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Abstract. All finite groups with toroidal or projective cyclic graphs
are classified. Indeed, it is shown that the only finite groups with project-
ive cyclic graphs are S3×Z2, D14, QD16 and x, y : x7 = y3 = 1, xy = x2
which all have toroidal cyclic graph too. Also, D16 is characterized as
the only finite group whose cyclic graph is toroidal but not projective.
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1. Introduction

The cyclicizer of a group G, denoted by Cyc(G), is defined as the set
of those elements of G which make a cyclic subgroup with any other
element of G. In other words,

Cyc(G) = x ∈ G : x, y is cyclic for all y ∈ G.

It is evident that Cyc(G) =

x∈GCycG(x), where

CycG(x) = {y ∈ G : x, y is cyclic},
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is the cyclicizer of the element x in G. Element cyclicizers and the
cyclicizers of groups first defined and studied by Patrick and Wepsic in
[19] under the condition that all element cyclicizers are subgroups. We
refer the interested reader to [3, 4, 5, 11, 18, 19] for further progress and
details.
The cyclic graph of a group G is defined as a graph whose vertex set is
G \ Cyc(G) in which two distinct vertices x and y are adjacent if x, y
is cyclic. The complement of a cyclic graph is already studied by Ab-
dollahi and Hassanabadi [1, 2]. While the complement of a cyclic graph
is always connected with small diameter, the cyclic graph of a group
has fewer edges and better represent the relationship among elements of
the group. Such a relationship will be more clear when the graph can
be drawn on a surface (say a plane, torus or projective plane) in which
no two edges cross. Note that embedding groups on surfaces via relation
among elements dates back to 1878 where Cayley [10] defined the Cayley
graphs and 1896 where Maschke [16] classified all planar finite Cayley
graphs. In [17] we have initiated studying the cyclic graph of groups by
determination of those finite groups with a planar cyclic graph. Remind
that a graph is planar if it has an embedding on the plane in such a way
that distinct edges intersect only at the end vertices. The aim of this
paper is to consider two more popular surfaces, namely torus and pro-
jective plane, and to classify all finite groups with a toroidal or projective
cyclic graph, where the terms toroidal and projective are defined as in
the following. Although there are infinitely many planar cyclic graphs
(see [17]), our results show that there are just a few finite groups with
toroidal or projective cyclic graphs.
The orientable (resp. non-orientable) surface of genus g (resp. crosscap
number g), denoted by Ng (resp. Ng), is the connected sum of g torus
(resp. projective planes). A graph has genus or orientable genus g if
it can be embedded in Ng and that g is the least number with this
property. Similarly, a graph has crosscap number or non-orientable genus
g if it can be embedded in Ng and that g is minimum with respect to
this property. The genus and crosscap numbers of a graph Γ are denoted
by γ(Γ) and γ(Γ), respectively. A toroidal graph is a graph of genus 1
and a projective graph is a graph of crosscap number 1.



TOROIDAL AND PROJECTIVE CYCLIC GRAPHS 15

Throughout this paper we use the following notations without further
reference:

• Γ̄: The complement of Γ obtained by complementing the edge-set of Γ;

• Γ1 · Γ2: The dot product of two vertex transitive graphs Γ1 and Γ2

obtained by unifying a vertex of Γ1 with a vertex of Γ2, where by a
vertex transitive graph we mean a graph whose automorphism group
acts transitively on its vertex set;

• Γ1∪Γ2: The union of two disjoint graphs Γ1 and Γ2 obtained from the
juxtaposition of Γ1 and Γ2;

• nΓ: The union of n disjoint copies of the graph Γ;

• Γ1 + Γ2: The sum of two disjoint graphs Γ1 and Γ2 obtained from
connecting every vertex of Γ1 to every vertex of Γ2.

Invoking the above notations, a friendship graph is defined as a sum
K1 + nK2 for some non-negative integer n.

