Toroidal and Projective Cyclic Graphs

M. Naghshinehfard*
Jahrom Branch, Islamic Azad University
\section*{F. Parvaneh}
Kermanshah Branch, Islamic Azad University

Abstract

All finite groups with toroidal or projective cyclic graphs are classified. Indeed, it is shown that the only finite groups with projective cyclic graphs are $S_{3} \times \mathbb{Z}_{2}, D_{14}, Q D_{16}$ and $\left\langle x, y: x^{7}=y^{3}=1, x^{y}=x^{2}\right\rangle$ which all have toroidal cyclic graph too. Also, D_{16} is characterized as the only finite group whose cyclic graph is toroidal but not projective.

AMS Subject Classification: 05C25; 05C10
Keywords and Phrases: Cyclic graph, toroidal, projective

1. Introduction

The cyclicizer of a group G, denoted by $C y c(G)$, is defined as the set of those elements of G which make a cyclic subgroup with any other element of G. In other words,

$$
C y c(G)=x \in G:\langle x, y\rangle \text { is cyclic for all } y \in G
$$

It is evident that $C y c(G)=\bigcap_{x \in G} C y c_{G}(x)$, where

$$
C y c_{G}(x)=\{y \in G:\langle x, y\rangle \text { is cyclic }\},
$$

[^0]is the cyclicizer of the element x in G. Element cyclicizers and the cyclicizers of groups first defined and studied by Patrick and Wepsic in [19] under the condition that all element cyclicizers are subgroups. We refer the interested reader to $[3,4,5,11,18,19]$ for further progress and details.
The cyclic graph of a group G is defined as a graph whose vertex set is $G \backslash C y c(G)$ in which two distinct vertices x and y are adjacent if $\langle x, y\rangle$ is cyclic. The complement of a cyclic graph is already studied by Abdollahi and Hassanabadi [1, 2]. While the complement of a cyclic graph is always connected with small diameter, the cyclic graph of a group has fewer edges and better represent the relationship among elements of the group. Such a relationship will be more clear when the graph can be drawn on a surface (say a plane, torus or projective plane) in which no two edges cross. Note that embedding groups on surfaces via relation among elements dates back to 1878 where Cayley [10] defined the Cayley graphs and 1896 where Maschke [16] classified all planar finite Cayley graphs. In [17] we have initiated studying the cyclic graph of groups by determination of those finite groups with a planar cyclic graph. Remind that a graph is planar if it has an embedding on the plane in such a way that distinct edges intersect only at the end vertices. The aim of this paper is to consider two more popular surfaces, namely torus and projective plane, and to classify all finite groups with a toroidal or projective cyclic graph, where the terms toroidal and projective are defined as in the following. Although there are infinitely many planar cyclic graphs (see [17]), our results show that there are just a few finite groups with toroidal or projective cyclic graphs.
The orientable (resp. non-orientable) surface of genus g (resp. crosscap number g), denoted by N_{g} (resp. \bar{N}_{g}), is the connected sum of g torus (resp. projective planes). A graph has genus or orientable genus g if it can be embedded in N_{g} and that g is the least number with this property. Similarly, a graph has crosscap number or non-orientable genus g if it can be embedded in \bar{N}_{g} and that g is minimum with respect to this property. The genus and crosscap numbers of a graph Γ are denoted by $\gamma(\Gamma)$ and $\bar{\gamma}(\Gamma)$, respectively. A toroidal graph is a graph of genus 1 and a projective graph is a graph of crosscap number 1.

Throughout this paper we use the following notations without further reference:

- $\bar{\Gamma}$: The complement of Γ obtained by complementing the edge-set of Γ;
- $\Gamma_{1} \cdot \Gamma_{2}$: The dot product of two vertex transitive graphs Γ_{1} and Γ_{2} obtained by unifying a vertex of Γ_{1} with a vertex of Γ_{2}, where by a vertex transitive graph we mean a graph whose automorphism group acts transitively on its vertex set;
- $\Gamma_{1} \cup \Gamma_{2}$: The union of two disjoint graphs Γ_{1} and Γ_{2} obtained from the juxtaposition of Γ_{1} and Γ_{2};
- $n \Gamma$: The union of n disjoint copies of the graph Γ;
- $\Gamma_{1}+\Gamma_{2}$: The sum of two disjoint graphs Γ_{1} and Γ_{2} obtained from connecting every vertex of Γ_{1} to every vertex of Γ_{2}.

