G}) + N = \beta^{*}(g_{2}+N + \omega_{G}) + N \\ &\Rightarrow & (g_{1}+N)\hat{+}(g_{0}+N) = (g_{2}+N)\hat{+}(g_{0}+N), for \ g_{0} \in \omega_{G} \\ &\Rightarrow & \beta^{*}_{q}(g_{1}+N)\hat{+}\beta^{*}_{q}(g_{0}+N) = \beta^{*}_{q}(g_{2}+N)\hat{+}\beta^{*}_{q}(g_{0}+N) \\ &\Rightarrow & \beta^{*}_{q}(g_{1}+N) = \beta^{*}_{q}(g_{2}+N). \end{aligned}$$



**Theorem 4.2.** Let G and H be  $H_v$ -groups with fundamental relations  $\beta^*$  and  $\beta^*_H$  respectively.

(i) If N is an  $H_v$ -normal subgroup of G then the map  $f: \begin{array}{c} G \longrightarrow G/N \\ x \longmapsto x + N \end{array}$ is a weak and inclusion epimorphism.

(ii) Let  $\varphi : G \longrightarrow H$  be a strong epimorphism such that  $N \subseteq \ker\varphi$ . Then there exists the strong epimorphism  $\bar{\varphi} : \begin{array}{c} G/N \longrightarrow H/\omega_H \\ x + N \longmapsto \varphi(x) + \omega_H \end{array}$ , and  $\ker \bar{\varphi} = \ker \varphi/N$ . **Proof.** (i)  $x = y \Rightarrow x + N = y + N \Rightarrow f(x) = f(y).$  $f(x + y) = x + y + N \subseteq \beta^*(x + y + N) + N$   $= (x + N)\hat{+}(y + N)$   $= f(x)\hat{+}f(y).$ 

since  $\beta^*((x+y)+N) = \beta^*(\beta^*((x+y)+N)+N)$ , by Lemma 4.1, we have  $\beta_q^*(x+y+N) = \beta_q^*((x+N)+(y+N))$  and so  $\beta_q^*(f(x+y)) = \beta_q^*(f(x))+\beta_q^*(f(y))$ . (ii) For  $x+N, y+N \in G/N$ ,

$$\begin{array}{rcl} x+N=y+N &\Rightarrow& \varphi(x+N)=\varphi(y+N)\\ &\Rightarrow& \varphi(x)+\varphi(N)=\varphi(y)+\varphi(N); \ \ \varphi \ is \ strong \ hom.\\ &\Rightarrow& \varphi(x)+\varphi(N)+\omega_{H}=\varphi(y)+\varphi(N)+\omega_{H}\\ &\Rightarrow& \varphi(x)+\omega_{H}=\varphi(y)+\omega_{H}, \ \ N\subseteq ker\varphi\subset\omega_{H}\\ &\Rightarrow& \bar{\varphi}(x)=\bar{\varphi}(y). \end{array}$$

$$\begin{split} \bar{\varphi}((x+N)\hat{+}(y+N)) &= \bar{\varphi}(\beta^*(x+y+N)+N) \\ &= \{\varphi(t) + \omega_H | t \in \beta^*(x+y+N)\} \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y+N))\} \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y) \oplus \beta^*(N))\} \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y)) \oplus \varphi(\beta^*(N))\}, \ \varphi \ is \ strong \ hom. \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y)) \oplus \beta^*_H(\varphi(N))\}, \ by \ lemma \ 2.4 \ (ii) \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y)) \oplus \beta^*_H(\omega_H)\}, \ since \ N \subseteq ker\varphi \\ &= \{s + \omega_H | s \in \varphi(\beta^*(x+y))\}. \end{split}$$

$$\bar{\varphi}(x+N)\hat{+}\bar{\varphi}(y+N) = (\varphi(x)+\omega_H)\hat{+}(\varphi(y)+\omega_H) \\
= \beta_H^*(\varphi(x)+\varphi(y)+\omega_H)+\omega_H \\
= \{s+\omega_H|\ s\in\beta_H^*(\varphi(x)+\varphi(y)+\omega_H)\} \\
= \{s+\omega_H|\ s\in\beta_H^*(\varphi(x+y))\}.$$
(2)

