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Abstract. We introduce the notion of J-Armendariz rings, which are
a generalization of weak Armendariz rings and investigate their proper-
ties. We show that local rings are J-Armendariz. Also, we prove that a
ring R is J-Armendariz if and only if R[[x]] is J-Armendariz. It is shown
that the J-Armendariz property is not Morita invariant. As a specific
case, we show that the class of J-Armendariz rings lies properly between
the class of one-sided quasi-duo rings and the class of perspective rings.
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1. Introduction

Throughout this article, R denotes an associative ring with identity. For a ring
R, Nil(R), Mn(R), Tn(R) and eij denote the set of nilpotents elements in R,
the n × n matrix ring over R, the n × n upper triangular matrix ring over R
and the matrix with (i, j)-entry 1 and elsewhere 0, respectively. In 1997, Rege
and Chhawchharia introduced the notion of an Armendariz ring. They called a
ring R Armendariz if whenever polynomials f(x) = a0 + a1x+ · · ·+ anx

n and
g(x) = b0+ b1x+ · · ·+ bmx

m ∈ R[x] satisfy f(x)g(x) = 0 then aibj = 0 for all i
and j. The name “Armendariz ring” is chosen because Armendariz [3, Lemma
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1] proved that reduced rings (that is a ring without nonzero nilpotents) satisfy
this condition. A number of properties of Armendariz rings have been studied
in [2, 3, 12, 13, 18]. So far Armendariz rings are generalized in several forms
[11, 8, 16]. Liu and Zhao [16] called a ring R weak Armendariz if whenever
polynomials f(x) = a0+a1x+ · · ·+anx

n, g(x) = b0+ b1x+ · · ·+ bmx
m ∈ R[x]

satisfy f(x)g(x) = 0, then aibj ∈ Nil(R) for all i and j.
The Jacobson radical is an important tool for studying the structure of non-
commutative rings, and denoted by J(R). Motivated by the above definitions,
we investigate a generalization of weak Armendariz rings. We call a ring R,
J-Armendariz if whenever polynomials f(x) = a0 + a1x + · · · + anx

n and
g(x) = b0 + b1x + · · · + bmx

m ∈ R[x] satisfy f(x)g(x) = 0 then aibj ∈ J(R)
for all i and j. Clearly, for an artinian ring, weak Armendariz rings and J-
Armendariz rings are the same. Although Nil(R) does not always lie in the
J(R), we show weak Armendariz rings are J-Armendariz and local rings are
J-Armendariz too, but Example 2.4 shows that local rings are not necessarily
weak Armendariz. Thus J-Armendariz rings are a proper generalization of weak
Armendariz rings.
At last we study the relation of J-Armendariz rings with other classes of rings
such as: right (left) quasi duo rings, perspective rings, clean rings and strongly
π-regular rings. In [7], Garg et al., studied the modules whose any two iso-
morphic summands have a common complement. They called such modules
perspective. This property in rings turns out to be left-right symmetric, that
is, RR is perspective if and only if RR is perspective and they called such ring a
perspective ring. We show that a J-Armendariz ring R is perspective. However
there exists a perspective ring which is not J-Armendariz. On the other hand
a ring R is called right (left) quasi-duo if every maximal right (left) ideal of R
is two-sided. We prove that a right (left) quasi-duo ring is J-Armendariz, but
there exists a J-Armendariz ring R which is not right (left) quasi-duo. Therefore
the class of J-Armendariz rings lies properly between the class of right (left)
quasi-duo rings and the class of perspective rings.

2. J-Armendariz Property with Respect to Stan-
dard Constructions

In this section, J-Armendaiz rings are introduced as a generalization of weak
Armendariz rings. We study J-Armendariz property with respect to some stan-
dard constructions like direct product, factor rings, subrings, matrix rings,
corner rings, polynomial rings, etc.

Definition 2.1. A ring R is said to be J-Armendariz if for any nonzero poly-
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nomials f(x) =
n

i=0 aix
i and g(x) =

m
j=0 bjx

j ∈ R[x], f(x)g(x) = 0, implies
that aibj ∈ J(R) for each i, j.

