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1 Introduction

Recently, many odd log-logistic-G families were developed such as the
Zografos-Balakrishnan odd log-logistic family of distributions (by Cordeiro
et al. 2016a), the generalized odd log-logistic family (by Cordeiro et al.
2016b), the beta odd log-logistic generalized family of distributions (by
Cordeiro et al. 2016c), the Kumaraswamy odd log-logistic family of
distributions (by Alizadeh et al. 2016) and a new generalized odd log-
logistic family of distributions (by Haghbin et al. 2017).

In this study, we provide and study a new extesion of the odd log-
logistic family of continuous distributions named the odd log-logistic
Poisson-G (OLLP-G) family based on the odd log-logistic (OLL) family
of distribution, originally developed by Gleaton and Lynch (2004) and
(2006). They called this family as generalized log-logistic (GLL) family.
The cumulative distribution function (cdf) of this family is given by

FOLL-G(x, α, ψ) =
G(x, ψ)α

G(x, ψ)α +G(x, ψ)α
, α > 0. (1)

The probability density function (pdf) corresponding to (1) is given by

fOLL-G(x, α, ψ) =
αg(x, ψ)

[
G(x, ψ)G(x, ψ)

]α−1[
G(x, ψ)α +G(x, ψ)α

]2 .

Mixing lifetime distribution with Poisson distribution was studied by
several authors. For example, Kus (2007) and Cancho et al. (2011)
studied Poisson-Exponential distribution. Suppose Z1, ..., ZN be inde-
pendent identically random variable (iid) with common cdf G(x) and N
be random variable with

P (N = n) =
1

eβ − 1

βn

n!
n = 1, 2, ..., β > 0

and define MN = max(Z1, ..., ZN ), then the cdf and pdf of MN is given
by
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GPoisson−G(x;β, ψ) =
∞∑
n=1

P (MN ≤ x|N = n)P (N = n)

=

∞∑
n=1

[G(x;β, ψ)]n
1

eβ − 1

βn

n!

=
eβ G(x;β,ψ) − 1

eβ − 1
(2)

and

gPoisson−G(x;β, ψ) =
β g(x;β, ψ) eβ G(x;β,ψ)

eβ − 1
,

respectively. Using (1) and (2), the cdf of the OLLP-G can be written
as

F (x;α, β,ψ) =

[
eβ G(x,ψ)−1

eβ−1

]α[
eβ G(x,ψ)−1

eβ−1

]α
+
[
1− eβ G(x,ψ)−1

eβ−1

]α , (3)

where α, β > 0 and ψ is the vector of parameter for baseline G. The
corresponding pdf is given by

f(x;α, β,ψ) =
αβ g(x,ψ) eβ G(x,ψ)

[
eβ G(x,ψ) − 1

]α−1 [
eβ − eβ G(x,ψ)

]α−1

(eβ − 1)
{[
eβ G(x,ψ) − 1

]α
+
[
eβ − eβ G(x,ψ)

]α}2 .

(4)
The hazard rate functions (hrf), difened as f(x;α, β,ψ)/ [1− F (x;α, β,ψ)],
can be written as

τ(x;α, β,ψ) =
αβ g(x,ψ) eβ G(x,ψ)

[
eβ G(x,ψ) − 1

]α−1

(eβ − 1)
[
eβ − eβ G(x,ψ)

] {[
eβ G(x,ψ) − 1

]α
+
[
eβ − eβ G(x,ψ)

]α} .
(5)

An interpretation of the OLLP-G family can be given as follows. Let T
be a random variable describing a stochastic system by the cdfGPoisson-G(x;β, ψ).
If the random variable X represents the odds ratio, the risk that the sys-
tem following the lifetime T will be not working at time x is given by
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GPoisson-G(x;β, ψ)/[1−GPoisson-G(x;β, ψ)]. If we are interested in mod-
eling the randomness of the odds ratio by the exponentiated half-logistic
cdf R(t) = tα

1+tα (for t > 0), the cdf of X is given by

Pr(X ≤ x) = R

[
GPoisson-G(x;β, ψ)

1−GPoisson-G(x;β, ψ)

]
=

[
eβ G(x,ψ) − 1

]α[
eβ G(x,ψ) − 1

]α
+
[
eβ − eβ G(x,ψ)

]α .
Furthemore, the basic motivations for using the OLLP-G family in prac-

tice are the following: to make the kurtosis more flexible compared to
the baseline model; to produce a skewness for symmetrical distribu-
tions; to construct heavy-tailed distributions that are not longer-tailed
for modeling real data; to generate distributions with symmetric, left-
skewed, right-skewed and reversed-J shaped; to define special models
with flexible types of the hrf; to provide consistently better fits than
other generated models under the same baseline distribution.

