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1 Introduction and Preliminaries

A subset A of a Banach space X is called limited, if every weak∗ null
sequence (x∗n) in X∗ converges uniformly on A, that is,

lim
n→∞

sup
a∈A
|〈a, x∗n〉| = 0.

Also if B ⊆ X∗ and every weak null sequence (xn) in X converges
uniformly on B, we say that B is an L-set.
We know that every relatively compact subset of X is limited and every
limited subset of a dual Banach space is an L-set, but the converse of
these assertions, in general, are false. If every limited subset of a Banach
space X is relatively compact, then X has the Gelfand–Phillips (GP)
property. For example, the classical Banach spaces c0 and `1 have the GP
property and every separable Banach sequence space, every Schur space
(i.e., weak and norm convergence of sequences in the space coincide),
and dual of spaces containing no copy of `1, such as reflexive spaces,
have the same property [4]. A Banach space X is Grothendieck if weak∗

convergent sequences in X∗ are weak convergent. The reader can be
find some useful and additional properties of limited and Banach spaces
with the GP property in [6] and [7].
Recently, the authors in [12] and [13], introduced the class of L–limited
sets and limited completely continuous (lcc) operators on Banach spaces.
In fact, a bounded linear operator T : X → Y between two Banach
spaces is lcc if it carries limited and weakly null sequences in X to norm
null ones in Y . The class of all lcc operators from X to Y is denoted by
Lcc(X,Y ). Also, a Banach space X has the L–limited property, if every
L-limited set in X∗ is relatively weakly compact. The authors in [12]
and [13], characterized these concepts with respect to some well known
geometric properties of Banach spaces, such as, GP, reciprocal DP and
Grothendieck property.
It is evident that if E is a Banach lattice, then its dual E∗, endowed
with the dual norm and pointwise order, is also a Banach lattice. The
norm ‖.‖ of a Banach lattice E is order continuous if for each generalized
net (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖.‖,
where the notation xα ↓ 0 means that the net (xα) is decreasing, its
infimum exists and inf(xα) = 0. A Banach lattice is said to be σ–
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Dedekind complete if for its countable subset that is bounded above has a
supremum. A Riesz space (or a vector lattice) is an ordered vector space
E with the additional property that for each pair of vectors x, y ∈ E the
supremum and the infimum of the set {x, y} both exist in E.
Here, by the definition of almost L– sets in [9] and L–limited sets in
dual Banach spaces, we introduce the concept of almost L–limited sets
in Banach lattices and then we obtain Banach lattices in which this
class of sets coincide with the class of L–limited sets. We will give some
equivalent condition for T ∗(B) to be an L-limited set (resp. almost L-
limited set), where B is a norm bounded solid subset of E∗ and T is
an operator (resp. order bounded operator) from a Banach space X
into a Banach lattice E. Finally by introducing the concept of disjoint
limited completely continuous (dlcc) operators between Banach lattices
and positive Gelfand–Phillips (positive GP) property, we obtain some
characterizations of them. The class of all dlcc operators from X to Y
is denoted by Ldcc(X,Y ).
Throughout this article, X and Y denote the arbitrary Banach spaces
and X∗ refers to the dual of the Banach space X. Also E and F denote
arbitrary Banach lattices and E+ = {x ∈ E : x ≥ 0} refers to the
positive cone of the Banach lattice E and BE is the closed unit ball
of E. If x is an elemeny of a Banach lattice E, then positive part,
negative part and absolute value of x is represented by x+, x− and
|x|, respectively. A subset A of E is called solid if |x| ≤ |y| for some
y ∈ A implies that x ∈ A. If a, b belong to a Banach lattice E and
a ≤ b, the interval [a, b] is the set of all x ∈ E such that a ≤ x ≤ b. A
subset of a Banach lattice is called order bounded if it is contained in
an order interval. A Banach lattice E has the positive Schur property, if
(xn) ∈ E+ and xn → 0 weakly, imply ‖xn‖ → 0. We refer the reader to
[1] and [11] for unexplained terminologies on Banach lattice theory and
positive operators.