We can easily show that weak Armendariz rings are J-Armendariz. For it, let R
be weak Armendariz and f(x) =

n
i=0 aix

i and g(x) =
m

j=0 bjx
j ∈ R[x]−{0}

such that f(x)g(x) = 0. Hence rf(x)g(x) = 0 for each r ∈ R and so raibj ∈
Nil(R) by hypothesis. This implies that aibj ∈ J(R), as desired. But Example
2.4 shows that J-Armendariz rings are not necessarily weak Armendariz.

Proposition 2.2. Let R be a ring and I an ideal of R such that R/I is J-
Armendariz. If I ⊆ J(R), then R is J-Armendariz.

Proof. It is clear after applying J(RI ) =
J(R)
I , when I ⊆ J(R). 

Corollary 2.3. Let R be any local ring. Then R is J-Armendariz.

One may ask whether local rings are weak Armendariz, but the following gives
a negative answer.

Example 2.4. Let F be a field, R =M2(F ) and R1 = R[[t]]. Consider the ring

S = {
∞

i=0 ait
i ∈ R1|a0 ∈ kI for k ∈ F},

where I is the identity matrix. It is obvious that S is local and so is J-
Armendariz by corollary 2.3. Now for f(x) = e11t − e12tx and g(x) = e21t +
e11tx ∈ S[x], we have f(x)g(x) = 0, but (e11t)2 is not nilpotent in S, and so S
is not weak Armendariz.

Let Rt be a ring for each t ∈ I. Note that since


t∈I J(Rt) = J(


t∈I Rt), then
t∈I Rt is J-Armendariz if and only if Rt is J-Armendariz, for each t ∈ I.

Theorem 2.5. A ring R is J-Armendariz, if and only if R[[x]] is J-Armendariz.

Proof. Let R be a J-Armendariz ring. Since R ∼= R[[x]]
x , then by proposition

2.2, R[[x]] is J-Armendariz. Conversely, assume R[[x]] is J-Armendariz, and
f(y) =

n
i=0 aiy

i and g(y) =
m

j=0 bjy
j are polynomials in R[y], such that

f(y)g(y) = 0. Since aibj ∈ R ⊆ R[[x]] and R[[x]] is J-Armendariz, then aibj ∈
J(R[[x]]) ∩R. Therefore aibj ∈ J(R), and so R is J-Armendariz. 

The following example shows that the polynomial ring over a J-Armendariz ring
need not be J-Armendariz in general and so the subring of a J-Armendariz ring
is not necessarily J-Armendariz.

Example 2.6. Take S to be the ring as in Example 2.4. Then S[x] is not
J-Armendariz. For it, let f(y) = e11tx − e12txy and g(y) = e21tx + e11txy be



66 M. SANAEI, Sh. SAHEBI AND H. H. S. JAVADI

polynomials in S[x][y]. Then f(y)g(y) = 0, but (e11tx)2 does not belong to
J(S[x]).

Proposition 2.7. Let R be a ring.
(1) If R[x] is J-Armendariz then R is weak Armendariz and so R is J-Armendariz.
(2) If R is a J-Armendariz ring and J(R)[x] ⊆ J(R[x]), then R[x] is J-
Armendariz.

Proof. (1) Suppose that R[x] is a J-Armendariz ring. Let f(y) =
n

i=0 aiy
i and

g(y) =
m

j=0 bjy
j be nonzero plynomials inR[y], such that f(y)g(y) = 0. By the

fact that J(R[x]) = I[x] for some nil ideal I of R [1], aibj ∈ R∩ I[x] ⊆ Nil(R),
and so R is weak Armendariz.

(2) Suppose that R is J-Armendariz and J(R)[x] ⊆ J(R[x]). Let F (y) = f0 +
f1y + · · ·+ fny