Remark 1: Although, we have stated that β ∈ (0,∞), Eq. (3) is
still a cdf if β < 0. Hence, we can consider the OLLP-G family defined
for any β ∈ R− {0}.

Theorem 1. provides a relation of the OLLP-G family with log-
logistic distribution.

Theorem 1. Let X ∼ OLLP −G (α, β,ψ), then

Y = e

(
G(x;ψ)

Ḡ(x;ψ)

)α
− 1,

has log-logistic cdf

FY (y) = yα/ (1 + yα)−1 , y > 0.

For α = 1, we obtain Poisson-G, for β → 0+ we obtain OLL-G, for
α = 1 and β → 0+ we obtain baseline G. The OLLP-G density function
(4) allows for greater flexibility of its tails and mode of distribution and
can be widely applied in many areas of engineering and science.
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Theorem 2: If distribution G(x) has a moment generating function,
then distribution function F (x) has a moment generating function.

Let m = inf{x|G(x) ≥ 0.5}, then

MX(t) =

∫ ∞
−∞

et x f(x)dx =

∫ ∞
−∞

et x
αβ g(x)

[
eβG(x)−1

eβ−1

]α−1 [
1− eβG(x)−1

eβ−1

]α−1

(eβ − 1)
{[

eβG(x)−1
eβ−1

]α
+
[
1− eβG(x)−1

eβ−1

]α}2 dx

≤
∫ ∞
−∞

et x αβ e g(x)

(eβ − 1)
{[

eβG(x)−1
eβ−1

]α
+
[
1− eβG(x)−1

eβ−1

]α}2 dx

=

∫ m

−∞
et x αβ e g(x)

(eβ − 1)
{[

eβG(x)−1
eβ−1

]α
+
[
1− eβG(x)−1

eβ−1

]α}2 dx

+

∫ ∞
m

et x αβ e g(x)

(eβ − 1)
{[

eβG(x)−1
eβ−1

]α
+
[
1− eβG(x)−1

eβ−1

]α}2 dx

The first integral in last line is finite, the second integral is no greater
than ∫ ∞

m
et x αβ e g(x)

(eβ − 1)
[

eβG(x)−1
eβ−1

]2α dx

For x > m, we have G(x) ≥ 0.5, so that

∫ ∞
m

et x αβ e g(x)

(eβ − 1)
[

eβG(x)−1
eβ−1

]2α dx < (
eβ/2 − 1

eβ − 1
)−2α

∫ ∞
m

et x g(x)dx <∞.

Then MX(t) <∞.
Corollary: Every distribution in OLLP-G class has exactly the

same number of moments of G(x).

Here, we introduce two special models obtained from this family
because it extends several widely-known distributions in the literature.
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2 Special OLLP models

2.1 OLLP-Weibull distribution

Taking G(x) to be the Weibull cdf with scale parameter b > 0 and shape
parameter a > 0, the OLLP-W density function (for x > 0) is given by

f(x;α, β, a, b) =
aαβ xa−1 e−(x/b)a

eβ[1−e−(x/b)a ]

ba (eβ − 1)
{[

eβ[1−e−(x/b)a ] − 1
]α

+
[
eβ − eβ[1−e−(x/b)a ]

]α}2

×
[
eβ[1−e−(x/b)a ] − 1

]α−1 [
eβ − eβ[1−e−(x/b)a ]

]α−1
.

In Figure 1, the OLLP-W distribution has flexible shape of pdf and
hrf. The pdf includes right and left skew unimodal- bimodal shapes and
on the other hand, hrf can model datasets with increasing, decreasing,
unimodal and bathtube hrf.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

d
e

n
s
it
y

(.5,1,1,.5)

(2,−1,1,1.8)

(.2,.5,3,1.1)

(1.1,2,2.3,1.5)

(.5,5,3,1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

h
rf

(.5,2,.5,.5)

(2,−1,1,1)

(.2,.5,3,1.1)

(1.5,2.1,1,1.5)

(.5,−.7,3,0.9)

Figure 1: Odd log-logistic Poisson-Weibull distribution: pdf (left), hrf
(right).
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2.2 OLLP-Lindley distribution

The pdf and cdf of the Lindley (L) distribution are (for x, θ > 0)

g(x) =
θ2 (1 + x)e−θ x

1 + θ
,

G(x) = 1− (1 +
θ x

1 + θ
)e−θ x.

