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Abstract. In this paper, we have presented and studied the Mittag-
Leffler-Hyers-Ulam stability of a fractional differential equation of sec-
ond order. We have proved that the differential equation 3" +ay’ + 3y =
0 is Mittag-Leffler-Hyers-Ulam stable. Then we consider the stability of
Lane-Emden equation of second order.
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1. Introduction

The well-known Ulam stability of functional equations, which was for-
mulated by Ulam on a talk given at Wisconsin University in 1940, is one
of the central subjects in the Mathematical analysis area.
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For more details on the advancement of Ulam type stability, refer to the
papers [5, 14, 15, 16, 17, 20].

Alsina and Ger were the first authors who investigated the Hyers-Ulam
stability of a differential equation [1]. In fact, they proved that if a
differentiable function y : I — R satisfies |y/(t) — y(¢)] < e for all
t € I, then there exists a differentiable function g : I — R satisfying
g'(t) = g(t) for any t € I such that |y(t) — g(t)| < 3e for every t € 1.
The result of Alsina and Ger has been generalized [11, 13, 18].

Furthermore, the result of Hyers-Ulam stability for a first-order linear
differential equation has been generalized by Miura, Miyajima and Taka-
hasi [12], by Takahasi, Takagi, Miura and Miyajima [19], and also by
Jung [9]. They this problem for the nonhomogeneous linear differential
equation of first order y' + p(t)y + q(t) = 0.

Jung [10] proved the generalized Hyers-Ulam stability of differential
equations of the form ty'(t) + ay(t) + ft"xo = 0 and also applied this
result to the investigation of the Hyers-Ulam stability of the differential
equation t2y” (t) + aty'(t) + By(t) = 0.

Recently, Li and Shen [4] discussed the Hyers-Ulam stability of the fol-
lowing linear differential equations of second order:

v + oy + 0y =0
and

y' + oy + By = f(z)
where y € C?[a,b], f € Cla,b] and —c0 < a < b < +00.

Recently some authors ([6], [8], [18], [21] and [22]) extended the Ulam
stability problem from an integer-order differential equation to a fractional-
order differential equation.

There are different types of fractional integral equations. In [2], authors
by having defined the types of Mittag-Leffler-Hyers-Ulam stability of a
fractional integral equation proved that some kind of fractional integral
equations can be somehow approximated by an exact solution of the
considered equation.
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An important example of second order differential equations is the Lane-
Emden equation which has been widely used to describe a variety of phe-
nomena in physics and astrophysics, including aspects of stellar struc-
ture, the thermal history of a spherical cloud of gas, isothermal gas
spheres, and thermionic currents. Lane-Emden type equations, first pub-
lished by Jonathan Homer Lane in 1870 [3], and further explored in de-
tail by Emden. Here, we presented similar definitions with [2] and prove
stability results for this equation.

In this paper, at first we present the Mittag-Leffler-Hyers-Ulam stability
for the following differential equations of second order:

Y +ay +0y=0 (1)

and then as an example of an important second order fractional differ-
ential equations we investigate the Mittag-Leffler-Hyers-Ulam stability
of Lane-Emden equation.

Definition 1.1. The fractional order integral of the function f of order
a > 0 is defined by

t (t _ T)Oé—l
IS f(t) = dr.
210 = [ S —rryar
Note that when a = 0, we write I f(t) = f(t) * Pn(t), where (%) denotes
the convolution product, ®,(t) = F(a;,t > 0 and $u(t) = 0, < 0 and
®, — 0(t) as o — 0 where §(t) is the delta function.

Definition 1.2. The fractional order derivative of the function f of
order o > 0 is defined by

Def) =5 [ ey i = SIS0,

Remark 1.3. From Definitions (1.1) and (1.2), we have

Pp+1)

Dot = ———
Ti—a+1) 'V

>-10<ax<l1



32 V. KALVANDI, N. EGHBALI AND J. MICHAEL RASSIAS

P(p+1)

and ItV = ————
F'p+a+1)

e > —1;a > 0.

Definition 1.4. The Mittag-Leffler function of one parameter is denoted
by Eo(2) and defined as,

1
Ey(2) = kz;) mzk, (2)

o0

where z,a € C and Re(a) > 0.
If we put o = 1, then the above equation becomes

[o.¢] Zk (o] Py
El(z):kngzk:ez. (3)

o k=0

Definition 1.5. The generalization of Ey(z) was studied by Wiman
(1905) [5], Agarwal [6] and Humbert and Agarwal [7] defined the func-

tion as,
[e.e]

Bopl®) = Y tran s @

k=o
where z,a, § € C, Re(a) > 0 and Re(3) > 0.