Also, if G is a finite group, then ω(G) = {|g| : g ∈ G} illustrates the
spectrum of G. An arbitrary Sylow p-subgroup of G will be denoted by
Sp(G) for every prime divisor p of the order of G. All groups in this
paper are assume to be finite.

2. Preliminary Results

We begin with recalling two famous results on the genus and crosscap
number of complete graphs, which play an important role in the proof
of our main results.

Theorem 2.1. ([20]) For any positive integer n,

γ(Kn) =


0, n = 1, 2, 3, 4,

(n−3)(n−4)
12


, n  5.
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Theorem 2.2. ([9, 20]) For any positive integer n,

γ(Kn) =






0, n = 1, 2, 3, 4,
3, n = 7,

(n−3)(n−4)
6


, 7 = n  5.

Lemma 2.3. The following results hold.

(1) A toroidal graph has no subgraph isomorphic to K8, 2K5, K5 ·K5

or 3K3 + 2K2.

(2) A projective graph has no subgraph isomorphic to K7, 2K5, K5·K5

or 2K3 + 2K2.

Proof. (1) It follows from Theorem 2.1 and the forbidden subgraphs
G1
∼= 2K5, G2

∼= K5 ·K5 and G4
∼= 3K2 + 2K2 as stated in [12].

(2) It follows from Theorem 2.2 and the forbidden subgraphs A1
∼=

K5 ·K5, A5 = 2K5 and B3 = 2K2 + 2K2 as stated in [13]. 

It is known that the cyclicizer of a finite group is always a cyclic central
subgroup of G (see [19]). Hence, Cyc(G) = z for some element z. In
what follows, G stands for the factor groupG/Cyc(G) and that g denotes
the element gCyc(G) ofG for any g ∈ G. The following two simple results
are used frequently in our proofs.

Lemma 2.4. The Sylow p-subgroups of G are either cyclic or generalized
quaternion 2-group for each prime divisor p of |z|.

Proof. Let p be a prime divisor of |z| and P be a Sylow p-subgroup of
G. If zp ∈ P∩z is an element of order p and x ∈ P , then x, zp is cyclic,
which implies that zp ∈ x, that is, P has only one subgroup of order
p. Thus, by [21, 5.3.6]djsr, P is either a cyclic group or a generalized
quaternion 2-group. 

Lemma 2.5. If Γc(G) has no subgraphs isomorphic to K8, then |z|(|x|−
1)  7 for all x ∈ G \ z. As a result, |z|  7.

Proof. Since, for x ∈ G, the set x, z\ z induces a complete subgraph
of Γc(G), it follows that |x, x \ z|  7. Hence, |z|(|x| − 1)  7. 
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3. Main Theorems

In order to classify finite groups with a toroidal or a projective cyclic
graph, we first restrict ourself to those groups whose cyclic graphs have
no subgraphs isomorphic to K8, 2K5, K5 ·K5 and 3K3+2K2, which are
forbidden subgraphs for both toroidal and projective graphs by Theorem
2.3.

Lemma 3.1. If Γc(G) is a non-planar graph with no subgraph isomor-
phic to K8, 2K5, K5 ·K5 or 3K3+2K2, then G is isomorphic to one of
the groups S3×Z2, D14, D16, Q16, QD16 or x, y : x7 = y3 = 1, xy = x2.

Proof.We proceed in some steps according to the order of z. Note that,
by Lemma 2.5, |z|  7.

Step 1. |z|  4. By Lemma 2.5, |x|  2 for all x ∈ G\z. Thus, G is an
elementary abelian 2-group. If |z| = 5 or 7, then G ∼= Z|z|×Zn2 for some
n  2. It is easy to see that Γc(G) is a union of some complete graphs
with vertex sets xz, where x ranges over all involutions of G. But then
Γc(G) has a subgraph isomorphic to 2K|z|, which is a contradiction

Next assume that |z| = 6. Then G ∼= x × P , where P is a Sylow 2-
subgroup of G and |x| = 3. Since P is non-cyclic, from the Lemma 2.4,
it follows that P ∼= Q2n is a generalized quaternion 2-group for some
positive integer n. Then G ∼= D2n−1 , which implies that n = 3 and P ∼=
Q8. A simple verification shows that Γc(G) is a union of some complete
graphs with vertex sets xy±1, where y ranges over all elements of
P \ P . Indeed, Γc(G) ∼= 3K6, which is a contradiction.