Inserting these expressions into (4), we obtain the OLLP-L density func-
tion (for x > 0)

f(x;α, β, θ) =
θ2 αβ (1 + x) e−θ x eβ[1−(1+ θ x

1+θ
) e−θ x]{[

eβ[1−(1+ θ x
1+θ

) e−θ x] − 1
]α

+
[
eβ − eβ[1−(1+ θ x

1+θ
) e−θ x]

]α}2

×
[
eβ[1−(1+ θ x

1+θ
) e−θ x] − 1

]α−1 [
eβ − eβ[1−(1+ θ x

1+θ
) e−θ x]

]α−1
.

Figure 2 shows that the OLLP-L distribution has more flexibility than
Lindley distribution in term of shape of pdf and hrf.
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Figure 2: Odd log-logistic Poisson-Lindley distribution: pdf (left), hrf
(right).
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3 Linear representations

In this section, mixture representations for Equations (3) and (4) are
obtained, firstly we have[

eβ G(x) − 1

eβ − 1

]α
=
∞∑
j=0

aj

[
eβ G(x) − 1

eβ − 1

]j
,

where aj =
∑∞

i=j(−1)i+j
(
α

i

)(
i

j

)
and

[
eβ G(x) − 1

eβ − 1

]α
+

[
1− eβ G(x) − 1

eβ − 1

]α
=
∞∑
j=0

bj

[
eβ G(x) − 1

eβ − 1

]j
,

where bj = aj + (−1)j
(
α

j

)
, then the OLLP-G cdf in (3) can be written

as

F (x) =

∑∞
j=0 aj

(
eβ G(x)−1
eβ−1

)j
∑∞

j=0 bj

(
eβ G(x)−1
eβ−1

)j =

∞∑
j=0

cj

(
eβ G(x) − 1

eβ − 1

)j
,

where c0 = a0
b0

and for j ≥ 1, we have

cj =
1

b0

(
aj −

1

b0

j∑
r=1

br cj−r

)
,

then

F (x) =
∞∑
k=0

dkHk+1(x), (6)

where

dk =
∞∑
j=0

j∑
l=0

(1 + j)cj+1 (−1)j+l (1 + l)k

(eβ − 1)j+1 (k + 1)!

(
j

l

)
and Hδ(x) = G(x)δ is cdf of exponentiated-G (Exp-G) distribution with
power parameter (δ). The corresponding OLLP-G density function is



THE ODD LOG-LOGISTIC POISSON-G FAMILY OF... 89

obtained by differentiating (6) as

f(x) =
∞∑
k=0

dk hk+1(x), (7)

where hδ(x) = δg(x)G(x)δ is the pdf of the Exp-G distribution with
power parameter (δ). Equation (6) and (7) reveal that pdf of OLLP-G
is a linear combination of Exp-G densities. Thereby, some properties of
the proposed family such as moments and generating function can be
determined by means of Exp-G distribution. The properties of Exp-G
distributions have been studied by many authors in recent years, see
Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for expo-
nentiated Weibull, Gupta et al. (1998) for exponentiated Pareto, Gupta
and Kundu (1999) for exponentiated exponential, Nadarajah (2005) for
the exponentiated-type distributions, Nadarajah and Kotz (2006) for
exponentiated Gumbel, Shirke and Kakade (2006) for exponentiated
log-normal and Nadarajah and Gupta (2007) for exponentiated gamma
distributions , among others.

4 Mathematical properties

4.1 Asymptotics

Let d = inf{x|G(x) > 0}, the asymptotics of equations (3), (4) and (5)
as x→ d are given by

F (x) ∼
[
β G(x;ψ)

eβ − 1

]α
as x→ d,

f(x) ∼ αβα

(eβ − 1)
α g(x;ψ)G(x;ψ) as x→ d,

and

h(x) ∼ αβα

(eβ − 1)
α g(x;ψ)G(x;ψ)α−1 as x→ d.