By (ii) of Lemma 2.4 and (1), (2) the proof is completed.  $\Box$ 

**Example 4.3.** Consider the  $H_v$ -group H and it's  $H_v$ -normal subgroup N in Example 3.3. We have:

$$H/N = \{a + N, b + N\},\$$

and  $(a+N)+(a+N) = \beta^*(a+a+N) + N = \beta^*(N) + N = \{a+N\},$   $(a+N)+(b+N) = \beta^*(a+b+N) + N = \beta^*(b) + N = \{b+N\},$   $(b+N)+(a+N) = \beta^*(b+a+N) + N = \beta^*(b) + N = \{b+N\},$   $(b+N)+(b+N) = \beta^*(b+b+N) + N = \beta^*(a) + N = \{a+N\}.$ Also, by Lemma 4.1 we have  $\frac{H/N}{\beta_q^*} = \{\beta_q^*(a+N), \beta_q^*(b+N)\}.$ For inclusion canonical epimorphis  $f: H \longrightarrow H/N$  we have

$$f(b+c) = (b+c) + N = N,$$

and

$$f(b) + f(c) = (b+N)\hat{+}(c+N) = \beta^*(b+c+N) + N = N,$$

because

$$\beta^*(b+c+N) = \beta^*(\{e,f\}+N) = \beta^*((e+N) \cup (f+N)) = \beta^*(N) = N$$

**Theorem 4.4.** If  $\beta_{qK}^*$  and  $\beta^*$  are the fundamental relations of G/Kand G respectively, then  $\frac{G}{K}/\beta_{qK}^* \cong \frac{\beta^*(G)}{\beta^*(K)}$ .

**Proof.** Define  $\theta : \beta_{qK}^*(G/K) \longrightarrow \beta^*(G)/\beta^*(K)$  by  $\theta(\beta_K^*(g+K)) = \beta^*(g) \oplus \beta^*(K)$ . By Lemma 4.1,  $\theta$  is an one-to-one mapping. If  $g_1 + K, g_2 + K \in G/K$ , we have:

$$\begin{aligned} \theta(\beta_{qK}^{*}(g_{1}+K)\oplus\beta_{qK}^{*}(g_{2}+K)) &= \theta(\beta_{qK}^{*}(\beta^{*}(g_{1}+g_{2}+K)+K) \\ &= \{\theta(\beta_{qK}^{*}(x+K))| \ x \in \beta^{*}(g_{1}+g_{2}+K)\} \\ &= \{\beta^{*}(x)\oplus\beta^{*}(K)| \ x \in \beta^{*}(g_{1}+g_{2}+K)\} \\ &= \beta^{*}(g_{1}+g_{2})\oplus\beta^{*}(K) \\ &= \beta^{*}(g_{1})\oplus\beta^{*}(g_{2})\oplus\beta^{*}(K) \\ &= [\beta^{*}(g_{1})\oplus\beta^{*}(K)] \oplus [\beta^{*}(g_{2})\oplus\beta^{*}(K)]. \end{aligned}$$

Therefore  $\theta$  is a homomorphism and it is clear that  $\theta$  is epic.  $\Box$ 

**Corollary 4.5.** If G is an  $H_v$ -group and  $K \triangleleft G$ , then: (i)  $\omega_{G/K} = \beta^*(K) + K (= \frac{\beta^*(K)}{K} = \{x + K | x \in \beta^*(K)\}),$ (ii)  $\omega_{\frac{G}{\omega_G}} = \omega_G.$  **Proof.** (i) By Theorem 4.4

$$\begin{aligned}
\omega_{G/K} &= \{g + K | \ \theta(\beta_N^*(g + K)) = \beta^*(K)\} \\
&= \{g + K | \ \beta^*(g) \oplus \beta^*(K) = \beta^*(K)\} \\
&= \{g + K | \ \beta^*(g) \in \beta^*(K)\} \\
&= \beta^*(K) + K.
\end{aligned}$$

(ii) By (i) we have  $\omega_{\frac{G}{\omega_K}} = \beta^*(\omega_G) + \omega_G = \omega_G + \omega_G = \omega_G$ .  $\Box$ 

