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to the solution of a system of algebraic equations. Graphical and tabu-
lar results are presented to investigate the influence of the solid volume
fraction, types of nanoparticles, radiation and suction/blowing, mag-
netic field, permeability, Schmidt number and chemical reaction, on
velocity, temperature and concentration profiles. The obtained results
of the current study are in excellent agreement with previous works.
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Keywords and Phrases: Boundary layer flow, MHD flow, nanofluids,
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1. Introduction

In recent years, the boundary layer flow and heat transfer of nanoflu-
ids have received considerable attention due to its wide applications in
industry, technological and natural processes. The researchers of fluid
dynamics are showing that the commonly using metals exhibit high
thermal conductivity compared with the fluids. Thus, for increasing the
heat transfer capability of the fluids require to mix both the fluid and
metals. Initially, the concept of ‘nanofluids’ was considered by Choi et
al. [16] for suspension of liquids containing ultra-fine particles (diameter
less than 50 nm). The base fluids used are usually water, oil, ethylene
glycol or toluene and nanoparticles include metals such as copper, alu-
minum, iron, gold, silver and titanium or their oxides. The effect on the
thermal conductivity of nanofluids is different for the base fluid material,
particle size, particle material, temperature, particle volume concentra-
tion, PH value of the base fluid and the shape, size and volume frac-
tion of the nanoparticles. Typical thermal conductivity enhancements
are in the range 15% − 40% with low concentration (1 − 5 by volume)
of the solid nanoparticles in the mixture. Therefore, the nanofluids are
suitable alternative to many common fluids for advanced thermal appli-
cations and play a major role in heat transfer, fuel cells, chiller, phar-
maceutical processes, hybrid-powered engines, space technology, boiler
flue gas temperature reduction including microelectronics, domestic re-
frigerator, nuclear reactor coolant and in grinding. Referring to the po-
tential of nanofluids in advanced nuclear systems, Masuda et al. [46]
illustrated that nanofluids have an abnormal enhancement in thermal
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conductivity. Buongiorno [13] has studied the convective transport phe-
nomena in nanofluid. He considered in turn seven slip mechanisms and
showed that Brownian diffusion and thermophoresis diffusion models are
the two most important nanoparticle/base-fluid slip mechanisms among
these mechanisms. Some study on the nanofluids with considering the
Brownian diffusion and thermophoresis diffusion done by Makinde [39],
Ibrahim et al. [29] and Garoosi et al. [21]. Also, on these two slip mech-
anisms, Makinde et al. [36, 37] presented the boundary layer flow of
nanofluids over a moving flat plate and Kuznetsov et al. [35] introduced
natural convective boundary layer flow of a nanofluid over a vertical
plate.

Stagnation flow, analysis the fluid movement near the stagnation-point,
occurs on all solid particles moving in a fluid. The highest heat trans-
fer, highest pressure and highest rate of mass decomposition happening
in the stagnation-point. Stagnation flow of viscous fluids arise in many
applications like the flows over the tips of rockets, submarines, aircrafts
and oil ships. At first, Hiemenz [25] investigated the stagnation flow
problem using linear group of transformations. Wang [53] analyzed the
stagnation flow of two fluids with different densities. Chiam [15] pre-
sented the steady stagnation-point flow over an elastic surface consider-
ing the equal values of the stretching and straining velocity. Recently,
Alsaedi et al. [1] investigated the effects of heat generation/absorption on
stagnation-point flow of nanofluid over a surface with convective bound-
ary conditions. Bachok et al. [4] proposed boundary layer stagnation-
point flow and heat transfer over an exponentially stretching/shrinking
sheet in a nanofluid. Anwar et al. [3] analyzed MHD and radiation ef-
fects on stagnation point flow of nanofluid towards a nonlinear stretch-
ing sheet. The steady boundary-layer flow near the stagnation point on
an impermeable vertical surface with slip that is embedded in a fluid-
saturated porous medium was done by Harris et al. [22]. Pal et al. [50]
employed numerical method to study the influence of thermal radia-
tion on mixed convection heat and mass transfer stagnation-point flow
in nanofluids over stretching/shrinking sheet in a porous medium with
chemical reaction.
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Bernstein polynomials have important applications in computer graph-
ics and have been applied for approximations of functions in many ar-
eas of mathematics and other fields such as smoothing in statistics and
constructing Bézier curves [19, 20, 33]. These polynomials were first
used by Sergei Natanovich Bernstein in a constructive proof for the
Stone-Weierstrass approximation theorem. Bernstein polynomials have
been applied to solve various kinds of ordinary and partial differential
equations, integral equations and integro-differential equations defined
in engineering and science [6, 24]. Recently, Heydari et. al [23] applied
the Gram-Schmidt orthogonalization process to find orthogonal Bern-
stein polynomials for the solution of heat transfer of a micropolar fluid
through a porous medium with radiation.

The aim of the present work is study MHD flow and radiative heat trans-
fer of a nanofluid against a flat plate in porous media with variable wall
temperature and a first-order chemical reaction. The governing nonlinear
ordinary differential equations are solved numerically by using a collo-
cation method based on exponential Bernstein functions for three types
of nanoparticles. Assuming small Reynolds number, the Hall effects, the
induced magnetic field and the viscous dissipation are neglected. Moti-
vated by this fact, present study analyzes the effects of the solid volume
fraction, types of nanoparticles, suction/blowing, magnetic field, perme-
ability, radiation, Schmidt number and chemical reaction on velocity,
temperature and concentration profiles.

This paper is organized as follows: In Section 2, the mathematical for-
mulation of the MHD boundary layer stagnation flow and radiation heat
transfer of a nanofluid with uniform suction or blowing through a porous
medium past a flat plate is presented. Bernstein and orthonormal Bern-
stein polynomials and their properties are given in Section 3 and Section
4, respectively. After introducing a function approximation with expo-
nential Bernstein functions in Section 5, a collocation method based
on this approximation is proposed for solving the MHD flow in Section
6. The results and discussion for the all values of the relevant parameters
are presented in Section 7. Finally a conclusion is drawn in Section 8.
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2. Problem Statement and Mathematical Mod-
elling

Consider a two-dimensional MHD boundary layer stagnation flow and
radiation heat transfer of a nanofluid with uniform suction or blowing
through a porous medium past a flat plate. The geometry and coordi-
nate systems of the problem are shown in Fig. 1. The uniform magnetic
field along the y-direction is B and the free stream velocity, the tem-
perature at surface, the ambient temperature (far from the surface), the
concentration near surface and the concentration in the free stream are
assumed to be U , Tw, T∞, Cw, C∞, respectively. T0 is a constant mea-
suring the rate of temperature increase along the sheet. It is assumed
that there exists a first order chemical reaction effect and the fluid mo-
tion is based on Darcy’s law, which accounts for the drag applied by
the porous medium [31, 49]. Furthermore, It is supposed that the mag-
netic Reynolds number is small so that the thickness of the magnetic
boundary-layer is large and induced magnetic field in comparison to the
applied magnetic field, is insignificant. The viscous dissipation and Hall
effects terms are also, neglected.