2 L-limited Sets in Banach Lattices

Following the introducing of the concept of L–limited sets in [12], we
give some additional properties of them in Banach spaces and specially
in Banach lattices.
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Proposition 2.1. Let X be a Banach space and B be a bounded subset
of X∗. Then the following are equivalent:

(a) B is an L-limited set,

(b) for each sequence (fn) in B, fn(xn)→ 0, for every weakly null and
limited sequence (xn) of X.

Proof. (a)⇒ (b): This follows from the inequality

|fn(xn)| ≤ sup
f∈B
|f(xn)|,

that is consistant for each sequence (fn) in B and for every weakly null
and limited sequence (xn) of X.
(b)⇒ (a): Assume that B is not an L-limited set in X∗. So there exsits
an ε > 0 and a weakly null and limited sequence (xn) in X such that
supf∈B |f(xn)| > ε for all n. This implies the existence of a sequence
(fn) in B such that |fn(xn)| > ε, for all n. �

Corollary 2.2. Let X be a Banach space and (fn) be a norm bounded
sequence of X∗. Then the following are equivalent:

(a) The subset {fn : n ∈ N} is an L-limited set,

(b) fn(xn)→ 0, for every weakly null and limited sequence (xn) of X.

From [11], a Banach space X has the L–limited property, if every L–
limited subset of X∗ is relatively weakly compact. The following evident
proposition gives a characterization of the L–limited property by L–
limited setes.

Proposition 2.3. Let X be a Banach space. Then the following are
equivalent:

(a) X has the L–limited property,

(b) every L–limited sequence in X∗ is relatively weakly compact.

Proposition 2.4. Let T be an operator from a Banach space X into a
Banach lattice E and f ∈ (E∗)+. Then the following are equivalent:
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(a) T ∗[−f, f ] is an L–limited set,

(b) for every weakly null and limited sequence (xn) of X, f(|T (xn)|)→
0.

Proof. It follows immediately from the equality

f(|T (xn)|) = sup
g∈T ∗[−f,f ]

|g(xn)|.

�

Corollary 2.5. For a Banach lattice E, the following are equivalent:

(a) For each f ∈ (E∗)+, [−f, f ] is an L–limited set,

(b) for every weakly null and limited sequence (xn) of E, (|xn|) is
weakly null.

Proof. (a)⇒ (b): In Proposition 2.4, take T = IdE .
(b) ⇒ (a): For every weakly null and limited sequence (xn) of E and
f ∈ (E∗)+, we have supg∈[−f,f ] |g(xn)| = f(|xn|). Also by (b), [−f, f ] is
an L-limited set. This completes the proof. �
Recall that the lattice operations in a Banach lattice E are weakly
sequentially continuous if for every weakly null sequence (xn) in E,
|xn| → 0 for σ(E,E∗). The lattice operations in the dual Banach lattice
E∗ are weak∗ sequentially continuous if for every weak∗ null sequence
(fn) in E∗, |fn| → 0 for σ(E∗, E). The following theorem shows that
generally, the absolute value of a limited set is not limited.

Theorem 2.6. Suppose thst A is a limited subset of a Banach lattice E
and E∗ has the weak∗ sequentially continuous lattice operations. Then
|A| = {|a| : a ∈ A} is limited.

Proof. We show that every weak∗ null sequence (x∗n) in E∗ converges
uniformly on |A|, that is, limn→∞ supx∈A |〈x∗n, |x|〉| = 0.
From [10, Lemma 1.4.4], 〈|x∗n|, |x|〉 = max{〈z∗n, x〉 : |z∗n| ≤ |x∗n|} for all n.
So, there exists z∗n ∈ E∗, such that |z∗n| ≤ |x∗n| and 〈|x∗n|, |x|〉 = 〈z∗n, x〉.
Since E∗ has the weak∗ sequentially continuous lattice operations, the
sequences (|x∗n|) and so (z∗n) are weak∗ null. But the set A is limited.
So, supx∈A |〈z∗n, x〉| → 0. Now from the inequality supx∈A|〈x∗n, |x|〉| ≤
supx∈A〈|x∗n|, |x|〉, we have supx∈A |〈x∗n, |x|〉| → 0 and so the set |A| is
limited. �
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Theorem 2.7. Let E be a Banach lattice such that E∗ has an order
continuous norm. Then for each f ∈ (E∗)+, [−f, f ] is an L–limited set.