Invoking the above notations, a friendship graph is defined as a sum $K_{1}+n K_{2}$ for some non-negative integer n.

Also, if G is a finite group, then $\omega(G)=\{|g|: g \in G\}$ illustrates the spectrum of G. An arbitrary Sylow p-subgroup of G will be denoted by $S_{p}(G)$ for every prime divisor p of the order of G. All groups in this paper are assume to be finite.

2. Preliminary Results

We begin with recalling two famous results on the genus and crosscap number of complete graphs, which play an important role in the proof of our main results.

Theorem 2.1. ([20]) For any positive integer n,

$$
\gamma\left(K_{n}\right)= \begin{cases}0, & n=1,2,3,4 \\ \left\lceil\frac{(n-3)(n-4)}{12}\right\rceil, & n \geqslant 5\end{cases}
$$

Theorem 2.2. ([9, 20]) For any positive integer n,

$$
\bar{\gamma}\left(K_{n}\right)= \begin{cases}0, & n=1,2,3,4 \\ 3, & n=7 \\ \left\lceil\frac{(n-3)(n-4)}{6}\right\rceil, & 7 \neq n \geqslant 5\end{cases}
$$

Lemma 2.3. The following results hold.
(1) A toroidal graph has no subgraph isomorphic to $K_{8}, 2 K_{5}, K_{5} \cdot K_{5}$ or $3 K_{3}+2 \bar{K}_{2}$.
(2) A projective graph has no subgraph isomorphic to $K_{7}, 2 K_{5}, K_{5} \cdot K_{5}$ or $2 K_{3}+2 \bar{K}_{2}$.

Proof. (1) It follows from Theorem 2.1 and the forbidden subgraphs $G_{1} \cong 2 K_{5}, G_{2} \cong K_{5} \cdot K_{5}$ and $G_{4} \cong 3 K_{2}+2 \bar{K}_{2}$ as stated in [12].
(2) It follows from Theorem 2.2 and the forbidden subgraphs $A_{1} \cong$ $K_{5} \cdot K_{5}, A_{5}=2 K_{5}$ and $B_{3}=2 K_{2}+2 \bar{K}_{2}$ as stated in [13].

It is known that the cyclicizer of a finite group is always a cyclic central subgroup of G (see [19]). Hence, $C y c(G)=\langle z\rangle$ for some element z. In what follows, \bar{G} stands for the factor group $G / C y c(G)$ and that \bar{g} denotes the element $g C y c(G)$ of \bar{G} for any $g \in G$. The following two simple results are used frequently in our proofs.

Lemma 2.4. The Sylow p-subgroups of G are either cyclic or generalized quaternion 2-group for each prime divisor p of $|z|$.

Proof. Let p be a prime divisor of $|z|$ and P be a Sylow p-subgroup of G. If $z_{p} \in P \cap\langle z\rangle$ is an element of order p and $x \in P$, then $\left\langle x, z_{p}\right\rangle$ is cyclic, which implies that $z_{p} \in\langle x\rangle$, that is, P has only one subgroup of order p. Thus, by $[21,5.3 .6] \mathrm{djsr}, P$ is either a cyclic group or a generalized quaternion 2 -group.

Lemma 2.5. If $\Gamma_{c}(G)$ has no subgraphs isomorphic to K_{8}, then $|z|(|\bar{x}|-$ $1) \leqslant 7$ for all $x \in G \backslash\langle z\rangle$. As a result, $|z| \leqslant 7$.