For the present problem, the steady boundary layer equations governing
the nanofluid flow, radiation heat transfer and concentration fields can
be written in dimensional form as proposed by Nield et al. [47] and
Zhang et al. [57]

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v
∂u

∂y
= − 1

ρnf

∂p

∂x
+
µnf
ρnf

∂2u

∂y2
− µnf
ρnfk

u− σnfB
2

ρnf
u, (2)

u
∂T

∂x
+ v
∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y
, (3)

u
∂C

∂x
+ v
∂C

∂y
= D

∂2C

∂y2
−K(C − C∞). (4)

The corresponding boundary conditions are given by:
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u = 0, v = vw, T = Tw = T∞ + T0 exp
 x
2L


, (5)

C = Cw = C∞ + C0 exp
 x
2L


, y = 0,

u→ U = a exp
x
L


, T → T∞, C → C∞, y → ∞. (6)

where u and v are the velocity components of the fluid along x and y
directions, respectively, p is the fluid pressure, T is the temperature of
the nanofluid, D is the mass diffusivity, U is the free-stream velocity, a
is a constant number, σf and σnf are the electrical conductivity of the
base fluid and the nanofluid. vw(x) = v0 exp(x/2L) is a special suction or
blowing velocity at the wall [8] with vw(x) < 0 for suctions and vw(x) > 0
for injection, L is the reference length and v0 is a constant. K(x) is
the variable reaction rate given by K(x) = K0 exp(x/L) [2] and K0 is
a constant. Also, ρnf is the effective density of the nanofluid, µnf is
the effective viscosity of the nanofluid and αnf is the effective thermal
diffusivity of the nanofluid [7, 38, 44, 45] satisfying

ρnf = (1− φ)ρf + φρs, µnf =
µf

(1− φ)2.5 , αnf =
knf

(ρcp)nf
,

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s, (7)
knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

,

σnf = (1− φ)σf + φσs,

where φ is the nanoparticle volume fraction. In the free-stream, (2) be-
comes

U
dU

dx
= − 1

ρnf

∂p

∂x
− µnf
ρnfK

U − σnfB
2

ρnf
U. (8)

Then, from (2) and (8), we can get

u
∂u

∂x
+ v
∂u

∂y
= U

dU

dx
+
µnf
ρnf

∂2u

∂y2
− µnf
ρnfk

(u− U)− σnfB
2

ρnf
(u− U), (9)
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where cp is the specific heat at constant pressure, B = B0 exp(x/2L),
B0 is the externally imposed magnetic field in the y-direction [30], k =
k0 exp(−x/L) is the non-uniform permeability of the medium and k0 is
a constant which gives the initial permeability [43]. The radiative heat
flux qr is described by Rosseland’s approximation for radiation [51] such
that

qr = −4σ1
3k1

∂T 4

∂y
, (10)

where k1 and σ1 are the absorption coefficient and the Stefan-Boltzmann
constant, respectively. We assume that the temperature differences within
the flow are such that the term T 4 may be expressed as a linear function
of temperature. This is accomplished by expanding T 4 in a Taylor series
about a free stream temperature T∞ as follows:

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + . . . . (11)

Neglecting higher-order terms in the above equation beyond the first
degree in (T − T∞), we get T 4 ∼= 4T 3

∞T − 3T 4
∞ and

∂qr
∂y

= −16σ1T 3
∞

3k1
∂2T

∂y2
. (12)

Then, equation (3) is reduced by using (12) as follows:

u
∂T

∂x
+ v
∂T

∂y
= αnf

∂2T

∂y2
+

16σ1T 3
∞

3(ρcp)nfk1
∂2T

∂y2
. (13)

Mandal and Mukhopadhyay [43] introduced the following similarity trans-
formations

η = y


a

2vfL
exp
 x
2L


, ψ =


2aLvff(η) exp

 x
2L


,

θ(η) =
T − T∞
Tw − T∞

, g(η) =
C − C∞
Cw − C∞

, (14)

where ψ(x, y) represent the stream function and is defined as u = ∂ψ
∂y ,

v = −∂ψ
∂x , so that equation (1) is satisfied identically. Substituting the
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similarity transformations (14) into (4), (9) and (13), we obtain the
following system of nonlinear ordinary differential equations:

1
φ1
f  + ff  + 2(1− f 2) +


1
φ1
P +

φ4
φ2
M


(1− f ) = 0, (15)


knf
φ3kf

+
R

φ3kf


θ + Pr(fθ − f θ) = 0, (16)

g + Sc(fg − f g − λg) = 0, (17)

with boundary conditions

f = S, f  = 0, θ = 1, g = 1, η = 0, (18)

f  = 1, θ = 0, g = 0 as η → ∞, (19)

where P is permeability parameter,M is magnetic parameter, R is radi-
ation parameter, S is suction/blowing parameter, Sc is Schmidt number,
λ is chemical reaction parameter and Pr is the Prandtl number, which
are defined as:

P =
2Lvf
ak0

, M =
2σfB2

0L

aρf
, R =

16σ1T 3
∞

3k
,

S =
v0
avf/2L

, Sc =
vf
D
, λ =

K0

a
, Pr =

vf
αf
, (20)






φ1 = (1− φ)2.5[(1− φ) + φρs/ρf ],
φ2 = (1− φ) + φρs/ρf ,

φ3 = (1− φ) + (ρcp)s/(ρcp)f ,
φ4 = (1− φ) + φσs/σf .