2. Mittag-Leffler-Hyers-Ulam Stability of Lin-
ear Differential Equations of Second Order

Now, the main result of this work is given in the following theorem.

Definition 2.1. We call that equation (1) has the Mittag-Leffler-Hyers-
Ulam stability if there exists a constant K > 0 with the following prop-
erty:

for every e > 0,y € C?[a,b], where —0co < a < b < 400, if

ly" + ay’ + By| < €E,,

where E, is a Mittag-Leffler function, then there exists some u € C?[a, b],
satisfying
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u” + au' + Pu =0,

such that |y(x) —u(x)| < KeEy(z9). We call K a Mittag-Leffler-Hyers-
Ulam stability constant for equation (1).

Theorem 2.2. If the characteristic equation N’ + aX + 3 = 0 has
two differential positive roots, then equation (1) has the Mittag-Leffler-
Hyers-Ulam stability.

Proof. Let ¢ > 0 and y € C?[a, ], such that
" + oy’ + By| < eEq.
We will show that there exists a constant K independent of € and y such
that |y — u| < KeE, for some u € C?[a,b] satisfying u” + au’ + fu =
0. Let A1 and Ao be the roots of the following characteristic equation
N 4+aXN+3=0.
Define g(z) = y/(z) — \y(x). Then ¢'(z) = y"(x) — A\1y/(x) thus
19'(x) = Aag(@)] = [y (2) — My (x) = Aa(y' (@) — Ary(2)))|

=y (2) + ay'(z) + By(z)| < eEq(a?).

So, we have
19 () = Aag(2)] < eEy(2).
Equivalently, g satisfies
—eby(29) < g () — Aag(x) < eBy(a?).

A2 (z—a)

Multiplying this formula by the function e~ , We obtain

—EEq(xq)e*)Q(x*a) < g/(x)ef)\z(zfa) _ )\2g($)€,)\2(x,a) <
eB,(x?)eN2(@=a),

For the case 0 < Ay < 1, with application of the Archimedes Principle,
there exists M > 0 such that M As > 1; so without loss of generality, we
may assume that Ao > 1, thus

N By (a)e 2 < (2)e 20— pgg(a)e )

< AoeBy(x9)e 2@, (5)

For any x € [a, b], integrating the inequality from z to b, we get
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b b
|/ g'(s)e™ 2570 _ N\yg(s)e 25D g </ XocE,(s7)e 2250 g

= 1 k —X2(s—a) kq
_5)\2kzzor(kq+1)/xe s"ds

o b
3t /4
P I'(kq +1

\ o 1 bkq-i-l e 1 :L,kq-‘rl
< _
52§)F(kq+1)k‘q+1 6;_()F(kq+1)kq—|—1

= eXp(bE,2(b9) — xEy2(29)).
Thus
lg(b)e 2= — g(a)e™ 2= < Mo (bE2(b7) — 2By p(2%)).
Multiplying this formula by the function e*2(*=) we obtain
—eXae2 D (bE, o (0) — 0B (%)) < g(0)eX ™) — g()
< XD (BE, 5(b7) — 2B, 2(x7)).
Let z(z) = g(b)e*?® =Y. Thus 2/(z) — Aez(z) = 0 and
9(2) — 2(2)] < A=) (BB o (B) — 2B, ().
Since g(z) = y'(x) — \y(z), therefore
—eXe 2D (DEo(b9) — 2By 2(2)) < ¢ (2) — My() — 2(2)
< eXeM D (BE, 5 (b) — 2B, 2(x7)).
By multiplying this formula by the function e~ M=) we obtain
—edgePM2ME=A (VB o(b9) — xF,o(29))

< y/(x)e—)\l(a:—a) _ Ale_Al(m_a)y(:E) _ e—)q(a:—a)z(x)
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< edgeM2 M@= (BE, 5 (V1) — 2B, 2(27)).
Without loss of generality, we may assume that A\; > 1, thus
—eM e AE (BB o(b9) — £ E,o(29))
<y ()e @) _ )\ e M@ma)y(p) — eMile—a) 5(g)
< eMgeP2 M@= (BB, o (b9) — £F, 9(29)).

For any x € [a, b], integrating the inequality from z to b, we get

b
| / Y (s)e M) — nem Ty (s) — e M7 5 (5) ds|
b
< / eM A2 M= (BB o (59) — sE,5(s7))ds =

E)\lkngqyg(bq) e’\Q*)‘l (e(b*a) _ e(xfa)) .