Proof. Since, for $x \in G$, the set $\langle x, z\rangle \backslash\langle z\rangle$ induces a complete subgraph of $\Gamma_{c}(G)$, it follows that $|\langle x, x\rangle \backslash\langle z\rangle| \leqslant 7$. Hence, $|z|(|\bar{x}|-1) \leqslant 7$.

3. Main Theorems

In order to classify finite groups with a toroidal or a projective cyclic graph, we first restrict ourself to those groups whose cyclic graphs have no subgraphs isomorphic to $K_{8}, 2 K_{5}, K_{5} \cdot K_{5}$ and $3 K_{3}+2 \bar{K}_{2}$, which are forbidden subgraphs for both toroidal and projective graphs by Theorem 2.3.

Lemma 3.1. If $\Gamma_{c}(G)$ is a non-planar graph with no subgraph isomorphic to $K_{8}, 2 K_{5}, K_{5} \cdot K_{5}$ or $3 K_{3}+2 \bar{K}_{2}$, then G is isomorphic to one of the groups $S_{3} \times \mathbb{Z}_{2}, D_{14}, D_{16}, Q_{16}, Q D_{16}$ or $\left\langle x, y: x^{7}=y^{3}=1, x^{y}=x^{2}\right\rangle$.

Proof. We proceed in some steps according to the order of z. Note that, by Lemma $2.5,|z| \leqslant 7$.

Step 1. $|z| \geqslant 4$. By Lemma 2.5, $|\bar{x}| \leqslant 2$ for all $x \in G \backslash\langle z\rangle$. Thus, \bar{G} is an elementary abelian 2-group. If $|z|=5$ or 7 , then $G \cong \mathbb{Z}_{|z|} \times \mathbb{Z}_{2}^{n}$ for some $n \geqslant 2$. It is easy to see that $\Gamma_{c}(G)$ is a union of some complete graphs with vertex sets $x\langle z\rangle$, where x ranges over all involutions of G. But then $\Gamma_{c}(G)$ has a subgraph isomorphic to $2 K_{|z|}$, which is a contradiction
Next assume that $|z|=6$. Then $G \cong\langle x\rangle \times P$, where P is a Sylow 2subgroup of G and $|x|=3$. Since P is non-cyclic, from the Lemma 2.4, it follows that $P \cong Q_{2^{n}}$ is a generalized quaternion 2-group for some positive integer n. Then $\bar{G} \cong D_{2^{n-1}}$, which implies that $n=3$ and $P \cong$ Q_{8}. A simple verification shows that $\Gamma_{c}(G)$ is a union of some complete graphs with vertex sets $\langle x\rangle y^{ \pm 1}$, where y ranges over all elements of $P \backslash P^{\prime}$. Indeed, $\Gamma_{c}(G) \cong 3 K_{6}$, which is a contradiction.

Finally assume that $|z|=4$. Then G is a 2 -group and hence $G \cong Q_{2^{n}}$ for some $n \geqslant 3$ by Lemma 2.4. Now, if $x \in G \backslash\langle z\rangle$ is an element of order 4, then $\langle x, z\rangle$ is cyclic from which it follows that $\langle x\rangle=\langle z\rangle$, a contradiction.