The physical quantities of interest in this study, are skin friction coef-
ficient Cf , local Nusselt number Nux and local Sherwood number Shx
are defined as [32]:

Cf =
τw
ρfU2

, Nux =
xqw

kf (Tw − T∞)
, Shx =

xpw
D(Cw − C∞)

, (21)

where τw is the skin fraction, qw is the heat flux form the sheet and pw
is the mass flux at the wall surface, which are given by:

τw = µnf
∂u

∂y
|y=0, qw = −knf

∂T

∂y
|y=0, pw = −D∂C

∂y
|y=0. (22)
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By substituting (22) into (21), we have:

(2L/x)(1− φ)2.5CfRe1/2x = f (0), NuxRe−1/2
x (kf/knf ) = −θ(0),

ShxRe
−1/2
x = −g(0), (23)

where Rex = Ux2/(2Lvf ) is the local Reynolds number.
In view of the present work, the fluid is a water based nanofluid contain-
ing three different types of nanoparticles; copper, aluminium oxide and
silver nanoparticles. The thermophysical properties of the nanofluids are
displayed in Table 1.

Figure 1. Level plate in a porous medium saturated with a fluid with
nanoparticles in suspension

3. Bernstein Polynomials and Their Properties

Bernstein polynomials have important applications in computer graph-
ics and have been applied for approximations of functions in many areas
of mathematics and other fields such as smoothing in statistics and con-
structing Bézier curves [19, 23, 33]. Bernstein polynomials of the degree
n are defined on the interval [a, b] as [10]

Bi,n(x) =

n

i


(x− a)i(b− x)n−i

(b− a)n , 0  i  n, (24)

where the binomial coefficients are calculated by
�
n
i


= n!

i!(n−i)! . The prop-
erties of Bernstein polynomials have been nvestigated by many authors
some of which to be mentioned briefly here.

These Bernstein polynomials form a basis on [a, b] and there are n+ 1,
nth-degree polynomials. If i < 0 or i > n we set Bi,n(x) = 0. Also for all
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Figure 1: Level plate in a porous medium saturated with a fluid with nanoparticles in
suspension.

By substituting (22) into (21), we have:

(2L/x)(1− φ)2.5CfRe
1/2
x = f (0), NuxRe

−1/2
x (kf/knf ) = −θ(0),

ShxRe
−1/2
x = −g(0), (23)

where Rex = Ux2/(2Lvf ) is the local Reynolds number.
In view of the present work, the fluid is a water based nanofluid contain-
ing three different types of nanoparticles; copper, aluminium oxide and
silver nanoparticles. The thermophysical properties of the nanofluids
are displayed in Table 1.

3 Bernstein polynomials and their properties

Bernstein polynomials have important applications in computer graph-
ics and have been applied for approximations of functions in many areas
of mathematics and other fields such as smoothing in statistics and con-
structing Bézier curves [33, 19, 23]. Bernstein polynomials of the degree
n are defined on the interval [a, b] as [10]

Bi,n(x) =


n

i


(x− a)i(b− x)n−i

(b− a)n
, 0 ≤ i ≤ n, (24)

where the binomial coefficients are calculated by
�
n
i


= n!

i!(n−i)! . The
properties of Bernstein polynomials have been nvestigated by many au-
thors some of which to be mentioned briefly here..
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i = 0, 1, · · · , n and all x in [a, b], we have Bi,n(x)  0. In addition, these
polynomials can be generated by a recursive definition over the interval
[a, b] as follows:

Bi,n(x) =
b− x
b− aBi,n−1(x) +

x− a
b− aBi−1,n−1(x). (25)

The binomial expansion of the right-hand side of the equality (b−a)n =
((x− a) + (b− x))n shows that the sum of all Bernstein polynomials of
the degree n is the constant 1, i.e,

n
i=0Bi,n(x) = 1. One of the benefits

of the Bernstein polynomial approximation of a continuous function f
is that it approximates f on [a, b] using only the values of f at xi =
a+ (b− a)i/n, i = 0, 1, . . . , n, that is,

f(x)  Bnf(x) =
n

i=0

f(xi)Bi,n(x).

The above approximation is preferred when the evaluation of f is diffi-
cult, expensive and time consuming.

An explicit expression for the derivatives of Bernstein polynomials of
any degree and any order in terms of Bernstein polynomials on [0, 1],
introduced by Doha et al. [17] is as follows:

dk

dxk
Bi,n(x) =

n!
(n− k)!

min{i,k}

j=max{0,i+k−n}
(−1)j+k


k

j


Bi−j,n−k(x). (26)

It can easily be shown that for Bernstein polynomials on [a, b] [23, 28]:

dk

dxk
Bi,n(x) =

n!
(b− a)k(n− k)!

min{i,k}

j=max{0,i+k−n}
(−1)j+k


k

j


Bi−j,n−k(x).(27)

The product of two Bernstein polynomials is also a Bernstein polynomial
which is given by:

Bi,j(x)Bk,m(x) =

�
j
i

�
m
k


�
j+m
i+k

 Bi+k,j+m(x). (28)
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All Bernstein polynomials of the same order have the same definite in-
tegral over the interval [a, b], namely

 b

a
Bi,n(x)dx =

b− a
n+ 1

. (29)

The definite integrals of the products of Bernstein polynomials can be
found using (28) and (29), as follows:

 b

a
Bk,n(x)Bi,n(x)dx =

�
n
k

�
n
i



(2n+ 1)
�
2n
k+i

(b− a). (30)

Table 1: Thermophysical properties of the base fluid and nanoparticles

4. Orthonormal Bernstein Polynomials

The explicit representation of the orthonormal Bernstein polynomials of
nth degree are defined on the interval [0, 1] as follows [5]:

Bi,n(x) =


2(n− i) + 1

(1− x)n−i

i

j=0

(−1)j

2n+ 1− j
i− j


i

j


xi−j . (31)

Moreover, using (24) on the interval [0, 1], (31) can be written in a
simpler form in terms of the non-orthonormal Bernstein basis functions
as [5]:

Bi,n(x) =


2(n− i) + 1
 i

j=0

(−1)j
�
2n+1−j
i−j

�
i
j


�
n−j
i−j
 Bi−j,n−j(x). (32)

By changing the variable x = (t−a)/(b−a), we will have the orthonormal
Bernstein polynomials on the arbitrary interval [a, b] as:

Bi,n(t) =


2(n− i) + 1
b− a


i

j=0

(−1)j
�
2n+1−j
i−j

�
i
j


�
n−j
i−j
 Bi−j,n−j


t− a
b− a


.(33)
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Table 1: Thermophysical properties of the base fluid and nanoparticles.
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a
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n+ 1
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 b

a
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�
n
k

�
n
i



(2n+ 1)
�
2n
k+i

(b− a). (30)
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i

j
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The orthonormal Bernstein polynomial,Bj,n(x) on [0, 1] is the nth eigen-
function of the singular Sturm-Liouville problem [5]:

d

dx


x(1− x)2dB(x)

dx


+ n(n+ 2)(1− x)B(x) +

+(n− j + 1)(j − n)B(x) = 0, (34)

with the orthogonality property:
 1

0
Bi,n(x)Bj,n(x)dx = δij . (35)

Also, using (33) and (30), the orthonormal polynomials necessarily sat-
isfy the following relationships over the interval [0, 1]:
 1

0

Bi,n(x)Bj,n(x)dx =

 
(2(n− i) + 1)

i
k=0(−1)k


2n+1−k
i−k


i
k


n
j



[2n+1−k]

2n−k
i+j−k

 , j  i,

0, j < i.

(36)

In the end of this section, we will prove the following theorem, for the
derivatives of Bi,n(x) at the end points of the interval [a, b].

Theorem 4.1. [27, 26] For k = 0, 1, · · · , n, we have

dk

dxk
Bi,n(a) =


2(n− i) + 1
(b− a)2k+1

i

j=0

(−1)i+k
�
2n+1−j

i−j

�
i
j

�
k

i−j


(n− j)!

�
n−j
i−j


(n− j − k)!

γi−j,k, (37)

and

dk

dxk
Bi,n(b) =


2(n− i) + 1
(b− a)2k+1

i

j=0

(−1)n−i+j
�
2n+1−j

i−j

�
i
j

�
k

n−i


(n− j)!

�
n−j
i−j


(n− j − k)!

γn−i,k, (38)

where

γi,k =






1, i  k,

0, i > k.
(39)

5. Exponential Bernstein Functions (EBFs)

The main objective of this section is to describe the exponential Bern-
stein functions (EBFs) and express some of their basic properties for
approximation on the half line.
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5.1 Basic properties

According to Sections 3 and 4, the basic properties of Bernstein and
orthogonal Bernstein polynomials are derived in the finite domain [a, b],
but the problem of MHD flow and radiation heat transfer of nanofluids
in porous media with variable surface heat flux and chemical reaction
is defined on the semi-infinite domain [0,+∞). The use of a suitable
mapping to transfer semi-infinite domain [0,+∞) to the finite domain
[a, b] is a common and effective strategy to construct approximations on
the half line.

So, we define the exponential Bernstein functions (EBFs) of order n as
follows:

EBi,n(x; l) = Bi,n(x) ◦ Φl(x) = Bi,n(Φl(x)), i = 0, 1, . . . , n, (40)

where Φl = [0,+∞) → [a, b) is an exponential mapping given by

Φl(x) = b+ (a− b) exp

−x
l


, (41)

and l is a positive scaling/stretching factor. The inverse mapping of
y = Φl(x) is

x = Φ−1
l (y) = l ln


b− a
b− y


. (42)

Furthermore, we can find the inverse image of the spaced nodes {yj}nj=0 ⊂
[a, b) as

xlj = Φ−1
l (yj) = l ln


b− a
b− yj


, j = 0, 1, . . . , n. (43)

We need to choose the parameter l so that controls the width of the basis
functions. Although, some methods for making this choice suggested in
[11, 12], but there is not a general method for this choose and its selected
usually by trial and error.

Theorem 5.1.1. Let a = 0 and b = 1, then the exponential Bernstein
functions EBj,n(y; l) on [0,∞) are the eigenfunctions of the singular
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Sturm-Liouville problem:

l


2 exp


−y
l


− 1
 dp
dy

+ l

1− exp


−y
l

 d2p
dy2


+

+n(n+ 2) exp

−y
l


p+ γj,np = 0, (44)

where γj,n = (n− j + 1)(j − n), j = 0, 1, . . . , n.

Proof. As mentioned in Section 4, Bj,n(x) on [0, 1] is the nth eigen-
function of the singular Sturm-Liouville problem (34). Let

p(y) = Bj,n


1− exp


−y
l


. (45)

Now by using the following transformations

x = 1− exp

−y
l


, y = l ln


1

1− x


, x ∈ [0, 1), y ∈ [0,∞), (46)

we can get

dBj,n(x)
dx

=


l

1− x


dp

dy
,

d

dx


dp

dy


=


l

1− x


d2p

dy2
. (47)

Inserting (47) into (34), yields

l


(1− 2x)

dp

dy
+ xl

d2p

dy2


+ n(n+ 2)(1− x)dp

dy
+ γj,np(y) = 0, (48)

where γj,n = (n − j + 1)(j − n), j = 0, 1, . . . , n. Consequently, from
(46) and (48), the Sturm-Liouville problem for exponential Bernstein
functions can be derived as (44). 



A NUMERICAL SIMULATION OF MHD FLOW AND ... 45

Lemma 5.1.2. For i = 0, 1, · · · , n, we have

1) EB i,n(0; l) = (−1)i

2(n− i) + 1

b− a
,

2) lim
x→+∞

EB i,n(x; l) =






0, 0  i  n− 1,

1√
b−a

n

j=0

(−1)j

2n+ 1− j

n− j


n

j


, i = n,

3) EB i,n(0; l) =


2(n− i) + 1
l2(b− a)


(−1)i+1(−i2 + 2in+ i+ n),

4) lim
x→+∞

EB i,n(x; l) = 0.

Proof. From (40), we have

EB i,n(x; l) = Bi,n(Φl(x)), EB i,n(x; l) = Φl(x)B

i,n(Φl(x)). (49)

In addition, from (41) it follows that

Φl(0) = a, lim
x→+∞

Φl(x) = b, Φl(0) =
b− a

l
, lim

x→+∞
Φl(x) = 0. (50)

Now, by applying Theorem 4.1 in the special cases k = 0 and k = 1, the
lemma can be proved. 