90
MORAD ALIZADEH, HAITHAM M. YOUSOF, MAHDI RASEKHI AND

EMRAH ALTUN

The asymptotics of equations (3), (4) and (5) as x→∞ are given by

1− F (x) ∼
{
β [1−G(x;ψ)]

eβ − 1

}α
as x→∞,

f(x) ∼ αβα

(eβ − 1)
α g(x;ψ) [1−G(x;ψ)] as x→∞,

and

h(x) ∼ αg(x;ψ)/ [1−G(x;ψ)]−1 as x→∞.

These equations show the effect of parameters on tails of OLLP-G dis-
tributions.

4.2 Moments, incomplete moments and generating func-
tion

The rthordinary moment ofX is given by µ′r = E(Xr) =
∫∞
−∞ xr f (x) dx.

Then we obtain

µ′r =
∞∑
k=0

dkE(Y r
k+1). (8)

Henceforth, Yδ denotes the Exp-G model with power parameter (δ). For
δ > 0, we have E (Y r

δ ) = δ
∫∞
−∞ x

r g (x;ψ) G (x;ψ)δ−1 dx, which can
be computed numerically in terms of the baseline quantile function (qf)
QG (u;ψ) = G−1 (u;ψ) as E (Y n

δ ) = δ
∫ 1

0 QG (u;ψ)n uδ−1du. Setting
r = 1 in (8), we have the mean of X. The last integration can be
computed numerically for most parent distributions. The rthincomplete
moment, say Ir (t), of X can be expressed from (7) as

Ir (t) =

∫ t

−∞
xrf (x) dx =

∞∑
k=0

dk

∫ t

−∞
xr hk+1(x)dx. (9)

The first incomplete moment I1 (t) given by (9) with r = 1. A general
equation for I1 (t) can be derived from (9) as I1 (t) =

∑∞
k=0 dk Jk+1 (x) ,

where Jδ (x) =
∫ t
−∞ xhδ (x) dx is the first incomplete moment of the

Exp-G model. The moment generating function (mgf)MX (t) = E
(
etX

)
ofX can be derived from equation (8) asMX (t) =

∑∞
k=0 dkMk+1 (t) ,where

Mδ (t) is the mgf of Yδ. Hence, MX (t) can be determined from the
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Exp-G generating function. The cf of X, φ (t) = E
(
eitX

)
is given by

φ (t) =
∑∞

k=0 dk φk+1 (t) where φδ (t) is the cf of Yδ and i =
√
−1. For

the OLLP-W model we have

µ′r = Γ
(

1 +
r

a

) ∞∑
k,w=0

υ
(r,k+1)
w,k , ∀ r > −a

and

Ir (t) = γ

(
1 +

r

a
,

(
1

bt

)a) ∞∑
k,w=0

υ
(r,k+1)
w,k , ∀ r > −a,

where

υ
(r,k+1)
w,k = dk

(k + 1) (−1)w

(1/b)r (w + 1)(r+a)/a

(
k

w

)
.

Figure 3 displays the mean and variance plots of OLLP-W distribution
for parameters a = 2 and b = 1. Based on these plots, we conclude that:
if β increases, mean increases; if α increases, mean decreases and vari-
ance increases. The parameter β has not significant effect on variance.
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Figure 3: Mean and variance plot for OLLP-W distribution with
shape=2 and scale=1 parameters
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4.3 Quantile function

The OLLP-G family can easily be simulated by inverting (3) as follows:
if U ∼ U(0, 1), then the random variable XU can be obtained from the
baseline qf, say QG(u) = G−1(u). In fact, the random variable

XU = QG

{
1

β
log

[
1 +

(eβ − 1)U
1
α

U
1
α + (1− U)

1
α

]}
,

has cdf (5). The effects of the shape parameters on the skewness and
kurtosis can be based on quantile measures. We obtain skewness and
kurtosis measures using the quantile function of OLLP-G family. The
Bowley’s skewness measure is given by

Skewness =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
,

and the Moors’s kurtosis measure is

Kurtosis =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

these measures enjoy the advantage of having less sensitivity to out-
liers. Moreover, they do exist for distribution without moments. Both
measures equal zero for the normal distribution. Plots of skewness and
kurtosis of the OLLP-W distribution is presented in Figure 4. This plot
indicates that parameter α controls the skewness and kurtosis measures.
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Figure 4: Skewness and Kurtosis plot for OLLP-W distribution with
shape=2 and scale=1 parameters