**Lemma 4.6.** Let H be an  $H_v$ -group, for  $a \in H$ , if  $a + \omega_H = \omega_H$  then  $a \in \omega_H$ .

Proof.

$$a + \omega_H = \omega_H \quad \Rightarrow \beta^*(a + \omega_H) = \beta^*(\omega_H) \\ \Rightarrow \beta^*_H(a) \oplus \beta^*_H(\omega_H) = \beta^*_H(\omega_H) \\ \Rightarrow \beta^*_H(a) = \omega_H \\ \Rightarrow a \in \omega_H.$$

| - 11 | - | - |  |
|------|---|---|--|
|      |   |   |  |
|      |   |   |  |
|      |   |   |  |
|      | - | - |  |

Now, we extend the first isomorphism theorem to  $H_v$ -groups.

**Theorem 4.7. (First isomorphism theorem of**  $H_v$ -groups) If  $f: G \longrightarrow H$ is a strong epimorphism of  $H_v$ -groups and K = Ker(f) then  $G/K \cong^w H/\omega_H$ .

**Proof.** We define  $\theta: G/K \longrightarrow H/\omega_H$  by  $\theta(g+K) = f(g) + \omega_H$ . Then by (ii) of Theorem 4.2  $\theta$  is a strong epimorphism. Now, we show that  $\theta$  is w-monic:

$$\begin{aligned} \theta(g_1 + K) &= \theta(g_2 + K) \\ \Rightarrow f(g_1) + \omega_H = f(g_2) + \omega_H \\ \Rightarrow f(g_1) + \omega_H + f(K) = f(g_2) + \omega_H + f(K) \\ \Rightarrow \beta_H^*(f(g_1)) \oplus \beta_H^*(\omega_H) \oplus \beta_H^*(f(K)) \\ &= \beta_H^*(f(g_2)) \oplus \beta_H^*(\omega_H) \oplus \beta_H^*(f(K)) \\ \Rightarrow \beta_H^*(f(g_1)) = \beta_H^*(f(g_2)); \text{ since } f(K) \subseteq \omega_H \\ \Rightarrow F(\beta^*(g_1)) = F(\beta^*(g_2)), \text{ by Lemma } 2.3 \\ \Rightarrow \beta^*(g_1) \oplus \beta^*(K) = \beta^*(g_2) \oplus \beta^*(K); \text{ since } \beta^*(K) = Ker(F) \\ \Rightarrow \beta_q^*(g_1 + K) = \beta_q^*(g_2 + K) \\ \Rightarrow \beta_q^*(g_1 + K) = \beta_q^*(g_2 + K), \text{ by Lemma } 4.1. \end{aligned}$$

Thus,  $\theta$  is w-monic, it is straightforward that  $\theta$  is w-epic. Therefore,  $\theta$  is w-isomorphism.  $\Box$ 

**Theorem 4.8. (Third isomorphis theorem)** Let G be an  $H_v$ -group and  $L \leq K \leq G$  such that  $\beta^*(L) = \beta^*(K)$ , then  $\frac{G/L}{\beta^*(K)/L} \cong \frac{w}{\omega_{G/K}} \frac{G/K}{\omega_{G/K}}$ .

**Proof.** Defin  $\varphi$ :  $\begin{array}{c} G/L \longrightarrow G/K \\ x+L \longmapsto x+K \end{array}$  and prove that  $\varphi$  is a weak epimorphis with  $ker \ \varphi = \beta^*(K)/L$ , then by first isomorphism theorem, proof is completed. If x+L=y+L, then x+L+K=y+L+K and by reproduction axiom x+K=y+K. For x+L and y+L in G/L;

$$\begin{aligned} \varphi((x+L) + (y+L)) &= \varphi(\beta^*(x+y+L) + L) = \beta^*(x+y+L) + K, \\ \varphi(x+L) + \varphi(y+L) &= (x+K) + (y+K) = \beta^*(x+y+K) + K. \end{aligned}$$