Proof. If E∗ has an order continuous norm, then from [1, Theorem
4.9], for each f ∈ (E∗)+, [−f, f ] is relatively weakly compact and by [12,
Lemma 2.2], it is an L–limited set. �

Theorem 2.8. Let E be a Banach lattice with the L–limited property.
Then E∗ has an order continuous norm.

Proof. It is evident that every L-set in E∗ is an L–limited set. If E is a
Banach lattice E with the L–limited property, then every L–set in E∗ is
relatively weakly compact and so by [2, Theorem 3.1], E∗ has an order
continuous norm. �
The converse of Theorem 2.8, is false, in general. For example c0 does
not have L–limited property, but its dual `1 has an order continuous
norm. The next main result, gives an equivalent condition for T ∗(B)
being L–limited set, where B is a norm bounded solid subset of E∗ and
T is an operator from a Banach space X into a Banach lattice E.

Theorem 2.9. Let T be an operator from a Banach space X into a
Banach lattice E and B be a norm bounded solid subset of E∗. Then
the following are equivalent:

(a) T ∗(B) is an L–limited set in X∗,

(b) For each f ∈ B+ and for each norm bounded disjoint sequence
(fn) ∈ B+, the sets T ∗[−f, f ] and {T ∗fn : n ∈ N} are L–limited.

Proof. (a) ⇒ (b): It is obvious, since [−f, f ] and B+ are contained in
B.
(b) ⇒ (a): To prove that T ∗(B) is an L–limited set, it is sufficient to
show that suph∈B |T ∗(h(xn))| → 0 for every weakly null and limited
sequence (xn) in X. This follows by a similar techniques used in [3,
Theorem 2.7]. �

Corollary 2.10. Let E be a Banach lattice and B be a norm bounded
solid subset of E∗. Then the following are equivalent:

(a) B is an L–limited set,
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(b) [−f, f ] and {fn : n ∈ N} are an L–limited sets, for each f ∈ B+

and for each disjoint sequence (fn) ∈ B+.

The next result characterizes lcc operators by L–limited sets.

Corollary 2.11. For an operator T from a Banach space X into a
Banach lattice E, the following are equivalent:

(a) T is lcc,

(b) T ∗(BE∗) is an L– limited set, where BE∗ is the closed unit ball of
E∗,

(c) T ∗[−f, f ] and {T ∗fn : n ∈ N} are L–limited sets, for each f ∈
(BE∗)

+ and for each norm bounded disjoint sequence (fn) ∈ (BE∗)
+,

(d) |T (xn)| → 0 for σ(E,E∗) and fn(Txn)→ 0, for every weakly null
and limited sequence (xn) in X and for each disjoint sequence (fn)
in (BE∗)

+.

Proof. (a) ⇔ (b): By the equality supf∈T ∗(BE
∗) |f(xn)| = ‖Txn‖E ,

the set T ∗(BE∗) is an L–limited set in X∗, ,if and only if, T is an lcc
operator.
By Theorem 2.9, the statements (b) and (c) are equivalent and the
equivalence of (c)⇔ (d) is a direct consequence of Propositions 2.2 and
2.4.
�

3 Almost L-limited Sets in Banach Lattices

In this section we introduce a new class of sets and operators. Recall
that a sequence (xn) in a Banach lattice E is (pairwise) disjoint, if for
each i 6= j, |xi| ∧ |xj | = 0.

Definition 3.1. Let E be a Banach lattice and X be a Banach space.
Then

(a) A norm bounded subset B of a dual Banach lattice E∗ is said to
be an almost L–limited set if every disjoint weakly null and limited
sequence (xn) of E converges uniformly to zero on the set B, that
is supf∈B |f(xn)| → 0.
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(b) An operator T from a Banach lattice E into a Banach space X is
a disjoint limited completely continuous (dlcc) operator if the se-
quence (‖Txn‖) converges to zero for every weakly null and limited
sequence of pairwise disjoint elements in E.