Step 2. $|z|=3$. By Lemma 2.5, $|\bar{x}| \leqslant 3$ for all $x \in G$, that is, $\omega(\bar{G}) \subseteq$ $\{1,2,3\}$. Since $S_{3}(G)$ is cyclic by Lemma $2.4, G$ is not a 3 -group. If \bar{G} is a 2-group, then $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2}^{n}$ for some $n \geqslant 2$ so that $\Gamma_{c}(G)$ is a union of some complete graphs with vertex sets $x\langle z\rangle$, where x ranges over all involutions of G. Hence, $\Gamma_{c}(G)$ is planar, which is a contradiction. Thus, we assume that \bar{G} is neither a 2 -group nor a 3 -group. By [8], we have to
consider two possibilities.
(i) $\bar{G}=\left(\left\langle\bar{x}_{1}\right\rangle \times \cdots \times\left\langle\bar{x}_{n}\right\rangle\right) \rtimes\langle\bar{y}\rangle$, where $\left|\bar{x}_{i}\right|=3$ for $i=1, \ldots, n$, $|\bar{y}|=2$ and $\bar{x}_{i}^{\bar{y}}=\bar{x}_{i}^{-1}$. Since $S_{3}(G)$ is cyclic, we must have $n=1$ and consequently $G=\left\langle x_{1}\right\rangle \rtimes\langle y\rangle$ where $\left|x_{1}\right|=9$. It is easy to see that $x_{1}^{y}=x_{1}^{-1}$ so that $G \cong D_{18}$, which is impossible for $C y c\left(D_{18}\right)=1$.
(ii) $\bar{G}=\left(\bar{V}_{1} \times \cdots \times \bar{V}_{n}\right) \rtimes\langle\bar{y}\rangle$, where $\bar{V}_{i}=\left\langle\bar{x}_{i}\right\rangle \times\left\langle\bar{x}_{i}^{\prime}\right\rangle$ is a Klein 4-group for $i=1, \ldots, n,|\bar{y}|=3$ and \bar{y} acts on $\bar{V}_{i} \backslash\{\overline{1}\}$ as the cyclic permutation $\left(\bar{x}_{i}, \bar{x}_{i}^{\prime}, \bar{x}_{i} \bar{x}_{i}^{\prime}\right)$ for all $i=1, \ldots, n$. Then $G=\left(V_{1} \times \cdots \times V_{n}\right) \rtimes\langle y\rangle$ such that $V_{i}=\left\langle x_{i}\right\rangle \times\left\langle x_{i}^{\prime}\right\rangle$ is a Klein 4-group for $i=1, \ldots, n,|y|=9$ and y acts on $V_{i} \backslash\{1\}$ as the cyclic permutation $\left(x_{i}, x_{i}^{\prime}, x_{i} x_{i}^{\prime}\right)$ for all $i=1, \ldots, n$. A simple verification shows that $\Gamma_{c}(G)$ is a union of complete subgraphs with vertex sets $\langle x, z\rangle \backslash\langle z\rangle$ and $\langle x y\rangle \backslash\langle x\rangle$ of order 3 and 6 , respectively, where x ranges over all nontrivial elements of $V_{1} \times \cdots \times V_{n}$. But then $\Gamma_{c}(G)$ has a subgraph isomorphic to $2 K_{6}$, which is a contradiction.

Step 3. $|z|=2$. By Lemma 2.5, $|\bar{x}| \leqslant 4$ for each $x \in G$ so that $\omega(\bar{G}) \subseteq$ $\{1,2,3,4\}$. Hence, $\omega(G) \subseteq\{1,2,3,4,6,8\}$. One observes that for every $x \in G$ with $|x|=3$ or $6,\langle x, z\rangle \backslash\langle z\rangle$ is a connected component of $\Gamma_{c}(G)$ isomorphic to K_{4}. First assume that $8 \notin \omega(G)$. Then, by Lemma 2.4, $4 \notin \omega(\bar{G})$. Let $X=\{x \in G:|x| \in\{3,6\}\}$. Since $\langle z\rangle$ is the only subgroup of order two of any Sylow 2-subgroup of G, it follows that $|x|=4$ for all $x \in G \backslash\langle z\rangle \cup X$. Thus, $\Gamma_{c}(G)$ is a union of edges $\langle x\rangle \backslash\langle z\rangle$ with $|x|=4$ and complete subgraphs with four vertices $\langle x, z\rangle \backslash\langle z\rangle$ for $x \in X$, hence $\Gamma_{c}(G)$ is planar, which is a contradiction. Therefore, $8 \in \omega(G)$. Then $|\langle x\rangle \cap\langle y\rangle| \geqslant 4$ for all $x, y \in G$ with $|x|=|y|=8$, for otherwise $\langle x\rangle \cap\langle y\rangle \subseteq\langle z\rangle$ and consequently the subgraph induced by $\langle x\rangle \cup\langle y\rangle \backslash\langle z\rangle$ is isomorphic to $2 K_{6}$, which is impossible. Now, we consider the following two cases:
(i) G has a unique cyclic subgroup $\langle x\rangle$ of order 8. Clearly, $\langle x\rangle \unlhd G$ and subsequently $G / C_{G}(x)$ is isomorphic to a subgroup of $\operatorname{Aut}(\langle x\rangle) \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. It is easy to see that $C_{G}(x)=\langle x\rangle$. Thus $G /\langle x\rangle \cong \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times$ \mathbb{Z}_{2}. Therefore, we have $|G|=16$ or 32 . A simple computation with GAP shows that the only group with these properties is Q_{16} whose cyclic graph is isomorphic to $K_{6} \cup 4 K_{2}$.
(ii) There are distinct cyclic subgroups $\langle x\rangle$ and $\langle y\rangle$ of order 8. Then $|\langle x\rangle \cap\langle y\rangle|=4$. Now, for every element $g \in\langle x\rangle \cap\langle y\rangle \backslash\langle z\rangle$, the subgraph induced by $\left\{x^{ \pm 1}, x^{ \pm 3}, y^{ \pm 1}, y^{ \pm 3}, g\right\}$ is isomorphic to $K_{5} \cdot K_{5}$, which is impossible.