n and G(y) = g0 + g1y + · · ·+ gmy
m be polynomials in R[x][y],

with F (y)G(y) = 0. We also let fi(x) = ai0 + ai1x + ai2x
2 + · · · + aiωix

ωi

and gj(x) = bj0 + bj1x + bj2x
2 + · · · + bjνj x

νi ∈ R[x] for each 0  i  n and
0  j  m. Take a positive integer t that t  deg(f0(x)) + deg(f1(x)) + · · · +
deg(fn(x)) + deg(g0(x)) + deg(g1(x)) + · · · + deg(gm(x)), where the degree is
as polynomials in x and the degree of zero polynomial is taken to be 0. Then
F (xt) = f0+f1xt+ · · ·+fnxtn and G(xt) = g0+g1xt+ · · ·+gmxtm ∈ R[x] and
the set of coefficients of the fi’s (resp. gj ’s) equals the set of coefficients of the
F (xt) (resp. G(xt)). Since F (y)G(y) = 0, then F (xt)G(xt) = 0. So aisibjrj ∈
J(R), where 0  si  ωi, 0  rj  νj . By hypothesis we have J(R)[x] ⊆
J(R[x]), and so figj ∈ J(R[x]). It implies that R is J-Armendariz. 

Note that, Mn(R) is not J-Armendariz for any nonzero ring R and n  2,
i.e. the J-Armendariz property is not Morita invariant.

Example 2.8. Let R be a ring and S = M2(R). If f(x) = e12 − e11x and
g(x) = e11+e12−(e21+e22)x, then f(x)g(x) = 0. But e11(e11+e12) = e11+e12
is not in J(S). Thus S is not J-Armendariz.

Corollary 2.9. Every J-Armendariz ring R is directly finite.

Proof. If R is not directly finite, then R contains an infinite set of matrix units
{e11, e12, e13, . . . , e21, e22, e23, . . .} by [9, proposition 5.5]. This is a contradiction
by Example 2.8. 

The next example shows that there exists a J-Armendariz ring R such that
R/J(R) is not J-Armendariz and so the homomorphic image of J-Armendariz
rings need not to be J-Armendariz.

Example 2.10 Let R denote the localization of the ring Z of integers at the
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prime ideal 3. Consider the quaternions Q over R, that is a free R-module
with basis 1, i, j, k and multiplication satisfying i2 = j2 = k2 = −1, ij =
k = −ji. Then Q is a noncommutative domain with J(Q) = 3Q, and so is
J-Armendariz. But Q/J(Q) is isomorphic to the 2-by-2 full matrix ring over
Z3 and is not J-Armendariz by Example 2.8.

Let R and S be two rings and M be an (R,S)-bimodule. This means that M is
a left R-module and a right S-module such that (rm)s = r(ms) for all r ∈ R,
m ∈M , and s ∈ S. Given such a bimodule M we can form

T =
�
R M
0 S


=

�
r m
0 s


: r ∈ R,m ∈M, s ∈ S



and definition a multiplication on T by using formal matrix multiplication:
�
r m
0 s

�
r m

0 s


=

�
rr rm+ms

0 ss


.

This ring construction is called triangular ring T .

Proposition 2.11. Let R and S be two rings andM be an (R,S)-bimodule. Let
T be the triangular ring T =

�
R M
0 S


. Then the rings R and S are J-Armendariz

if and only if T is J-Armendariz.

Proof. Let R and S be J-Armendariz. Take I = ( 0 M
0 0


, therefore T/I ∼= R×S

is J-Armendariz and since I ⊆ J(T ) =
� J(R) M

0 J(S)


, then T is J-Armendariz by

proposition 2.2. Conversely, let T be a J-Armendariz ring, fr(x) = r0 + r1x+
· · · + rnx

n, gr(x) = r0 + r1x + · · · + rmx
m ∈ R[x], such that fr(x)gr(x) = 0,

and fs(x) = s0 + s1x+ · · ·+ snx
n, gs(x) = s0 + s1x+ · · ·+ smx

m ∈ S[x], such
that fs(x)gs(x) = 0. If

f(x) =
�
r0 0
0 s0


+

�
r1 0
0 s1


x+ · · ·+

�
rn 0
0 sn


xn and

g(x) =
� r0 0

0 s0


+

� r1 0

0 s1


x+ · · ·+

� rm 0

0 sm


xm ∈ T [x]

Then from fr(x)gr(x) = 0 and fs(x)gs(x) = 0 it follows that f(x)g(x) =

0. Since T is a J-Armendariz ring,
�
ri 0
0 si

� rj 0

0 sj


∈ J(T ) =

� J(R) 0
0 J(S)


. Thus

rir

j ∈ J(R) and sis


j ∈ J(S) for any i, j. This shows that R and S are J-

Armendariz. 