Note that every L–limited set of a dual Banach lattice, is an almost
L–limited set, but the converse is false, in general. In fact for many
Banach lattices E with the positive GP property and without the GP
property, the closed unit ball of the dual Banach lattice E∗ is an almost
L–limited set, but it is not L–limited set. As an example, the closed unit
ball B`∞ of `∞ is an almost L–limited set in `∞, but the closed unit ball
B(`∞)∗ is not an almost L–limited set in (`∞)∗. In the following, we give
a usefull chracterization of almost L-limited sets, that can be proved by
the similar method of Proposition 2.1.

Proposition 3.2. Let E be a Banach lattice and B be a norm bounded
set in E∗. Then the following are equivalent:

(a) B is an almost L–limited set,

(b) for each sequence (fn) in B, fn(xn)→ 0, for every disjoint weakly
null and limited sequence (xn) of E.

In particular, we obtain:

Proposition 3.3. Let E be a Banach lattice and (fn) be a norm bounded
sequence in E∗. Then the following are equivalent:

(a) The subset {fn : n ∈ N} is an almost L–limited set,

(b) fn(xn) → 0, for every disjoint weakly null and limited sequence
(xn) of E.

Recall that, an operator T from a Banach lattice E into another F is
said to be order bounded if for each x ∈ E+, the subset T ([−x, x]) is
order bounded in F . From [3, Proposition 3.3], for each f ∈ (F ∗)+ and
for each order bounded operator from E into F , the subsets [−f, f ] and
T ∗([−f, f ]) are almost L–limited sets.

Theorem 3.4. Let T be an order bounded operator from a Banach lat-
tice E into a Banach lattice F and B be a norm bounded solid subset of
F ∗. Then the following are equivalent:
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(a) T ∗(B) is an almost L–limited set in E∗,

(b) {T ∗fn : n ∈ N} is an almost L–limited set, for each f ∈ B+ and
for each disjoint sequence (fn) in B+.

Proof. The proof is the same as the proof of Theorem 2.9 and we omit
it. �
As some consequences, we deduce:

Corollary 3.5. Let T be an order bounded operator from a Banach
lattice E into another Banach lattice F and B be a norm bounded solid
subset of F ∗. Then the following are equivalent:

(a) T ∗(B) is an almost L–limited set in E∗,

(b) fn(Txn) → 0, for every disjoint weakly null and limited sequence
(xn) of E+ and for each disjoint sequence (fn) in B+.

Corollary 3.6. Let E be a Banach lattice and B be a norm bounded
solid subset of E∗. Then the following are equivalent:

(a) B is an almost L–limited set,

(b) {fn : n ∈ N} is an almost L–limited set for each disjoint sequence
(fn) in B+.

The next result characterizes the class of dlcc operators by almost L–
limited sets.

Corollary 3.7. For an order bounded operator T from a Banach lattice
E into another Banach lattice F , the following are equivalent:

(a) T is dlcc,

(b) T ∗(BF ∗) is an almost L– limited set, where BF ∗ is the closed unit
ball of F ∗,

(c) {T ∗(fn) : n ∈ N} is an almost L–limited set for each disjoint
sequence (fn) in (BF ∗)

+,

(d) fn(T (xn))→ 0, for every disjoint weakly null and limited sequence
(xn) of E+ and for each disjoint sequence (fn) in (BF ∗)

+.
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Proof. (a)⇔ (b): By the equality, supf∈T ∗(BF∗ )
|f(xn)| = ‖Txn‖F , for

every sequence (xn) in E, it follows easily that, T ∗(BF ∗) is an almost
L-limited set in E∗ if and only if T is an dlcc operator.
By Theorem 3.4, the statements (b) and (c) are equivalent and the
equivalence (c)⇔ (d) is a direct consequence of Proposition 3.3.
�

Definition 3.8. A Banach lattice E has the positive GP property if
each weakly null and limited sequence with the positive terms is norm
null.

It is clear that the GP property implies the positive GP property.

Theorem 3.9. Let E be a Banach lattice. Then the following are equiv-
alent:

(a) E has the positive GP property,

(b) every weakly null and disjoint limited sequence in E converges to
zero in norm.