5.2 Function approximation

Let us denote Λ = [0,+∞). We determine w(x) = b−a
l exp

�
−x

l


as a

non-negative, integrable and real-valued weight function for the expo-
nential Bernstein functions over the interval [0,+∞). We define

L2
w(Λ) = {f |f is measurable on Λ and fw <∞}, (51)

equipped with the following inner product and norm

f, gw =


Λ
f(x)g(x)w(x)dx, fw = f, f

1
2
w. (52)
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Let y = Φl(x), then we have

dy

dx
=
b− a
l

exp

−x
l


,
dx

dy
=

l

b− y , w(x)
dx

dy
= 1. (53)

Hence, the orthogonality relation (35) leads to

EBi,n(x; l),EBj,n(x; l)w = δij . (54)

Suppose thatH = L2
w(Λ), and let {EB0,n(x; l),EB1,n(x; l), · · · ,EBn,n(x; l)}

⊂ H be the set of exponential orthonormal Bernstein functions of the
order n. Also, we define P ln : L2

w(Λ) −→ EBl
n by

P lnf(x) =
n

i=0

fiEBi,n(x; l), (55)

where

EBl
n = Span{EB0,n(x; l),EB1,n(x; l), · · · ,EBn,n(x; l)}. (56)

Theorem 5.2.1. [34] For every given f in a Hilbert space H and every
given closed subspace Z of H there is a unique best approximation to w
from Z.

Since H = L2
w(Λ) is Hilbert space and EBl

n is a finite-dimensional sub-
space and EBl

n is a closed subspace of H, therefore, EBl
n is a complete

subspace of H. So, if f be an arbitrary element in H, by Theorem 5.2.1,
f has the unique best approximation from EBl

n such as f∗, that is

∃f∗ ∈ EBl
n; ∀g ∈ EBl

n f − f∗w  f − gw. (57)

Since f∗ ∈ EBl
n, there exist the unique coefficients f0, f1, . . . , fn such

that

f(x)  f∗(x) =
n

i=0

fiEBi,n(x; l), (58)

where the coefficients fi can be obtained by

fi = f(x),EBj,n(x; l)w, i = 0, 1, . . . , n. (59)
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6. Exponential Bernstein Collocation Method
(EBCM)

In this section, we use the exponential Bernstein collocation method
(EBCM) to find solutions of MHD flow and radiative heat transfer of a
nanofluid against a flat plate in porous media with variable wall tem-
perature and a first-order chemical reaction.

Consider the system of nonlinear ordinary differential equations (15)-
(17) with boundary conditions (18) and (19) to determine the approxi-
mate solutions of f(η), θ(η) and g(η).

At first, we approximate function f(η) by (nf +1) terms of exponential
Bernstein functions as

f(η)  P lfnf f(η) =
nf

i=0

fiEBi,nf (η; lf ). (60)

But, from fourth part of Lemma 5.1.2, we have

lim
η→+∞

dP
lf
nf f(η)
dη

=
nf

i=0

fi


lim

η→+∞
EBi,nf (η; lf )


= 0. (61)

It means that f (∞) = 0 and the boundary condition f (∞) = 1 does
not satisfy. To establish this condition, we approximate function f(η)
as:

f(η)  P lfnf f(η) = η + P
lf
nf f(η) = η +

nf

i=0

fiEBi,nf (η; lf ). (62)

Now we have

lim
η→+∞

d P lfnf f(η)
dη

= 1, (63)

and therefore the first boundary condition (19) is satisfied. We con-
struct the residual function RESf (η) by substituting f(η) by P lfnf f(η)
in (15) as:
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RESf (η) =
1
φ1

d3 P lfnf f(η)
dη3

+ P lfnf f(η)
d2 P lfnf f(η)
dη2

+

+2



1−

d P lfnf f(η)
dη

2


++


1
φ1
P +

φ4
φ2
M


1−

d P lfnf f(η)
dη


= 0.(64)

Let

tj = − cos


2jπ
2n+ 1


, j = 0, 1, . . . , n, (65)

are the (n + 1) Chebyshev-Gauss-Radau points. From (42), we define
the collocation points ηlfj ∈ [0,+∞) as follows:

η
lf
j = Φ−1

lf
(tj) = lf ln


2

1− tj


, j = 0, 1, . . . , n. (66)

The equations for obtaining the coefficients fis come from equalizing
RESf (η) to zero at collocation points {ηlfj }nf−2

j=0 plus two boundary con-
ditions as follows:

RESf (η
lf
j ) = 0, j = 0, 1, . . . , nf − 2, (67)

P lfnf f(η
lf
0 ) = S,

d P lfnf f(η)
dη

|
η=η

lf
0

= 0. (68)

We can rewrite the boundary conditions (68) by the first and third parts
of Lemma 5.1.2 as:

nf

i=0

fiζi = S,
nf

i=0

fiζ̃i = 0, (69)

where

ζi = (−1)i


2(n− i) + 1
b− a ,

ζ̃i =


2(n− i) + 1
l2(b− a)


(−1)i+1(−i2 + 2in+ i+ n).
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Equations (67) and (69) generate a set of (nf + 1) nonlinear equations
that can be solved by Newton method for the unknown coefficients fis.
Now, by finding the approximate solutions P lfnf f(η), we suppose that the
approximate solutions θ(η) and g(η) of (16) and (17) are as follows:

g(η)  P lgngg(η) =
ng

i=0

giEBi,ng(η; lg), (70)

θ(η)  P lθnθθ(η) =
nθ

i=0

θiEBi,nθ(η; lθ). (71)

Similarly, we make the residual functions RESθ(η) and RESg(η) by
substituting P lgngg(η) and P lθnθθ(η) in equations (16) and (17) as:

RESθ(η) =

knf
φ3kf

+
R

φ3kf


d2P lθnθθ(η)
dη2

+

+Pr


P lfnf f(η)

dP lθnθθ(η)
dη

−
d P lfnf f(η)
dη

P lθnθθ(η)


= 0, (72)

RESg(η) =
d2P

lg
ngg(η)
dη2

+

+Sc


P lfnf f(η)

dP
lg
ngg(η)
dη

−
d P lfnf f(η)
dη

P
lg
ngg(η)− λP

lg
ngg(η)


= 0. (73)

Using the collocation points (66), the equations for obtaining the coef-
ficients θis and gis come through equalizing RESθ(η) and RESg(η) to
zero at these points plus four boundary conditions as follows:

RESθ(η
lθ
j ) = 0, j = 0, 1, · · · , nθ − 2, (74)

RESg(η
lg
j ) = 0, j = 0, 1, · · · , ng − 2, (75)

P lθnθθ(η
lθ
0 ) = 1, lim

η→+∞
P lθnθθ(η) = 0, (76)

P
lg
ngg(η

lg
0 ) = 1, lim

η→+∞
P
lg
ngg(η) = 0. (77)

Again, by the first two parts of Lemma 5.1.2, we rewrite the boundary
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conditions (76) and (77) as follows:

nθ

i=0

θiζi = 1, θnθ = 0, (78)

ng

i=0

giζi = 1, gng = 0. (79)

Equations (74), (75), (78) and(79) generate a set of (nθ + 1) × (ng +
1) nonlinear equations that can be solved by Newton method for the
unknown coefficients gis and θis.