Recall that a ring R is said to be abelian if every idempotent of it is cen-
tral. Armendariz rings are abelian [13, Lemma 7], but J-Armendariz rings need
not to be abelian in general. For example, let F be a field then R = T2(F ) is
J-Armendariz by proposition 2.11, but it is not an abelian ring.

Proposition 2.12. Let R be a J-Armendariz ring. Then for each idempotent
e of R, eRe is J-Armendariz. The converse holds if e is a central idempotent.
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Proof. Let f(x) =
n

i=0 aix
i, g(x) =

m
j=0 bjx

j ∈ (eRe)[x] be such that
f(x)g(x) = 0. Since R is J-Armendariz and ai, bj ∈ eRe ⊆ R, then we have
aibj ∈ J(R)∩eRe = J(eRe). This means that eRe is J-Armendariz. Conversely,
let eRe be a J-Armendariz ring and f(x) =

n
i=0 aix

i, g(x) =
m

j=0 bjx
j ∈

R[x], such that f(x)g(x) = 0. By the hypothesis, 0 = ef(x)eg(x)e ∈ (eRe)[x],
and since eRe is J-Armendariz, we have aibj ∈ J(eRe) = J(R) ∩ eRe. Thus R
is J-Armendariz. 

3. The Relation of J-Armendariz Rings with
other Classes of Rings

Let M be a module and A, B be two summands of M . We write A ∼ B to
denote A and B have a common complement i.e., there exists submodule C
such that M = A⊕ C = B ⊕ C. It is clear that A ∼ B implies that A ∼= B. A
module M is perspective when A ∼= B implies A ∼ B for any two summands
A, B ofM . It is clear that perspective modules satisfy the internal cancellation
property in the sense that complements of isomorphic summands are isomorphic
(see [6]).
In this section we give a new class of rings that are J-Armendariz.
A ring R is called right (left) quasi-duo if every maximal right (left) ideal of R
is two-sided. If R is a right (left) quasi-duo ring, then R/J(R) is reduced by
[14, Proposition 4.3]. So R/J(R) is Armendariz, and hence R is J-Armendariz
by Proposition 2.2. So a right (left) quasi-duo ring is J-Armendariz but there
exists a J-Armendariz ring R which is not right (left) quasi-duo by Example
3.1.
In [7, Corollary 4.8] it is proved that every right (left) quasi-duo ring is a per-
spective ring. Moreover, in this section we prove that every J-Armendariz ring
is perspective. One may ask a perspective ring is J-Armendariz. The general
answer is negative and so J-Armendariz rings lie properly between right (left)
quasi duo rings and perspective rings.
The following example shows that J-Armendariz rings need not to be right
quasi-duo.

Example 3.1. Take any right primitive domain R that is not a division ring
(e.g. the free algebra R = Qx, y). Then R is J-Armendariz, but R is not right
quasi-duo by [14, Proposition 4.1].

Proposition 3.2. Let R be a J-Armendariz ring, then R is perspective, but the
converse is not true in general.

Proof. Let R be a J-Armendariz ring. Then for a, b ∈ R ab = 0 implies
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aNil(R)B ⊆ J(R). In fact, for 0 = c ∈ Nil(R) there exist n  1 such that
cn = 0, and so a(1 − cx)(1 + cx + · · · + cn−1xn−1)b = 0. This implies that
acb ∈ J(R). Now taking a = e = e2, b = (1−e) and c = er(1−e), then we have
eR(1− e) ⊆ J(R). Thus by [?, Theorem 4.7], R is a perspective ring. However
there exists a perspective ring which is not J-Armendariz. Let R be a field. Then
Mn(R) is perspective by [7, Example 5]. But Mn(R) is not J-Armendariz for
n  2. 

Corollary 3.3. Let R be a J-Armendaiz ring such that idempotents lift modulo
J(R), then R/J(R) is abelian.

Proof. Let ē2 = ē be an idempotent in R̄ = R/J(R). Since idempotents lift
modulo J(R), then for each r ∈ R, e(r − re) ∈ J(R) and (r − er)e ∈ J(R) by
the proof of Proposition 3.2. Therefore R/J(R) is abelian. 