Proof. (a) ⇒ (b): Let (xn) be a weakly null and disjoint limited se-
quence in E. From [14, Proposition 1.3], the sequence (|xn|) is weakly
null and by [8, Lemma 3.7], it is limited in E. From (a), the sequence
(|xn|) and so (xn) converges to zero in norm.
(b) ⇒ (a): Suppose that infn ‖xn‖ = c > 0 for some weakly null and
limited sequence (xn) ⊂ E+. Putting yn = c−1xn and using [10, Corol-
lary 5] we find a subsequence (ynk

), a constant d > 0, and a disjoint
sequence (zk) of E+ such that 0 < zk ≤ ynk

and ‖zk‖ ≥ d. It is clear
that disjoint limited sequence (zk) tends weakly to zero, but ‖zk‖ ≥ d.
This fact contradicts the assumption. �

Theorem 3.10. Let E be a Banach lattice. Then the following are
equivalent:

(a) E has the positive GP property,

(b) BE∗ is an almost L–limited set.



L-LIMITED AND ALMOST L-LIMITED SETS IN DUAL... 157

Proof. (a) ⇒ (b): If E has the positive GP property and (xn) is a
weakly null and disjoint limited sequence in E, then by Theorem 3.9,
(xn) is norm null. Now the equality ‖xn‖ = supf∈(BE∗ )

|f(xn)| implies
that BE∗ is an almost L–limited set.
(b)⇒ (a). If BE∗ is an almost L–limited set, then for every weakly null
and disjoint limited sequence (xn) in E, ‖xn‖ = supf∈(BE∗ )

|f(xn)| → 0.
Now apply Theorem 3.9. �

Theorem 3.11. Let E be a Banach lattice. Then the following are
equivalent:

(a) E has the positive GP property,

(b) for each Banach lattice F , Ldcc(E,F ) = L(E,F ).

Proof. (a) ⇒ (b): If E has the positive GP property and (xn) is a
weakly null and disjoint limited sequence in E, then by Theorem 3.9,
(xn) is norm null and for each bounded operator T on E, ‖Txn‖ → 0;
that is, Ldcc(E,F ) = L(E,F ).
(b)⇒ (a): If F = E, then (b) implies that the identity operator on E is
dlcc and so for every weakly null and disjoint limited sequence (xn) in
E, ‖xn‖ → 0. Now apply Theorem 3.9. �
In the following Theorem 3.13, we show that the positive GP property
and the GP property coincide in the class of σ-Dedekind complete Ba-
nach lattices. Let us start with the following two lemmas. The first
lemma shows that every weakly null sequence in `∞ is limited.

Lemma 3.12. Let X be a Grothendieck space which has the DP prop-
erty. Then every weakly null sequence in X is limited.

Proof. Suppose xn → 0 weakly in X and (fn) is a weak∗ null sequence
in X∗, but supn|fk(xn)| > η for some η > 0 and all k. Let k1 = 1
and find n1 with |f1(xn1)| > η. Since the sequence (fk) is a weak∗ null
sequence, we can indicate k2 > k1 satisfying the condition |fk2(xm)| < η
for m = 1, ..., n1. Hence |fk2(xn2)| > η for some n2 > n1. Following by
induction we can find subsequences k1 = 1 < k2 < k3 < ... and n1 <
n2 < n3 < ... such that |fkm(xnm)| > η. Put gm = fkm and ym = xnm .
Clearly ym → 0 weakly in X and gm → 0 weak∗ in X∗. Since X is a
Grothendieck space, then gm → 0 weakly in X∗, and so gm(ym)→ 0 by
the DP property of X, a contradiction because |gm(ym)| > η. �
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Example 3.13. `∞ dose not have the positive GP property.

Proof. It is enough to remember that `∞ dose not have the positive
Schur property and use Lemma 3.12. By [12], a Banach lattice E has the
positive Schur property, whenever 0 ≤ xn → 0 weakly implies ‖xn‖ → 0.
�
Now we are able to formulate the following equivalence condition.

Theorem 3.14. Let E be a σ–Dedekind complete Banach lattice. Then
E has the positive GP property, if and only if, it has the GP property.