4.4 Moments of residual and reversed residual life

The nthmoment of the residual life say, zn(t) = E[(X− t)n | X > t], n =
1, 2,. . . , uniquely determines F (x). The nthmoment of the residual life
of X is given by zn(t) = 1

1−F (t)

∫∞
t (x− t)ndF (x). Therefore

zn(t) =
1

1− F (t)

∞∑
k=0

n∑
r=0

dk (1− t)n
∫ ∞
t

xrhk+1(x)dx.

The nthmoment of the reversed residual life say, Zn(t) = E [(t−X)n | X ≤ t]
for t > 0 and n = 1, 2,. . . uniquely determines F (x). We obtain
Zn(t) = 1

F (t)

∫ t
0 (t − x)ndF (x). Then, the nthmoment of the reversed

residual life (RRL) of X becomes

Zn(t) =
1

F (t)

∞∑
k=0

n∑
r=0

dk (−1)r
(
n

r

)
tn−r

∫ t

0
xrhk+1(x)dx.

The mean residual life (MRL) function or the life expectation at age
t defined by z1(t) = E [(X − t) | X > t], which represents the expected
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additional life length for a unit which is alive at age t. The MRL of
X can be obtained when n = 1 in zn(t) equation. The mean inactivity
time (MIT) or mean waiting time also called the mean reversed residual
life function (MRRL) is given by Z1(t) = E[(t − X) | X ≤ t], and
it represents the waiting time elapsed since the failure of an item on
condition that this failure had occurred in (0, t). The MIT of the OLLP-
G family of distributions can be obtained easily when n = 1 in Zn(t)
equation. For the OLLP-W model we have

zn(t) =
γ
(
1 + n

a ,
(

1
bt

)a)
1− F (t)

∞∑
k,w=0

n∑
r=0

υ
(n,k+1)
w,k,r , ∀ n > −a

and

Zn(t) =
γ
(
1 + n

a ,
(

1
bt

)a)
F (t)

∞∑
k,w=0

n∑
r=0

ϑ
(n,k+1)
w,k,r , ∀ n > −a,

where

υ
(n,k+1)
w,k,r = dk

(k + 1) (−1)w (1− t)n

(1/b)n (w + 1)(n+a)/a

(
k

w

)
and

ϑ
(n,k+1)
w,k,r = dk

(k + 1) (−1)w+r tn−r

(1/b)n (w + 1)(n+a)/a

(
n

r

)(
k

w

)
.

4.5 Order statistics

Suppose X1, . . . , Xn is a random sample from any OLLP-G model, let
Xi:n denote the ith order statistic. The pdf of Xi:n can be expressed as
fi:n(x) = f(x)

B(i,n−i+1)

∑n−i
j=0(−1)j

(
n−i
j

)
F (x)j+i−1, following similar alge-

braic developments of Nadarajah et al. (2015), we can write the density
function of Xi:n as

fi:n(x) =

∞∑
l,k=0

dl,k hl+k+1(x), (10)

where, dl,k =
n! (l+1) (i−1)! dl+1

(l+k+1)

∑n−i
j=0

(−1)j ζj+i−1,k

(n−i−j)! j! and the quantities ζj+i−1,k

can be determined with ζj+i−1,0 = dj+i−1
0 and recursively for k ≥ 1,
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ζj+i−1,k = (k d0)−1∑k
m=1[m (j + i) − k] dm ζj+i−1,k−m. Equation (10)

is the main result of this section. It reveals that the pdf of the OLLP-
G order statistics is a linear combination of Exp-G density functions.
So, several mathematical quantities of the OLLP-G order statistics such
as ordinary, incomplete and factorial moments, mean deviations and
several others can be determined from those quantities of the Exp-G
distribution. For the OLLP-W model we have

E (Xq
i:n) = Γ

(
1 +

q

a

) ∞∑
l,k,w=0

υ
(q,l+k+1)
l,k,w , ∀ q > −a,

where

υ
(q,l+k+1)
l,k,w = dl,k

(l + k + 1) (−1)w

(1/b)q (w + 1)(q+a)/a

(
l + k

w

)
.