Step 4. $|z|=1$. By Lemma 2.5, $|x| \leqslant 8$ for all $x \in G$, that is, $\omega(G) \subseteq$ $\{1,2,3,4,5,6,7,8\}$. We proceed in some cases:
(i) $7 \in \omega(G)$. Let P be the Sylow 7 -subgroup of G. Then $P \cong \mathbb{Z}_{7}$ and $P \unlhd G$ for otherwise $P \neq P^{g}$ for some $g \in G$ and hence the subgraph induced by $P \cup P^{g} \backslash\{1\}$ is isomorphic to $2 K_{6}$, which is a contradiction. Clearly, $C_{G}(P)=P$. Thus $G / P=N_{G}(P) / C_{G}(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P) \cong \mathbb{Z}_{6}$. If $G / P \cong \mathbb{Z}_{6}$, then G has an element g of order 6 and consequently the subgraph induced by $P \cup\langle g\rangle \backslash\{1\}$ is isomorphic to $K_{5} \cup K_{6}$, which is impossible. Thus $|G / P|=2$ or 3 , from which it follows that $G \cong D_{14}$ or $\left\langle x, y: x^{7}=y^{3}=1, x^{y}=x^{2}\right\rangle$. One can easily see that, $\Gamma_{c}(G) \cong K_{6} \cup 7 K_{1}$ in the former case and $\Gamma_{c}(G) \cong K_{6} \cup 7 K_{2}$ in the latter case.
(ii) $7 \notin \omega(G)$ and $8 \in \omega(G)$. Let $x, y \in G$ with $|x|=|y|=8$. If $\langle x\rangle \cap\langle y\rangle=1$, then the subgraph induced by $\langle x\rangle \cup\langle y\rangle \backslash\{1\}$ is isomorphic to $2 K_{7}$, which is impossible. Also, if $\langle x\rangle \cap\langle y\rangle \neq 1$ and $|\langle x\rangle \cap\langle y\rangle| \leqslant 4$, then the subgraph induced by $\left\{x^{ \pm 1}, x^{ \pm 3}, y^{ \pm 1}, y^{ \pm 3}, g\right\}$ where $g \in\langle x\rangle \cap\langle y\rangle \backslash\{1\}$ is isomorphic to $K_{5} \cdot K_{5}$, which is a contradiction. Therefore, $\langle x\rangle=$ $\langle y\rangle$, which implies that $\langle x\rangle$ is the unique cyclic subgroup of G of order 8. Clearly, $\langle x\rangle \unlhd G$ and $C_{G}(x)=\langle x\rangle$. Thus $G /\langle x\rangle=N_{G}(\langle x\rangle) / C_{G}(x)$ is isomorphic to a subgroup of $\operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and consequently $|G|=$ 16 or 32 . Now, a simple computation with GAP shows that the only groups with these properties are D_{16} and $Q D_{16}$. It is easy to see that, $\Gamma_{c}(G) \cong K_{7} \cup 8 K_{1}$ in the former case and $\Gamma_{c}(G) \cong\left(\left(K_{6} \cup 2 K_{2}\right)+K_{1}\right) \cup 4 K_{1}$ in the latter case.
(iii) $7,8 \notin \omega(G)$ and $6 \in \omega(G)$. Let $x, y \in G$ with $|x|=|y|=6$. If $\langle x\rangle \cap\langle y\rangle=1$, then $\Gamma_{c}(G)$ contains a subgraph isomorphic to $2 K_{5}$, which is a contradiction. Also, if $|\langle x\rangle \cap\langle y\rangle|=2$, then $\Gamma_{c}(G)$ contains a subgraph isomorphic to $K_{5} \cdot K_{5}$, which is another contradiction. Hence, either $|\langle x\rangle \cap\langle y\rangle|=3$ or $\langle x\rangle=\langle y\rangle$.