Finally assume that |z| = 4. Then G is a 2-group and hence G ∼= Q2n for
some n  3 by Lemma 2.4. Now, if x ∈ G \ z is an element of order 4,
then x, z is cyclic from which it follows that x = z, a contradiction.

Step 2. |z| = 3. By Lemma 2.5, |x|  3 for all x ∈ G, that is, ω(G) ⊆
{1, 2, 3}. Since S3(G) is cyclic by Lemma 2.4, G is not a 3-group. If G
is a 2-group, then G ∼= Z3 ×Zn2 for some n  2 so that Γc(G) is a union
of some complete graphs with vertex sets xz, where x ranges over all
involutions of G. Hence, Γc(G) is planar, which is a contradiction. Thus,
we assume that G is neither a 2-group nor a 3-group. By [8], we have to
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consider two possibilities.

(i) G = (x1 × · · · × xn)  y, where |xi| = 3 for i = 1, . . . , n,
|y| = 2 and xyi = x−1

i . Since S3(G) is cyclic, we must have n = 1 and
consequently G = x1  y where |x1| = 9. It is easy to see that
xy1 = x−1

1 so that G ∼= D18, which is impossible for Cyc(D18) = 1.

(ii) G = (V 1×· · ·×V n) y, where V i = xi×xi is a Klein 4-group
for i = 1, . . . , n, |y| = 3 and y acts on V i \ {1} as the cyclic permutation
(xi, xi, xix


i) for all i = 1, . . . , n. Then G = (V1×· · ·×Vn)y such that

Vi = xi × xi is a Klein 4-group for i = 1, . . . , n, |y| = 9 and y acts
on Vi \ {1} as the cyclic permutation (xi, xi, xixi) for all i = 1, . . . , n. A
simple verification shows that Γc(G) is a union of complete subgraphs
with vertex sets x, z \ z and xy \ x of order 3 and 6, respectively,
where x ranges over all nontrivial elements of V1 × · · · × Vn. But then
Γc(G) has a subgraph isomorphic to 2K6, which is a contradiction.

Step 3. |z| = 2. By Lemma 2.5, |x|  4 for each x ∈ G so that ω(G) ⊆
{1, 2, 3, 4}. Hence, ω(G) ⊆ {1, 2, 3, 4, 6, 8}. One observes that for every
x ∈ G with |x| = 3 or 6, x, z \ z is a connected component of Γc(G)
isomorphic to K4. First assume that 8 /∈ ω(G). Then, by Lemma 2.4,
4 /∈ ω(G). Let X = {x ∈ G : |x| ∈ {3, 6}}. Since z is the only
subgroup of order two of any Sylow 2-subgroup of G, it follows that
|x| = 4 for all x ∈ G \ z ∪X. Thus, Γc(G) is a union of edges x \ z
with |x| = 4 and complete subgraphs with four vertices x, z \ z for
x ∈ X, hence Γc(G) is planar, which is a contradiction. Therefore,
8 ∈ ω(G). Then |x ∩ y|  4 for all x, y ∈ G with |x| = |y| = 8,
for otherwise x ∩ y ⊆ z and consequently the subgraph induced
by x ∪ y \ z is isomorphic to 2K6, which is impossible. Now, we
consider the following two cases:

(i) G has a unique cyclic subgroup x of order 8. Clearly, x  G

and subsequently G/CG(x) is isomorphic to a subgroup of Aut(x) ∼=
Z2 × Z2. It is easy to see that CG(x) = x. Thus G/x ∼= Z2 or Z2 ×
Z2. Therefore, we have |G| = 16 or 32. A simple computation with GAP
shows that the only group with these properties is Q16 whose cyclic
graph is isomorphic to K6 ∪ 4K2.
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(ii) There are distinct cyclic subgroups x and y of order 8. Then
|x ∩ y| = 4. Now, for every element g ∈ x ∩ y \ z, the subgraph
induced by {x±1, x±3, y±1, y±3, g} is isomorphic to K5 · K5, which is
impossible.