Proof. Since the positive GP property is inherited by closed Riesz
subspaces and `∞ does not have the positive GP property, then E does
not contain any order copy of `∞. According to [11, Corollary 2.4.3], E
has order continuous norm, and so it possesses the GP property by the
Bukhvalov’s Theorem in [5]. �

Corollary 3.15. The dual Banach lattice C(K)∗ has the GP property,
where K is a compact Hausdorff space. Proof. For each positive and
weakly null sequence (fn) in C(K)∗, ‖fn‖ = fn(1K) → 0, where 1K
denotes the constant function 1 on K. That is C(K)∗ has the positive
GP property. On the other hands from [1], the Banach lattice C(K)∗

is σ–Dedekind complete and by Theorem 3.14, it has the GP property.
�

It should be noted that, a σ–Dedekind complete Banach lattice E, has
the GP property, if and only if, the norm of E is order continuous
(cf.[5]). So, by Theorem 3.14, a σ–Dedekind complete Banach lattice E
is a positive GP space, if and only if, the norm of E is order continuous.
Now, we want to give a relation between order weakly compact and
dlcc of operators. Recall that a continuous operator T : E → X from a
Banach lattice E to a Banach spaceX is order weakly compact (o-weakly
compact), whenever T [0, x] is a relatively weakly compact subset of X
for each x ∈ E+. We know that by [1, Theorem 5.57], an operator T
from a Banach lattice E into a Banach space X is order weakly compact
if and only if ‖Txn‖ → 0 for every disjoint order bounded sequence (xn)
in E.

Lemma 3.16. [9] Every order bounded disjoint sequence in a σ-Dedekind
complete Banach lattice is limited.
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It should be noted that every order bounded disjoint sequence (xn) in
an arbitrary Banach lattice E is not limited, in general. Consider the
space c of all convergent sequences with the sup norm. Clearly the
sequence (en) of unit vectors in c is disjoint and order bounded from
below by 0 and from above by the vector e = (1, 1, 1, ...) . Define fk on
c by fk(xn) = xk − limn→∞xn. Then fk(x) → 0 as k → ∞ for every
(xn) ∈ c, but supn |fk(en)| ≥ fk(ek) = 1. We have just shown that
{en : n ∈ N} is not limited.

Theorem 3.17. Let E be a σ-Dedekind complete Banach lattice. Then
each dlcc operator on E is order weakly compact.

Proof. Let (xn) be an order bounded disjoint sequence of E. It follows
from [1] and Lemma 3.16 that (xn) is a limited weakly null sequence.
Since T is dlcc then, ‖Txn‖ → 0. Hence Dodds’s theorem ([1, Theorem
5.57]) implies that T is order weakly compact. �

Theorem 3.18. Let M ⊂ L(X,Y ) be a Banach lattice. If M has the
positive GP property, then all of the evaluation operators φx and ψy∗

are dlcc operators, where φx(T ) = Tx and ψy∗(T ) = T ∗y∗ for x ∈ X,
y∗ ∈ Y ∗ and T ∈M.

Proof. See Theorem 3.11. �
Now, we show that the dlccness of evaluation operators is a sufficient
condition for the positive GP property of their domain.

Theorem 3.19. Let Y has the Schur property and M ⊂ L(X,Y ) be a
Banach lattice. If for every y∗ ∈ Y ∗, the evaluation operator ψy∗ on M
is dlcc, then M has the positive GP property.

Proof. If M does not have the positive GP property, by Theorem
3.9, there exists a weakly null and disjoint limited sequence (Tn) in
M and some ε > 0 such that ‖Tn‖ > ε, for all n. So there exists a
sequence (xn) in BX such that ‖Tn(xn)‖ > ε, for all n. On the other
hand, the evaluation operator ψy∗ on M is Ldcc for all y∗ ∈ Y ∗ and so
‖T ∗n(y∗)‖ = ‖ψy∗(Tn)‖ → 0. Hence |〈Tnxn, y∗〉| ≤ ‖T ∗n(y∗)‖ → 0. So the
sequence (Tnxn) is weakly null and it is norm null by the Schur property,
a fact that is impossible. �
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Theorem 3.20. Let X has the Schur property and M ⊂ Lw∗(X
∗, Y )

be a Banach lattice. If for every x∗ ∈ X∗, the evaluation operator φx∗

on M is dlcc, then M has the positive GP property.