7. Results and Discussion

In this section, we present the numerical results of the EBCM to solve
the system of nonlinear ordinary differential equations (15)-(17) subject
to boundary conditions (18) and (19). Graphical and tabulated results
are presented to see the influence of the solid volume fraction, types
of nanoparticles, suction/blowing, magnetic field, permeability radia-
tion, Schmidt number and chemical reaction on the velocity, tempera-
ture and concentration profiles. Furthermore, the friction factor, local
Nusselt number and local Sherwood number are discussed and presented
through tables and graphs. To illustrate the reliability of the proposed
method, we compare the numerical results of EBFM with the DTM-BF
method [57] and numerical method (based on fourth-order RungeKutta
method and shooting method). Here, for graphical results, we consider
Pr = 6.2 and nanoparticle volume fraction in the range of 0  φ  0.2
as mentioned in [48]. Also, all the EBCM results in this section are
computed using nf = nθ = ng = 30, lf = 3 and lθ = lg = 2.

Fig. 2 reveals the velocity, temperature and concentration distributions
of Cu-water nanofluid for different values of the nanoparticle volume
fraction φ. It is clearly observed that the velocity and temperature pro-
files increase with increasing the value of φ, whereas the concentration
thickness decreases. The effect of φ on the concentration in contrast to
velocity and temperature is far less clear. Also, it can be concluded that
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the thermal conductivity and thickness of thermal boundary layer of
nanofluid are increasing with an increase in φ.

The velocity, temperature and concentration profiles for various types of
the nanoparticles are depicted in Fig. 3. It is evident that, contrary to
temperature and concentration, the Cu-water nanofluid has the higher
velocity rates as compared to other nanofluids.

In order to survey the accuracy of the present method, the residual
errors (64), (72) and (73) for different nanofluid and nanoparticle volume
fraction are illustrated in Fig.s 4 and 5.

Fig. 6 illustrates the effect of suction/blowing parameter S on the veloc-
ity, temperature and concentration profiles for Cu-water nanofluid. For
the wall suction (S > 0), the boundary layer thickness decreases and
the fluid velocity increases. In Fig. 6, S = 0 indicates the non-porous
plate and it is clear that for blowing (S < 0), the fluid velocity de-
creases. Also, it is seen that temperature distribution, concentration
and thickness of concentration boundary layer reduced by an increase in
the suction/blowing parameter S.

The influence of magnetic field parameter M on the velocity, temper-
ature and concentration for Cu-water nanofluid is shown in Fig. 7. It
is observed that with increasing of M the velocity increases and the
thickness of velocity boundary decreases. Moreover, it is clear that the
influence ofM on the temperature and concentration are not significant.

The effects of permeability parameter P on the fluid velocity, temper-
ature and concentration for Cu-water are demonstrated in Fig. 8. As
seen in this figure, increasing in the P makes an increase in the velocity
profile and also has a decreasing effect on the temperature and concen-
tration profiles, but the changes in the temperature and concentration
profiles are not very sensitive.

Fig. 9 illustrates the effect of the thermal radiation parameter R on
the temperature distribution for Cu-water nanofluid. It is obvious that
with increasing of R the thermal boundary layer thickness of the flow
increases.

Fig. 10 represents the effect of Schmidt number Sc on the concentration
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profiles of the flow. According to this figure the concentration and the
thickness of boundary layer decrease by increasing of Sc.

The influence of the chemical reaction coefficient λ on the concentration
profiles is shown in Fig. 11. It can be seen that the concentration and
the thickness of concentration boundary layer of the nanofluids decrease
with increasing the value of λ.

From equations (15)-(17), it is clearly observed that the thermal radia-
tion on the velocity and concentration, chemical reaction and Schmidt
number on the velocity and temperature do not show any influence.

Tables 2 and 3 display the influence of the governing parameters on
the heat transfer and mass transfer coefficients for Cu-water, Al2O3-
water and Ag-water nanofluids. The tables also provide a comparison
between the presented method, numerical method based on fourth-order
RungeKutta method and shooting method, and the DTM-BF method
[57]. From the Table 2, it can be seen that increase in R and φ declines
the heat transfer coefficients. Table 3 shows that, the mass transfer co-
efficients increases by increasing the Sc parameter while an increase in
φ has slight effect on the mass transfer coefficients.

Fig. 12 shows the graphical representations for the various nanoparticles
on the skin friction, local Nusselt number and local Sherwood number,
respectively. From Fig. 12(a), it can be seen that skin friction coefficient
is to increase with the increase of φ for Cu-water nanofluid. Increasing
the nanoparticle volume fraction decreases the skin friction coefficient
for Ag-water nanoparticle. An enhancement in φ have a negligible ef-
fect in the skin friction of Al2O3-water. The variation of local Nusselt
number for different values of φ is shown in Fig. 12(b). It is observed
that an increase in the value of nanoparticle volume fraction parameter
decreases the local Nusselt number of the three nanoparticles Cu, Al2O3

and Ag. Fig. 12(c) shows that local Sherwood number has slight changes
for different values of nanoparticle volume fraction parameter. Never-
theless, for Cu-water, local Sherwood number grows when the φ is in-
creased. Nanoparticle volume fraction parameter declines the local Sher-
wood number of the Ag-water nanofluid. The local Sherwood number
has slight change for Al2O3-water with the increase in φ.
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The effects of the suction/blowing parameter, the magnetic parameter
and the permeability parameter on local Nusselt and Sherwood numbers
are displayed in Fig. 13. For all nanofluid, the local Nusselt and Sher-
wood number are an increasing function of each of the suction/blowing
parameter, the magnetic parameter and the permeability parameter.