If G has a unique cyclic subgroup $\langle x\rangle$ of order 6 , then $\langle x\rangle \unlhd G$. Also, $C_{G}(x)=\langle x\rangle$, which implies that $G /\langle x\rangle=N_{G}(\langle x\rangle) / C_{G}(x)$ is isomorphic to a subgroup of $A u t(\langle x\rangle) \cong \mathbb{Z}_{2}$. As G is non-cyclic we must have $|G|=$ 12. Thus $G \cong S_{3} \times \mathbb{Z}_{2}$ or $\left\langle x, y: x^{3}=y^{4}=1, x^{y}=x^{-1}\right\rangle$. Since the latter group has a planar cyclic graph, we have $G \cong S_{3} \times \mathbb{Z}_{2}$ whose cyclic graph is isomorphic to $K_{5} \cup 6 K_{1}$.
Now, assume that G has $n \geqslant 2$ distinct cyclic subgroups $\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{n}\right\rangle$ of order 6. Then $\left\langle x_{1}\right\rangle \cap \cdots \cap\left\langle x_{n}\right\rangle=\langle y\rangle$ is a cyclic group of order 3. Clearly, the subgraph induced by $\left\langle x_{1}\right\rangle \cup \cdots \cup\left\langle x_{n}\right\rangle$ is isomorphic to $n K_{3}+2 \bar{K}_{2}$. Hence, by hypothesis, we must have $n=2$. Put $N=$ $N_{G}\left(\left\langle x_{1}\right\rangle\right)$. Since the only possible conjugates of $\left\langle x_{1}\right\rangle$ are $\left\langle x_{1}\right\rangle$ and $\left\langle x_{2}\right\rangle$, we have $[G: N] \leqslant 2$. On the other hand, $C_{G}\left(x_{1}\right)=\left\langle x_{1}\right\rangle$, which implies that $N /\left\langle x_{1}\right\rangle=N_{G}\left(\left\langle x_{1}\right\rangle\right) / C_{G}\left(x_{1}\right)$ is isomorphic to a subgroup of Aut $\left(\left\langle x_{1}\right\rangle\right) \cong \mathbb{Z}_{2}$. Thus $|G|$ divides 24 and a simple computation with GAP shows that there is no group with these properties.
(iv) $6,7,8 \notin \omega(G)$. Then $\omega(G) \subseteq\{1,2,3,4,5\}$ and a simple verification shows that $\Gamma_{c}(G)$ is a union of some complete graphs with at most 4 vertices and some friendship graphs. Thus, $\Gamma_{c}(G)$ is planar, which contradicts the hypothesis. The proof is complete.