5 Maximum likelihood estimation

Here, we consider estimation of the unknown parameters of the OLLP-
G distribution by the maximum likelihood method. Let x1, . . . , xn be
a random sample from the OLLP-G distribution with a (q + 2) × 1
parameter vector Ψ =(α, β, ψ)ᵀ, where ψ is a q × 1 baseline parameter
vector. The log-likelihood function for Ψ is given by

`(Ψ) = n logα+ n log β − n log
(
eβ − 1

)
+

n∑
i=1

log g (xi;ψ) + β
n∑
i=1

G(xi;ψ)

+ (α− 1)
n∑
i=1

log (ηi − 1) + (α− 1)
n∑
i=1

log
(
eβ − ηi

)
−2

n∑
i=1

log
[
(ηi − 1)α +

(
eβ − ηi

)α]
,
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where ηi = eβ G(xi;ψ). The components of the score vector, U (Ψ) =
∂`
∂Ψ =

(
∂`
∂α ,

∂`
∂β ,

∂`
∂ψ

)ᵀ
, are given as

∂`

∂α
=

n

α
+

n∑
i=1

log (ηi − 1) +

n∑
i=1

log
(
eβ − ηi

)
−2

n∑
i=1

(ηi − 1)α log (ηi − 1) +
(
eβ − ηi

)α
log
(
eβ − ηi

)
(ηi − 1)α + (eβ − ηi)α

,

∂`

∂β
=

n

β
− neβ

eβ − 1
+

n∑
i=1

G(xi;ψ) + (α− 1)

n∑
i=1

eβ − bi
eβ − ηi

−2

n∑
i=1

α
[
bi (ηi − 1)α−1 +

(
eβ − bi

) (
eβ − ηi

)α−1
]

(ηi − 1)α + (eβ − ηi)α
,

and (for r = 1, ..., q)

∂`

∂ψr
= +

n∑
i=1

∂g(xi;ψ)/∂ψr
g (xi;ψ)

+ β
n∑
i=1

[∂G(xi;ψ)/∂ψr]

+ (α− 1)
n∑
i=1

ai,r
ηi − 1

+ (α− 1)
n∑
i=1

−ai,r
eβ − ηi

−2
n∑
i=1

αai,r

[
(ηi − 1)α−1 −

(
eβ − ηi

)α−1
]

(ηi − 1)α + (eβ − ηi)α
,

where, bi = G(xi;ψ)eβ G(xi;ψ) and ai,r = β [∂G(xi;ψ)/∂ψr] e
β G(xi;ψ).

Setting the nonlinear system of equations Uα = Uβ = Uψr = 0 (for

r = 1, . . . , q) and solving them simultaneously yields the MLEs Ψ̂ =
(α̂, β̂, ψ̂ᵀ)ᵀ. To solve these equations, it is more convenient to use non-
linear optimization methods such as the quasi-Newton algorithm to nu-
merically maximize `(Ψ). For interval estimation of the parameters, we
can evaluate numerically the elements of the (q + 2)× (q + 2) observed

information matrix J(Ψ) = {− ∂2`
∂θr θs

}. Under standard regularity con-

ditions when n → ∞, the distribution of Ψ̂ can be approximated by
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a multivariate normal Np(0, J(Ψ̂)−1) distribution to construct approx-
imate confidence intervals for the parameters, where p is the number
of parameters. Here, J(Ψ̂) is the total observed information matrix
evaluated at Ψ̂.

6 Simulation study

In this section, we assess the performance of the MLEs of the OLLP-
W parameters. The precision of the MLEs is based on the following
measures: bias, mean square error (MSE), estimated average length
(AL) and coverage probability (CP). We generate N = 1, 000 sam-
ples of sizes n = 50, 55, . . . , 1000 from the OLLP-W distribution with
α = 3, β = 3, a = 2, b = 2 by using the inverse transform method.
The MLEs of the model parameters are obtained for each generated
sample, say (α̂i, β̂i, âi, b̂i), for i = 1, 2, · · · , N . The standard errors of
the MLEs are evaluated by inverting the observed information matrix,
namely (sα̂i , sβ̂i , sâi , sb̂i) for i = 1, 2, · · · , N . The estimated biases and
MSEs are given by

B̂iasε(n) = 1
N

∑N
i=1(ε̂i − ε)

M̂SEε(n) = 1
N

∑N
i=1(ε̂i − ε)2

CPε(n) = 1
N

∑N
i=1 I(ε̂i − 1.95996sε̂i , ε̂i + 1.95996sε̂i)

ALε(n) = 3.919928
N

∑N
i=1 sε̂i

(11)

where ε = α, β, a, b.