The effects of the suction/blowing parameter and the volume fraction of
nanofluid on the Nusselt and Sherwood number are shown in Figs. 14. For
a fixed value of S, the Nusselt and Sherwood number have slight change
for diffrenet values of φ.

8. Conclusions

In this study, the MHD flow and radiation heat transfer of nanofluid
against a flat plate in porous medium with variable surface heat flux
and chemical reaction was investigated using the exponential Bernstein
collocation method (EBCM). The difficulty in this type of problems,
due to the existence of its boundary condition in the infinity, is over-
come here. The effects of various parameters on the velocity, tempera-
ture and concentration distribution are discussed with the help of graphs
for Cu-water, Al2O3-water and Ag-water nanofluids. The influence of
the nanoparticle volume fraction parameters on the skin friction, lo-
cal Nusselt number and local Sherwood number is also examined. The
results obtained from EBCM are in excellent agreement with those ob-
tained from numerical solutions by fourth-order Runge-Kutta method
and DTM-BF method [57]. It is worth noting that the proposed method
in the current paper can be extended to solve similar nonlinear problems
in fluid mechanics.
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Figure 2. Effect of the φ on the velocity, temperature and
concentration profiles for Cu-water nanofluid with
P = 0.5, R = S = 1,M = 10−12, Sc = λ = 1

Figure 3. Effect of types of the nanofluids on the velocity,
temperature and concentration profiles with

P = S = 1, R = 1,M = 10−12, φ = 0.1, Sc = λ = 1.
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Figure 2: Effect of the φ on the velocity, temperature and concentration profiles for
Cu-water nanofluid with P = 0.5, R = S = 1,M = 10−12, Sc = λ = 1
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Figure 3: Effect of types of the nanofluids on the velocity, temperature and concentration
profiles with P = S = 1, R = 1,M = 10−12, φ = 0.1, Sc = λ = 1.
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Cu-water nanofluid with P = 0.5, R = S = 1,M = 10−12, Sc = λ = 1
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Figure 3: Effect of types of the nanofluids on the velocity, temperature and concentration
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A NUMERICAL SIMULATION OF MHD FLOW AND ... 55

Figure 4. Absolute of the RESf (η), RESθ(η) and RESg(η) for the
different values φ with P = 0.5, R = S = 1,M = 10−12, Sc = λ = 1.

Figure 5. Absolute of the RESf (η), RESθ(η) and RESg(η) for the
different nanofluid with P = S = 1, R = 1,M = 10−12, φ = 0.1,

Sc = λ = 1.
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Figure 6. Effect of the suction/blowing parameter S on the velocity,
temperature and concentration profiles for Cu-water nanofluid with

P = 0.2, R = 1,M = 10−12, φ = 0.1, Sc = λ = 1

Figure 7. Effect of the magnetic parameter M on the velocity,
temperature and concentration profiles for Cu-water nanofluid with

P = 0.5, R = S = 1, φ = 0.1, Sc = λ = 1
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Figure 6: Effect of the suction/blowing parameter S on the velocity, temperature and
concentration profiles for Cu-water nanofluid with P = 0.2, R = 1,M = 10−12, φ = 0.1, Sc =
λ = 1
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Figure 7: Effect of the magnetic parameter M on the velocity, temperature and concen-
tration profiles for Cu-water nanofluid with P = 0.5, R = S = 1, φ = 0.1, Sc = λ = 1.
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Figure 6: Effect of the suction/blowing parameter S on the velocity, temperature and
concentration profiles for Cu-water nanofluid with P = 0.2, R = 1,M = 10−12, φ = 0.1, Sc =
λ = 1
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Figure 7: Effect of the magnetic parameter M on the velocity, temperature and concen-
tration profiles for Cu-water nanofluid with P = 0.5, R = S = 1, φ = 0.1, Sc = λ = 1.
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Figure 8. Effect of the permeability parameter P on the velocity,
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Figure 8: Effect of the permeability parameter P on the velocity, temperature and
concentration profiles for Cu-water nanofluid with M = 10−12, R = S = 1, φ = 0.1, Sc =
λ = 1.
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Figure 9: Effect of the radiation parameter R on the temperature profiles for Cu-water
nanofluid with M = 10−12, S = 1, P = 0.5, φ = 0.1, Sc = λ = 1.
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Figure 8: Effect of the permeability parameter P on the velocity, temperature and
concentration profiles for Cu-water nanofluid with M = 10−12, R = S = 1, φ = 0.1, Sc =
λ = 1.
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Figure 9: Effect of the radiation parameter R on the temperature profiles for Cu-water
nanofluid with M = 10−12, S = 1, P = 0.5, φ = 0.1, Sc = λ = 1.
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Figure 10: Effect of the Schmidt number Sc on the concentration profiles for Cu-water
nanofluid with M = 10−12, P = S = λ = R = 1, φ = 0.1.
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Figure 11: Concentration profiles for different values of the chemical reaction coefficient
λ for Cu-water nanofluid with M = 10−12, P = S = Sc = R = 1, φ = 0.1.
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Figure 10: Effect of the Schmidt number Sc on the concentration profiles for Cu-water
nanofluid with M = 10−12, P = S = λ = R = 1, φ = 0.1.
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Figure 11: Concentration profiles for different values of the chemical reaction coefficient
λ for Cu-water nanofluid with M = 10−12, P = S = Sc = R = 1, φ = 0.1.
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Figure 12: Local skin friction (f (0)), Local Nusselt number(−θ(0)), Local Sherwood
number(−g(0)) for different nanofluids with M = 10−12, Sc = R = S = 1, P = 0.5