Step 4. |z| = 1. By Lemma 2.5, |x|  8 for all x ∈ G, that is, ω(G) ⊆
{1, 2, 3, 4, 5, 6, 7, 8}. We proceed in some cases:

(i) 7 ∈ ω(G). Let P be the Sylow 7-subgroup of G. Then P ∼= Z7 and
P  G for otherwise P = P g for some g ∈ G and hence the subgraph
induced by P ∪ P g \ {1} is isomorphic to 2K6, which is a contradic-
tion. Clearly, CG(P ) = P . Thus G/P = NG(P )/CG(P ) is isomorphic to
a subgroup of Aut(P ) ∼= Z6. If G/P ∼= Z6, then G has an element g of
order 6 and consequently the subgraph induced by P∪g\{1} is isomor-
phic to K5 ∪K6, which is impossible. Thus |G/P | = 2 or 3, from which
it follows that G ∼= D14 or x, y : x7 = y3 = 1, xy = x2. One can easily
see that, Γc(G) ∼= K6 ∪ 7K1 in the former case and Γc(G) ∼= K6 ∪ 7K2

in the latter case.

(ii) 7 /∈ ω(G) and 8 ∈ ω(G). Let x, y ∈ G with |x| = |y| = 8. If
x∩ y = 1, then the subgraph induced by x∪ y \ {1} is isomorphic
to 2K7, which is impossible. Also, if x∩y = 1 and |x∩y|  4, then
the subgraph induced by {x±1, x±3, y±1, y±3, g} where g ∈ x∩y\{1}
is isomorphic to K5 · K5, which is a contradiction. Therefore, x =
y, which implies that x is the unique cyclic subgroup of G of order
8. Clearly, x  G and CG(x) = x. Thus G/x = NG(x)/CG(x) is
isomorphic to a subgroup of Aut(x) ∼= Z2×Z2 and consequently |G| =
16 or 32. Now, a simple computation with GAP shows that the only
groups with these properties are D16 and QD16. It is easy to see that,
Γc(G) ∼= K7∪8K1 in the former case and Γc(G) ∼= ((K6∪2K2)+K1)∪4K1

in the latter case.

(iii) 7, 8 /∈ ω(G) and 6 ∈ ω(G). Let x, y ∈ G with |x| = |y| = 6. If
x∩ y = 1, then Γc(G) contains a subgraph isomorphic to 2K5, which
is a contradiction. Also, if |x∩y| = 2, then Γc(G) contains a subgraph
isomorphic to K5 · K5, which is another contradiction. Hence, either
|x ∩ y| = 3 or x = y.
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If G has a unique cyclic subgroup x of order 6, then x  G. Also,
CG(x) = x, which implies that G/x = NG(x)/CG(x) is isomorphic
to a subgroup of Aut(x) ∼= Z2. As G is non-cyclic we must have |G| =
12. Thus G ∼= S3 × Z2 or x, y : x3 = y4 = 1, xy = x−1. Since the latter
group has a planar cyclic graph, we have G ∼= S3×Z2 whose cyclic graph
is isomorphic to K5 ∪ 6K1.
Now, assume that G has n  2 distinct cyclic subgroups x1, . . . , xn
of order 6. Then x1 ∩ · · · ∩ xn = y is a cyclic group of order
3. Clearly, the subgraph induced by x1 ∪ · · · ∪ xn is isomorphic to
nK3 + 2K2. Hence, by hypothesis, we must have n = 2. Put N =
NG(x1). Since the only possible conjugates of x1 are x1 and x2,
we have [G : N ]  2. On the other hand, CG(x1) = x1, which im-
plies that N/x1 = NG(x1)/CG(x1) is isomorphic to a subgroup of
Aut(x1) ∼= Z2. Thus |G| divides 24 and a simple computation with
GAP shows that there is no group with these properties.