Proof. If M does not have the positive GP property, by Theorem 3.9,
there exists a weakly null and disjoint limited sequence (Tn) in M and
some ε > 0 such that ‖Tn‖ > ε, for all n. On the other hand, the
evaluation operator φx∗ onM is dlcc for all x∗ ∈ X∗ and so ‖Tn(x∗)‖ =
‖φx∗(Tn)‖ → 0. Since ‖T ∗n‖ > ε, there exists a sequence (y∗n) in BY ∗

such that ‖T ∗ny∗n‖ > ε, for all n. But the Schur property of X shows that
the weakly null sequence (T ∗ny

∗
n) is norm null, which is a contradiction.

�

4 Almost L-limited Sets Which Are L-limited
Sets

As we noted in the beginning of section 3, every L-limited set in the
dual Banach lattice E∗, is an almost L-limited set, but the converse is
false in general. In this section we characterize Banach lattices in which
the class of almost L-limited sets and that of L-limited sets coincide in
their dual.

Theorem 4.1. For a Banach lattice E, the following are equivalent:

(a) Each almost L-limited set in E∗ is an L-limited set,

(b) for each Banach space Y , Ldcc(E, Y ) = Lcc(E, Y ),

(c) Ldcc(E, `∞) = Lcc(E, `∞).

Proof. (a)⇒ (b): Let T : E → Y be an operator. From supf∈T ∗(BY ∗ )
|f(xn)| =

‖Txn‖Y , for every sequence (xn) in E, it follows easily that, T ∗(BY ∗) is
an almost L-limited (respectively, L-limited) set in E∗, if and only if, T
is an dlcc (respectively, lcc) operator. Now, let T be an dlcc operator.
Then T ∗(BY ∗) is an almost L-limited set in E∗ and from the hypothesis
(a), it is an L-limited set in E∗. Hence T is an lcc operator.
(b)⇒ (c): It is clear.
(c) ⇒ (a):. Let B be an almost L-limited set in E∗. To prove that
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B is an L-limited set, it sufficies to show that fn(xn) → 0 for each se-
quence (fn) in B and for every weakly null and limited sequence (xn)
in E (Proposition 2.1). Consider the operator S : E → `∞ defined by
S(x) = (fn(x))∞n=1, for each x ∈ E. Since B is almost L-limited, S
is an dlcc operator. In fact, for every weakly null and disjoint limited
sequence (zi) in E, we have

‖Szi‖∞ = ‖fn(zi)
∞
n=0‖∞ ≤ sup

f∈B
|f(zi)| → 0,

as i → ∞. Which implies that S is an dlcc operator and so from our
hypothesis, S is lcc. Thus ‖Sxn‖∞ → 0 and now the desired conclusion
follows from the inequality |fn(xn)| ≤ ‖Sxn‖∞ for each n. �

Recall that, an operator T from a Banach space X into a Banach
lattice E is said to be semicompact if for each ε > 0 there exists some
u ∈ E+ satisfying T (BX) ⊂ [−u, u] + εBE . According to [3, Theorem
4.3], each operator T : E → X is dlcc, whenever its adjoint T ∗ : X∗ →
E∗ is semicompact.

At the end of this section, it should be noted that the adjoint of
a dlcc operator is not necessary dlcc and vice versa. For example, the
identity operator on the Banach lattice `1 is dlcc (because `1 has the
GP-property, [13, Theorem 2.2]) but its adjoint, Id`∞ : `∞ → `∞, is
not dlcc. In fact, if en = (0, 0, ..., 1, 0, ...) with n’th entry equals to 1
and all others zero, then (en) is an order bounded disjoint sequence of
`∞. Hence (en) is weakly null and by Lemma 3.16, it is limited, but
‖Id`∞(en)‖ = ‖en‖∞ = 1 for all n. Also the identity operator on `∞
is not dlcc but its adjoint is dlcc, because (`∞)∗ has order continuous
norm and so has GP property. Also by Corollary 3.7, B(`∞)∗ is not an
almost L–limited set in (`∞)∗, as noted that in the begining of section
3.
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