Since  $\beta^*(L) = \beta^*(K)$ , we have  $\beta^*(x+y+L) = \beta^*(x+y+K)$  and so  $\varphi$  is strong hom.. Also

$$ker \varphi = \{x + L \mid x + K \in \omega_{G/K}\}$$
  
=  $\{x + L \mid x + K \in \beta^*(K)/K\}, by (i) of corollary 4.5$   
=  $\beta^*(K)/L.$ 

| _ |  |
|---|--|

**Example 4.9.** Consider the  $H_v$ -groups H and N as in Example 3.3. Set  $G = H \times H \times H$ ,  $K = N \times H \times H$ ,  $L = N \times N \times H$ . Then  $G/\beta^* = H/\beta_H^* \times H/\beta_H^* \times H/\beta_H^* \simeq Z_2 \times Z_2 \times Z_2$ . Therefor by definition 3.2  $L \leq K \leq G$ . Also

$$\begin{array}{lll} G/K &=& \{(x,y,z) + (N \times H \times H) | \ x \in \{b,c,d\}\} \\ &=& \{(x,y,z) + (N \times H \times H) | \ x,y,z \in \{b,c,d\}\}, \end{array}$$

because  $b+N = c+N = d+N = \{b,c,d\}$  and a+N = e+N = f+N = N. By theorem 4.4  $\frac{G/K}{\beta_N^*} \cong \frac{\beta^*(G)}{\beta^*(K)} \simeq \frac{Z_2 \times Z_2 \times Z_2}{\{0\} \times Z_2 \times Z_2} \simeq Z_2$ . By corollary 4.5

$$\begin{split} \omega_{G/K} &= \frac{\beta^*(K)}{K} = \frac{\beta^*(N) \times \beta^*(H) \times \beta^*(H)}{K} \\ &= \frac{N \times H \times H}{K} = \{(x, y, z) + (N \times H \times H) | \ x \in N\} \\ &= \{(a, a, a) + K, (e, e, e) + K, (f, f, f) + K\}, \end{split}$$

because y + H = H, for every  $y \in H$ .

#### References

- P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993.
- [2] B. Davvaz, Isomorphism theorems of polygroups, Bull. Malays. Math. Sci. Soc., 33(3) (2010), 385-392.
- [3] B. Davvaz and M. Ghadiri, Weak equality and exact sequences in  $H_v$ -modules, Southeast Asian Bull. Math., 25(3) (2001) 403-411.
- [4] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci., 30(2) (2006) 165-174.
- [5] M. Ghadiri and B. Davvaz, Direct system and direct limit of  $H_{v}$ -modules, Iran. J. Sci. Technol. Trans. A Sci., 28(2) (2004) 267–275.
- [6] M. Ghadiri and B. N. waphare, n-ary P-H<sub>v</sub>-groups, J. Appl. Math. & Informatics, 26(5-6) (2008) 445-959.
- [7] M. Ghadiri and B. N. waphare, n-ary polygroups, Iran. J. Sci. Technol. Trans. A Sci., 33(2) (2009) 145-158.
- [8] M. Ghadiri, B. N. waphare and B. Davvaz, n-ary  $H_v$ -structures, Southeast Asian Bull. Math., 34(1), (2010) 243-255.
- M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures et Appl., 49 (1970), 155-192.
- [10] F. Marty, Sur une generalization de la notion de groupe, 8<sup>th</sup> Congress Math. Scandinaves, Stockholm (1934), 45-49.
- [11] S. Spartalis, On the number of  $H_v$ -rings with P-hyperoperations, Discrete Math., 155(1-3) (1996) 225-231.
- [12] S. Spartalis, Quotients of P- $H_v$ -rings, New frontiers in hyperstructures(Molise, 1995), 167-177, Ser. New Front. Adv. Math. Ist. Ric. Base, Hadronic Press, Palm Harbor, FL, (1996).

- [13] S. Spartalis and T. Vougiouklis, The Fundamental Relations in H<sub>v</sub>rings, Rivista Math. Pura Appl., 14 (1994) 7-20.
- [14] T. Vougiouklis, The fundamental relations in hyperrings. the general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), Scientific (1991) 203-211.
- [15] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., Florida, 1994.
- [16] T. Vougiouklis, On  $H_v$ -rings and  $H_v$ -representations, Discrete Math., 208-209 (1999) 615-620.

#### Mansour Ghadiri

Assistant Professor of Mathematics Department of Mathematics Yazd University 89195-741, Yazd, City, Iran E-mail: mghadiri@yazd.ac.ir