Following [17], we define an element x of a ring R to be clean if there is an
idempotent e ∈ R such that x − e is a unit of R. A clean ring is defined to
be one in which every element is clean. Clean rings were initially developed
in [17] as a natural class of rings which have the exchange property. A ring R
is an exchange ring if for every right R-module AR and two decompositions
AR = M


N =


i∈I
Ai where MR

∼= AR, and the index set I is finite, there

exist submodules Ai ⊆ Ai such that A =M ⊕ (

i∈I
Ai). A ring R is an exchange

ring if and only if for any x ∈ R there exists an idempotent e ∈ R such that
(1− e) ∈ R(1− x) (cf. [20]).
It is known [17, Proposition 1.8] that clean rings are exchange and the two
concepts are equivalent for abelian rings. A ring R is said to have stable range
one provided that for any a, b ∈ R, aR+ bR = R implies that there exists some
y ∈ R such that a+ by is unit in R. Now we have the following:

Proposition 3.4. Let R be a an exchange ring. If R is a J-Armendariz ring
then R is clean with stable range one.

Proof. Let R be a J-Armendariz and exchange ring. In fact R is an exchange
ring if and only if R/J(R) is an exchange ring and idempotents can be lifted
modulo J(R) [17]. Then R/J(R) is abelian by Corollary 3.3. Therefore R/J(R)
is clean and so R is clean by [10, Proposition 6]. Clearly R/J(R) has stable
rang one by [21, Theorem 6]. Hence R has stable rang one by [19, Theorem
22]ln. 

Following [4], an element a ∈ R is called strongly π-regular if an ∈ Ran+1 ∩
an+1R for some positive integer n. Also, an element r in a ring R is called
nil clean if there is an idempotent e ∈ R and a nilpotent b ∈ R such that r =
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e+b. The element r is further called strongly nil clean if such an idempotent and
nilpotent can be chosen such that be = eb. A ring is called nil clean (respectively,
strongly nil clean) if every one of its elements is nil clean (respectively, strongly
nil clean). In [4], it is shown that every strongly nil clean ring is strongly π-
regular. Now we have the following:

Proposition 3.5. Let R a nil clean ring. If R is J-Armendariz and J-adically
complete, then R is strongly π-regular.

Proof. Let R̄ = R/J(R). Since R is J-adically complete, then idempotents lift
modulo J(R) by [15, Theorem 21.31]. Therefore R̄ is abelian by Proposition
3.3. On the other hand, since R is nil clean, then R̄ is nil clean by [4, Corollary
3.17]. Therefore R̄ is strongly nil clean. Suppose that a ∈ R, then for each
ā ∈ R̄, we may write ā = ē + b̄ for some idempotent ē and some nilpotent
b̄ which commute. By [4, Proposition 3.5], ā = (1 − ē) + (2ē − 1 + b̄) is thus
strongly π-regular decomposition of ā. Following [5, Corollary 6] a is strongly
π-regular in R and the proof is complete. 
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e+b. The element r is further called strongly nil clean if such an idempotent and
nilpotent can be chosen such that be = eb. A ring is called nil clean (respectively,
strongly nil clean) if every one of its elements is nil clean (respectively, strongly
nil clean). In [4], it is shown that every strongly nil clean ring is strongly π-
regular. Now we have the following:

Proposition 3.5. Let R a nil clean ring. If R is J-Armendariz and J-adically
complete, then R is strongly π-regular.

Proof. Let R̄ = R/J(R). Since R is J-adically complete, then idempotents lift
modulo J(R) by [15, Theorem 21.31]. Therefore R̄ is abelian by Proposition
3.3. On the other hand, since R is nil clean, then R̄ is nil clean by [4, Corollary
3.17]. Therefore R̄ is strongly nil clean. Suppose that a ∈ R, then for each
ā ∈ R̄, we may write ā = ē + b̄ for some idempotent ē and some nilpotent
b̄ which commute. By [4, Proposition 3.5], ā = (1 − ē) + (2ē − 1 + b̄) is thus
strongly π-regular decomposition of ā. Following [5, Corollary 6] a is strongly
π-regular in R and the proof is complete. 
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