�� ���� ���� ���� ���� � ��� ��� ��� ��� �
�

���

�

���

�

���

�

�

�
�

��
�
�

���

��

��
�
�

�

��

�� ���� ���� ���� ���� � ��� ��� ��� ��� �
���

�

���

���

���

���

�

�

�
�

��
�
�

���

��

��
�
�

�

��

� � � � � � � � � ��

����
���

����

���

����

���

����

���

����

���

�

�
��

�
�

���

��

��
�
�

�

��

� � � � � � � � � ��

����
���

���

����

����

����

����

����

����

����

����

����

�

�

�
��

�
�

���

��

��
�
�

�

��



28 E. Hosseini, M. Heydari, G.B. Loghmani and M.M. Rashidi

� ���� ���� ���� ���� ��� ���� ���� ���� ���� ���
�

���

�

���

�

��
��

�
�

���

��

��
�
�

�

��

� ���� ���� ���� ���� ��� ���� ���� ���� ���� ���
�

���

���

���

���

���

���

���

���

���

�

�

�
��

�
�

���

��

��
�
�

�

��

� ���� ���� ���� ���� ��� ���� ���� ���� ���� ���
����

���

����

����

����

����

����

����

����

����

�

�
�

��
�
�

���

��

��
�
�

�

��

Figure 12: Local skin friction (f (0)), Local Nusselt number(−θ(0)), Local Sherwood
number(−g(0)) for different nanofluids with M = 10−12, Sc = R = S = 1, P = 0.5
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Figure 13. Local Nusselt number(−θ(0)) and Local Sherwood
number(−g(0)) for the different nanofluids; (a), (b) with
M = 10−12, Sc = λ = R = 1, P = 0.5, φ = 0.1; (c), (d) with
Sc = λ = R = S = 1, P = 0.5, φ = 0.1 and (e), (f) with

M = 10−12, Sc = λ = R = S = 1, φ = 0.1.

Figure 14. Local Nusselt number(−θ(0)) and Local Sherwood
number(−g(0)) for different value nanoparticle volume friction and the

suction/blowing parameter for Cu-water nanofluid with
M = 10−12, Sc = λ = R = 1, P = 0.5.
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Figure 13: Local Nusselt number(−θ(0)) and Local Sherwood number(−g(0)) for the
different nanofluids; (a), (b) with M = 10−12, Sc = λ = R = 1, P = 0.5, φ = 0.1; (c), (d)
with Sc = λ = R = S = 1, P = 0.5, φ = 0.1 and (e), (f) with M = 10−12, Sc = λ = R = S =
1, φ = 0.1.
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Figure 14: Local Nusselt number(−θ(0)) and Local Sherwood number(−g(0)) for
different value nanoparticle volume friction and the suction/blowing parameter for Cu-water
nanofluid with M = 10−12, Sc = λ = R = 1, P = 0.5.
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Figure 13: Local Nusselt number(−θ(0)) and Local Sherwood number(−g(0)) for the
different nanofluids; (a), (b) with M = 10−12, Sc = λ = R = 1, P = 0.5, φ = 0.1; (c), (d)
with Sc = λ = R = S = 1, P = 0.5, φ = 0.1 and (e), (f) with M = 10−12, Sc = λ = R = S =
1, φ = 0.1.
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Figure 14: Local Nusselt number(−θ(0)) and Local Sherwood number(−g(0)) for
different value nanoparticle volume friction and the suction/blowing parameter for Cu-water
nanofluid with M = 10−12, Sc = λ = R = 1, P = 0.5.
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Table 2: The value of −θ(0) for different values of φ,R when
P = 0.5,M = 10−12, P r = 6.2
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Table 2: The value of −θ(0) for different values of φ,R when P =
0.5,M = 10−12, P r = 6.2

Cu-water φ R EBCM method Numerical DTM-BF[57]
0 1 2.93179710 2.93178297 2.9174

2 2.04184021 2.04184021 2.0294
4 1.38340295 1.38340295 1.3733

0.1 1 2.69804743 2.69804743 2.6876
2 1.96056847 1.96056847 1.9518
4 1.36644320 1.36644320 1.3597

0.2 1 2.42892277 2.42892277 2.4201
2 1.83500213 1.83500213 1.8277
4 1.31549420 1.31549419 1.3101

Al2O3 φ R EBCM method Numerical DTM-BF [57]
0 1 2.93178297 2.93178297 2.9174

2 2.04184021 2.04184021 2.0294
4 1.38340295 1.38340295 1.3733

0.1 1 2.63895590 2.63895590 2.6269
2 1.91088707 1.91088707 1.9007
4 1.32919074 1.32919073 1.3211

0.2 1 2.34650710 2.34650710 2.3358
2 1.76416100 1.76416100 1.7551
4 1.26121445 1.26121445 1.2542

Ag-water φ R EBCM method Numerical DTM-BF [57]
0 1 2.93178297 2.93178297 2.9174

2 2.04184021 2.04184021 2.0294
4 1.38340295 1.38340295 1.3733

0.1 1 2.44536904 2.44536904 2.4348
2 1.77740432 1.77740432 1.7688
4 1.24151765 1.24151765 1.2351

0.2 1 2.01155861 2.01155861 2.0037
2 1.52515709 1.52515709 1.5191
4 1.10041408 1.10041409 1.0966
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Table 3: The value of −g(0) for different values of φ, Sc when
P = 0.5,M = 10−12, λ = 1
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Table 3: The value of −g(0) for different values of φ, Sc when P =
0.5,M = 10−12, λ = 1

Cu-water φ Sc EBCM method Numerical DTM-BF [57]
0 0.25 0.84744828 0.84744970 0.8438

0.5 1.25732922 1.25732921 1.2530
1 1.92281238 1.92281238 1.9172

0.1 0.25 0.86185861 0.86185857 0.8428
0.5 1.27997745 1.27997745 1.2776
1 1.95614475 1.95614475 1.9525

0.2 0.25 0.86531695 0.86531691 0.8525
0.5 1.28554259 1.28554259 1.2838
1 1.96454941 1.96454941 1.9616

Al2O3 φ Sc EBCM method Numerical DTM-BF [57]
0 0.25 0.84744974 0.84744970 0.8438

0.5 1.25732922 1.25732921 1.2530
1 1.92281238 1.92281238 1.9172

0.1 0.25 0.84990964 0.84990960 0.8472
0.5 1.26118727 1.26118727 1.2580
1 1.92848139 1.92848139 1.9241

0.2 0.25 0.84829471 0.84829467 0.8464
0.5 1.25872893 1.25872893 1.2561
1 1.92499188 1.92499188 1.9211

Ag-water φ Sc EBCM method Numerical DTM-BF [57]
0 0.25 0.84744974 0.84744970 0.8438

0.5 1.25732922 1.25732921 1.2530
1 1.92281238 1.92281238 1.9172

0.1 0.25 0.84018109 0.84083841 0.8397
0.5 1.24740659 1.24740659 1.2453
1 1.90893530 1.90893530 1.9055

0.2 0.25 0.83357955 0.83357950 0.8340
0.5 1.23668395 1.23668395 1.2359
1 1.89415921 1.89415921 1.8920
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