The numerical results for the above measures are displayed in the
plots of Figure 5. We can note that the estimated biases decrease as
the sample size n increases. Further, the estimated MSEs decay toward
zero when n increases. This fact reveals the consistency property of the
MLEs. The CP is near to 0.95 and approaches to the nominal value
when the sample size increases. Moreover, if the sample size increases,
the AL decreases in each case. The reported results are obtained for a
selected parameter vector (α, β, a, b). However, similar results hold for
several parameter values.
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Figure 5: Estimated CPs, biases, MSEs and ALs for the selected pa-
rameters.

7 Application

We illustrate the importance of the OLLP-G family in an application to
real data set. In the two last decades, several extensions of the Weibull
distributions have been introduced in the literature. Some of 4 param-
eters generalized Weibull distribution that is used in this section are
Kumaraswamy Weibull (Cordeiro et al., 2010), Beta-Weibull (Lee et al.,
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2007), Generalized Modified Weibull (Carrasco et al., 2008), Exponen-
tiated modified Weibull extension (Sarhan and Apaloo, 2013) and (P-
A-L) Extended Weibull Distribution (Al-Zahrani et al., 2015). Also the
sub model of OLLP-W are Poisson-Weibull (Lu and Shi, 2012), OLL-
Weibull (Cooray, 2006), Weibull, OLLP-exponential, OLL-exponential
(Gleaton and Lynch, 2006), Poisson-exponential and exponential dis-
tributions are used in this section. The measures of goodness-of-fit in-
cluding the Akaike information criterion (AIC), Bayesian information
criterion (BIC), Hannan-Quinn information criterion (HQIC), Consis-
tent Akaike information criterion (CAIC) are calculated to compare the
fitted rival models. In general, the smaller the values of these statistics,
the better the fit to the data. Also the likelihood ratio test is used for
comparing proposed model with submodels. The required computations
are carried out using the R software.

The data set represent the lifetime of a certain device reported in
Sylwia (2007). These data have a bathtub shaped hazard function and
are given by 0.0094, 0.05, 0.4064, 4.6307, 5.1741, 5.8808, 6.3348, 7.1645,
7.2316, 8.2604, 9.2662, 9.3812, 9.5223, 9.8783, 9.9346, 10.0192, 10.4077,
10.4791, 11.076, 11.325, 11.5284, 11.9226, 12.0294, 12.074, 12.1835, 12.3549,
12.5381, 12.8049, 13.4615, 13.853.

The maximum likelihood estimates of the parameters and the good-
ness of fit statistics are reported in Tables 1 and 2. Table 3 includes
LR test for comparing OLLP-W with submodels. Figure 6 shows fitted
distributions on histogram of data set. In the applications, the informa-
tion about the hazard shape can help in selecting a particular model.
For this aim, a device called the total time on test (TTT) plot (Aarset,
1987) is useful. The TTT plot is obtained by plotting

G(r/n) =

[(
r∑
i=1

y(i)

)
+ (n− r)y(r)

]
/

n∑
i=1

y(i),

where r = 1, ..., n and y(i) (i = 1, ..., n) are the order statistics of the
sample, against r/n. If the shape is a straight diagonal the hazard is
constant. It is convex shape for decreasing hazards and concave shape
for increasing hazards. The bathtub-shaped hazard is obtained when the
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first convex and then concave and for bimodal shape hazard, the TTT
plot is first concave and then convex. In Figure 7, The TTT plot of real
data set and hrf function of fitted OLLP-W based on MLE are shown.
This figure illustrates that the hazard function of OLLP-W is similar
to data sets. In this real data set, the results show that the proposed
distribution yields a better fit than other distributions.
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Table 1:Parameters estimates and log likelihood function.