Ay — A1
b
5)\1)\2/ se(’\Q*)‘l)(S*a)qu(sq)ds

= EAI)\Qqu,Q(bq) )\2 — )\1 e>\2_>\1 (e(b_a‘) _ e(x—a)) _
oo 1 b
A _— mg+1 ()\2—)\1)(at—a,)d )
eM 2mZ:0F(mQ+2)/xS e -

Again, without loss of generality, we may assume that Ao > A, thus
e(r2=A)(@=a) 5 1 Therefore

b
[ W) ey () N s)ds] <

5>\1A2qu’2(bq)m€>\2_)\l (e(b_a) . e(x_a)) B

[e.o]

1 b
A1A —— matlg
3 s [
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< AN Ea(B) - N (e — ele)

ey, N
EA1 A mz_:o F(mql ) mq1+ 5 (bmq+2 — xmq+2) <
A ADE, ,2(bQ)meA2—M(e<b—“> — @) oA NbPE, 3(b7) +
€A1)\2x2Eq73(:cq).

Let

6)\1)\2qu7g(bq))\21)\1€)‘2_>\1 (e~ — @)y _ X \b2E, 5(b7) = K.
We have

|/b Y (s)e M=) _ om0y (g) — M7 5 (5)ds| <
’ K+ eM Aoz’ By 3(x7).

So

—(K+ 5/\1)‘2552Eq,3(xqb)) <
y(b)e*/\l(bfa) _ y(x)ef/h(:vfa) _/ Z(S)e—)q(s—a)ds

< K+ €>\1)\2x2Eq73(xq).
Multiplying this formula by the function e*(®~%) we obtain
—(K + 5)\1)\2$2Eq73(13q))€/\1(x_a) <
b

y(b)e*h(bfa)e)q(xfa) —y(z) — e)q(xa)/ Z(S)e_)‘l(s_a)dg

T

< (K + E)\l)\gszq,g(xq))eM(x—a)_

b
Henco wo may supposethat u(z) = y(#)e =)o) [ (e
such that -

|y(l‘) - u(x)| < (K + 5)\1)\2$2Eq,3(xQ))6>\1(x—a).
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Also u € C?[a,b] and u'(x) — \u(z) — z(x) = 0. Hence
2(x) = u/(z) — Mu(z).

Since 2/ (x) —A2z(z) = 0, we obtain u” (z) —A1u/(z) — A2 (v (2) — A\u(z)) =
0. Thus

u’(z) + au'(x) + Pu(z) = 0.
This completes the proof of our theorem. [

Theorem 2.3. Assume that the characteristic equation \> +aX+ 5 =0
has two different positive roots. Then for every e > 0, f € Cla,b] and
y € C%a,b], if |y + oy + By — f(x)| < eEy(2?), there exist some
u € C?%a,b] and K > 0 satisfying v’ + au’ + Bu = f(x) such that
ly(z) — u(z)| < KeEy(27) i.e. equation y" + o + By = f(z) has the
Mittag-Leffler-Hyers-Ulam stability.

Proof. Similar to the proof of Theorem (2.2), let A\; and Ay be the roots
of characteristic equation A\? + a\ + 3 = 0. Without lose of generality,
we may assume that A\; > 1 and Ay > 1. Define g(z) = ¢/(x) — \y(x),
we obtain ¢'(x) = y"(z) — M\y/(z); thus

19’ (z) = Aeg(z) — f(2)| = |y"(z) — My (2) — Ao (¥ (2) — My(2)) — f(2)] =
y"(z) + ay'(z) + By(x) — f(z)| < eEy(29).

So
—eEq(29) < ¢'(x) — Aog(z) — f(z) < eBy(x?).

A2

Multiplying this formula by the function e~*2*  we obtain

—eE (29)e 2% L ¢/ (2)e 2% — Agg(z)e 227 —e ™27 f(z) < e B, (x)e 2%,

For any z € [a, b], integrating the inequality from = to b, we get

b b
g (8)e™2% — Aag(s)e 2% — 7225 f(5)ds| < eE,(sV)e 2% ds
q
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I
M

1 b Aos k
_— e "2%s%(s
‘ I'(kqg+1) /x

1 b
- aq
F(kq+1)/x 5 a8

1 pka+1 00 1 ka+1
<e —€
Z I'(kg+1)kg+1 kZOF(k:q—i—l)k:q+1

/AN
™
Mg 7

[e=]

& T

= E(qug(bq) — xEq2(27)).
Thus

lg(b)e2b — g(z)e 2w — / " f(5)ds| < e(bEyab) — Byalat)).
Multiplying this formula byxthe function e*??, we obtain
—ee (bEy(b9) —wEq2(29)) < g(0)e ") —g(z) —e*>* /bz e f(s)ds
< e’ (bE,2(b7) — 2B, 2(z9)).
Let z(z) = g(b)e?2(—b) — ghew /b e 2% f(s)ds. So we have

Z(x) = Moz(z) - f(2) = 0
and
l9(z) — 2(x)] < €e?2®(bE,2(b9) — 2B, o(x7)).
Since g(z) = ¢/ (x) — My(z), therefore

—ee™ T (b (b7) — 2Eq2(2)) < y'(2) — Miy(z) — 2(2) <
e’ (DB, 2(b7) — 2By 2(z9)).