(iv) 6, 7, 8 /∈ ω(G). Then ω(G) ⊆ {1, 2, 3, 4, 5} and a simple verification
shows that Γc(G) is a union of some complete graphs with at most
4 vertices and some friendship graphs. Thus, Γc(G) is planar, which
contradicts the hypothesis. The proof is complete. 

Utilizing the above lemma we are now able to state our main theorems.

Theorem 3.2. Let G be a finite group with a toroidal cyclic graph. Then
G is isomorphic to one of the groups S3 × Z2, D14, D16, Q16, QD16 or
x, y : x7 = y3 = 1, xy = x2.
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|G| = 16 or 32. Now, a simple computation with GAP shows that the only groups
with these properties are D16 and QD16. It is easy to see that, Γc(G) ∼= K7 ∪ 8K1

in the former case and Γc(G) ∼= ((K6 ∪ 2K2) +K1) ∪ 4K1 in the latter case.
(iii) 7, 8 /∈ ω(G) and 6 ∈ ω(G). Let x, y ∈ G with |x| = |y| = 6. If x ∩ y = 1,

then Γc(G) contains a subgraph isomorphic to 2K5, which is a contradiction. Also,
if |x ∩ y| = 2, then Γc(G) contains a subgraph isomorphic to K5 ·K5, which is
another contradiction. Hence, either |x ∩ y| = 3 or x = y.

If G has a unique cyclic subgroup x of order 6, then x  G. Also, CG(x) =
x, which implies that G/x = NG(x)/CG(x) is isomorphic to a subgroup of
Aut(x) ∼= Z2. As G is non-cyclic we must have |G| = 12. Thus G ∼= S3 × Z2 or
x, y : x3 = y4 = 1, xy = x−1. Since the latter group has a planar cyclic graph, we
have G ∼= S3 × Z2 whose cyclic graph is isomorphic to K5 ∪ 6K1.

Now, assume that G has n ≥ 2 distinct cyclic subgroups x1, . . . , xn of order
6. Then x1 ∩ · · · ∩ xn = y is a cyclic group of order 3. Clearly, the subgraph
induced by x1 ∪ · · · ∪ xn is isomorphic to nK3 + 2K2. Hence, by hypothesis,
we must have n = 2. Put N = NG(x1). Since the only possible conjugates of
x1 are x1 and x2, we have [G : N ] ≤ 2. On the other hand, CG(x1) = x1,
which implies that N/x1 = NG(x1)/CG(x1) is isomorphic to a subgroup of
Aut(x1) ∼= Z2. Thus |G| divides 24 and a simple computation with GAP shows
that there is no group with these properties.

(iv) 6, 7, 8 /∈ ω(G). Then ω(G) ⊆ {1, 2, 3, 4, 5} and a simple verification shows
that Γc(G) is a union of some complete graphs with at most 4 vertices and some
friendship graphs. Thus, Γc(G) is planar, which contradicts the hypothesis. The
proof is complete. 

Utilizing the above lemma we are now able to state our main theorems.

Theorem 3.2. Let G be a finite group with a toroidal cyclic graph. Then G is
isomorphic to one of the groups S3×Z2, D14, D16, Q16, QD16 or x, y : x7 = y3 =
1, xy = x2.

Γc(S3 × Z2) Γc(D14) Γc(D16)

Γc(Q16) Γc(QD16) Γc(Z7  Z3)

Theorem 3.3. Let G be a finite group with a projective cyclic graph. Then G is
isomorphic to one of the groups S3 ×Z2, D14, Q16 or x, y : x7 = y3 = 1, xy = x2.
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Theorem 3.3. Let G be a finite group with a projective cyclic graph. Then
G is isomorphic to one of the groups
S3 × Z2, D14, Q16 or x, y : x7 = y3 = 1, xy = x2.
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