Model Estimates (Standard Error) −Log Likelihood

OLLP-W 0.103, 11.347, 5.801, 7.475 71.912
(α, β, a, b) (0.016), (0.024), (0.043), (0.042)

Kw-W 0.381, 15.234, 4.214, 0.018 91.829
(a, b, λ, β) (0.074), (9.629), (0.118), (0.002)

B-W 0.011, 76.025, 0.068, 96.938 79.140
(a, b, λ, β) (0.005), (3.162), (0.081), (14.125)

GM-W 0.003, 0.249, 0.438, 0.699 72.352
(α, γ, λ, β) (0.001), (0.170), (0.048), (0.159)

PALEW 1.903, 0.943, 83.822, 1.248 81.872
(α, β, ν, p) (1.101), (0.219), (16.501), (4.389)

EMWE 22.832, 168.036, 3.239, 0.346 86.282
(λ, α, β, γ) (1.828), (0.322), (0.021), (0.064)

OLL-W(Submodel) 0.113, 6.543, 7.999 75.949
(α, a, b) (0.017), (0.002), (0.002)

P-W(Submodel) 3.782, 1.319, 5.823 87.467
(β, a, b) (1.212), (0.242), (1.056)

W(Submodel) 1.619, 9.582 92.729
(a, b) (0.277), (1.095)

OLLP-E(Submodel) 0.970, 4.516, 4.485 88.486
(α, β, b) (0.224), (1.550), (0.884)

OLL-E(Submodel) 1.439, 11.240 94.596
(α, b) (0.275), (1.769)

P-E(Submodel) 4.397, 4.567 88.495
(β, b) (1.218), (0.638)

E(Submodel) 9.040 96.047
(b) (1.650)
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Table 2:Goodness of fit statistics.
Model AIC BIC HQIC CAIC

OLLP-W 151.824 157.429 153.617 153.424
Kw-W 191.658 197.263 193.451 193.258
B-W 166.280 171.884 168.073 167.880

GM-W 152.706 158.310 154.499 154.306
PALEW 171.744 177.348 173.537 173.344
EMWE 180.565 186.170 182.358 182.165

Table 3: Likelihood Ratio test for Submodel
Hypothesis LR P-Value

1 H0 : OLL− PE versusH1 : OLLP −W 6.33×10−8 8.53×10−9

2 H0 : OLL−W versusH1 : OLLP −W 0.017 0.004

3 H0 : P −W versusH1 : OLLP −W 1.75×10−7 2.43×10−8

4 H0 : W versusH1 : OLLP −W 9.10×10−10 9.14×10−10

5 H0 : OLL− E versusH1 : OLLP −W 1.40×10−10 1.43×10−10

6 H0 : P − E versusH1 : OLLP −W 6.28×10−8 6.08×10−8

7 H0 : E versusH1 : OLLP −W 3.29×10−11 1.86×10−10
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Figure 6: Fitted pdfs on histogram: (left) submodels, (right) rival
models
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Figure 7: (left) TTT plot of data set, (right) hrf function of fitted
OLLP-W for data set

8 Conclusions

We introduce a new class of continuous distributions named the Odd
Log-Logistic Poisson-G (OLLP-G) family. Some of its mathematical
properties are obtained such as the moments, quantile and generating
functions. The maximum likelihood method is used to estimate the
model parameters and the performance of the maximum likelihood esti-
mators are discussed in terms of biases, mean squared errors, coverage
probability and estimated average length by means of Monte-Carlo sim-
ulations. Three applications of the proposed family prove empirically its
flexibility to model the real data sets. Empirical findings show that pro-
posed family provides an opportunity to model data sets with different
characteristics.

Appendix A: Regularity conditions of MLE

1. The random variables Xi, i = 1, 2, ..., n are independent and iden-
tically distributed with density f (x; Ψ) where Ψ is the unknown
parameter vector.
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2. The parameter space Θ is compact.

3. The unknown parameter value Ψ0 is defined as Ψ0 = arg max
Ψ∈Θ

EΨ0 log f (xi; Ψ).

4. The log-likelihood function, ` (Ψ) =
n∑
i=1

log f (xi; Ψ), is continuous

for all θ and EΨ0 log f (xi; Ψ) exists.

5. The log-likelihood function ` (Ψ) is twice continuously differen-
tiable in a neighbourhood of Ψ0.

6. The information matrix, J(Ψ) = {− ∂2`
∂θr θs

}, exists and non-singular.

More detail information about regularity conditions can be found in
Hoadley (1971).
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