By an argument similar to the above one, we can show that there exists

b
u(z) = y(b)eM == — e’\lx/ z(s)e™M3ds
such that
ly(x) —u(z)| < (K + 61‘2Eq73(l‘q))6’\1$,

where u € C?[a,b] and u”(z) + au'(z) + Bu(z) — f(z) = 0. Thus, the
proof is complete. [
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3. Mittag-Leffler-Hyers-Ulam Stability of Lane-
Emden Equation

In this section, we consider the fractional Lane-Emden equations of the
following form

DD + Dyu(t) + f(tu) = 9(t), (0 < t < 1,0 >0,0 < @, B 1), (6)
with the boundary condition

u(O) = K, u(l) =,

where f(t,u) is a continuous real valued function and g(t) € C[0, 1].

Lemma 3.1. A unique solution of the linear two-point bounded value
problem for Lane-Emden equation (6) is given by

= e T(T_S)ﬁ_l s s—guT T) —
ut) = [ S| R —ateds - fumae)

T

N ey G a .
! [\/O P(Oé) </O P(ﬂ) g(s)ds - ;U(T))dT] + (I/ — M)t + i,

where g € C10,1].

Proof. (see [7]). O

Theorem 3.2. Let f :[0,1] x X — X be a jointly continuous function
satisfying the condition

|f(t,u) — f(t,v)| < Llu — v, vt € [0,1],u,v € X.

Moreover, assume that supyeo1)|g(t)| = . Then the boundary value
problem (6) has a unique solution provided that the following condition
holds:

2L 2al (@)

= s s+ D T TR

<1, a = 0.

Proof. (see [7]). O

Theorem 3.3. Let f :]0,1] x X — X be a jointly continuous function
and maps bounded subsets of [0,1] x X into relatively compact subsets
of X. Furthermore, assume that
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[f(tu) = f(E0)] < Llu—wof,  VEe[0,1],u,v € X,
(8 w)] < o(t), o € (L'[0,1],R¥),

and supyepo,lg(t)| =~ If

L al’(«)
Tlatf+1) ()

<1,

then the boundary value problem (6) has at least one solution on [0, 1].

Proof. (see [7]). O

Now we consider the Mittag-Lefller-Hyers-Ulam stability of fractional
Lane-Emden equation (6).

Definition 3.4. The equation (6) has the Mittag-Lefller-Hyers-Ulam
stability if there exists a positive constant K with the following property

].‘or every € > 0 if
|DP(D* + %)U(t) + [t u) —g()] < eEq(t)
then there exists some v € X satisfying
DD + Dyot) + (t,v) = g(1)
with v(0) = u,v(1) = v such that

lu(t) —v(t)] < KeEy(t?).

Theorem 3.5. Let the assumptions of Theorem 3.2 hold. If
a 2y + M+ Lr)  2arI'(a)
DP(DY + —)u(t)| =
supl DD+ v 2 53550 T TRa)

) 1 2+ M
which supyepo | f(t,w)| = M and v > I—E(I‘(o(z—i—5+)1) + 2u + v),

then the equation (6) has the Mittag-Lefller-Hyers-Ulam stability in X .

+ V[ + 2|y

Proof. For every £ > 0 we let



MITTAG-LEFFLER-HYERS-ULAM STABILITY OF ... 41

a
(DD + Z)ult) + f(tu) = g(8)] < eBy(t).
Under the assumptions of Theorem (3.2), equation (6) has a unique

solution in X. By using the method of proof of Theorem (3.2) [7], since

2ly+ M + Lr]  2arT(«@)
Fa+B+1) I'(2a)

u(t)] < + vl + 2,

we have
suplu| < sup| D?(D* + Dyu(t)].

Thus we have

suplu(t) = v(t)] < suplD?(D* + D)(u(t) = o(t))] <

sup| D (D* + %)U(t) = DD + 2)u(t) — f(t,u) + f(t,v) + g(t) —
g(O)| + suplf(t,u) — f(t,0)| < eEy(t?) + Lsuplu(t) — v(t)].

Hence we obtain

(D*
?

eE,y(t7)
1-L

Thus the equation (6) has the Mittag-Lefller-Hyers-Ulam stability. O

suplu(t) —v(t)] < = KeE,(t?).
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