Utilizing the above lemma we are now able to state our main theorems.
Theorem 3.2. Let G be a finite group with a toroidal cyclic graph. Then G is isomorphic to one of the groups $S_{3} \times \mathbb{Z}_{2}, D_{14}, D_{16}, Q_{16}, Q D_{16}$ or $\left\langle x, y: x^{7}=y^{3}=1, x^{y}=x^{2}\right\rangle$.

Theorem 3.3. Let G be a finite group with a projective cyclic graph. Then G is isomorphic to one of the groups $S_{3} \times \mathbb{Z}_{2}, D_{14}, Q_{16}$ or $\left\langle x, y: x^{7}=y^{3}=1, x^{y}=x^{2}\right\rangle$.

$\Gamma_{c}\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$

References

[1] A. Abdollahi and A. M. Hassanabadi, Noncyclic graph of a group, Comm. Algebra, 35 (7) (2007), 2057-2081.
[2] A. Abdollahi and A. M. Hassanabadi, Non-cyclic graph associated with a group, J. ALgebra Appl., 8 (2) (2009), 243-257.
[3] S. J. Baishya, A note on finite C-tidy groups, Int. J. Group Theory, 2 (3) (2013), 9-17.
[4] S. J. Baishya, On finite C-tidy groups, Int. J. Group Theory, 2 (4) (2013), 39-41.
[5] S. J. Baishya, Some new results on tidy groups, Algebras Groups Geom., 31 (3) (2014), 251-262.
[6] W. Bannuscher and G. Tiedt, On a theorem of Deaconescu, Rostock. Math. Kolloq., 47 (1994), 23-26.
[7] J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc., 68 (1962), 656-568.
[8] E. D. Bolker, Groups whose elements are of order two or three, Amer. Math. Monthly, 79 (9) (1972), 1007-1010.
[9] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B., 24 (1978), 24-33.
[10] A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical representation, Amer. J. Math., 1 (2) (1878), 174-176.
[11] A. Erfanian and M. Farrokhi, On some classes of tidy groups, Algebras Groups Geom., 25 (1) (2008), 109-114.
[12] A. Gagarina, W. Myrvold, and J. Chambers, The obstructions for toroidal graphs with no $K_{3,3}$'s, Discrete Math., 309 (2009), 3625-3631.
[13] H. H. Glover, J. P. Huneke, and C. S. Wang, 103 Graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B., 27 (1979), 332-370.
[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
[15] X. L. Ma, H. Q. Wei, and Zhong, The Cyclic graph of a finite group. Algebar, Article ID 107265, 2013.
[16] H. Maschke, The representation of finite groups, Amer. J. Math., 18 (1896), 156-194.
[17] M. Naghshineh, On the planarity of cyclic graphs, Rocky Mountain Journal of Mathematics, to appear.
[18] K. O'Bryant, D. Patrick, L. Smithline, and E. Wepsic, Some facts about cycels and tidy groups, Rose-Hulman Institute of Technology, Indiana, USA, Technical report, (1992), MS-TR, 92-04.
[19] D. Patrick and E. Wepsic, cyclicizer s, centralizers, and normalizers, RoseHulman Institute of Technology, Indiana, USA, Technical report, (1991), MS-TR, 91-05.
[20] G. Ringel, Map Color Theorem, Springer-Verlag, New York, Heidelberg, 1974.
[21] D. J. S. Robinson, A Course in the Theory of Groups, Second Edition, Springer, New York, Berlin, Heidelberg, 1996.

Mohammad Naghshinehfard

Assistant Professor of Mathematics
Department of Mathematics
Jahrom Branch, Islamic Azad University
P.B. Box 74135/355

Jahrom, Iran
E-mail: naghshine@jia.ac.ir

Foroud Parvaneh

Assistant Professor of Mathematics
Department of Mathematics
Kermanshah Branch, Islamic Azad University
Kermanshah, Iran
E-mail: foroudparvaneh@gmail.com

[^0]: Received: May 2017; Accepted: December 2017

 * Corresponding author

