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Abstract. The clique polynomial of a graph G is the ordinary generat-
ing function of the number of complete subgraphs (cliques) of G. In this
paper, we introduce a new vertex-weighted version of these polynomials.
We also show that these weighted clique polynomials have always a real
root provided that the weights are non-negative real numbers. As an
application, we obtain a no-homomorphism criteria based on the largest
real root of our vertex-weighted clique polynomial.
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1 Introduction

The dependence polynomial was first introduced by Fisher [1], while
working on the problem of counting the number of words of length n
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from the alphabet of m letters so that some pairs of them can commute.
Fisher and Solow [2] introduced the dependence polynomial, as follows:

fG(x) = 1− c1x+ c2x
2 − c3x

3 + · · ·+ (−1)ωcωx
ω; (1)

where ω is the size of the largest clique in G and ci denotes the number of
complete subgraphs of size i in G. Fisher [1], showed that the generating
function of the above word-counting problem is 1

fG(x) .

If we change the sign of all negative coefficients in fG(x) to positive
signs, we obtain a polynomial which is called the clique polynomial and
denoted by C(G, x). Hajiabolhasan and Mehrabadi [3] showed that for
any simple graph G, the clique polynomial of G has always a real root
using basic counting techniques, induction and the intermediate value
theorem. As an immediate consequence, they obtained a new generating
function proof of Mantel’s theorem [4, p.41] for triangle-free graphs. In
this paper, we will continue the same line of research by introducing a
new weighted version of the clique polynomial. Our main goal here is
to show that how one can use the largest real root of this new graph
polynomial to obtain a no-homomorphism criteria.

2 Weighted Clique Polynomials

Throughout the paper we will assume that G is a simple graph. The
graph terminology that we use is standard and generally follows [4]. For
a given graph G, we denoted by V (G) its set of vertices and by E(G) its
set of edges. When S ⊆ V (G), the induced subgraph G[S] consists of S
and all edges whose endpoints are connected in S. The neighborhood of
a vertex u, written N(u), is the set of vertices adjacent to u. We write
G − u for the subgraph of G obtained by deleting a vertex u. We also
write G− uv for the subgraph obtained by deleting an edge uv ∈ E(G).
Here by an i-clique, i ≥ 1, we mean a complete subgraph of G with i
vertices. The clique number of a graph G denoted by ω is the size of
the largest clique in G. We will associate an indeterminate wi with each
vertex i of G which can be viewed as the weight of the vertex i. For
our purposes, we will assume that all weights are non-negative integers.
We define the weight of an i-clique as the product of the weights of its



A Generalization of Clique Polynomials and Graph Homomorphism 3

vertices. Now, we are ready to give the definition of the weighted clique
polynomial.

Definition 2.1. Let G be a graph with n vertices. We define the
weighted clique polynomial of G denoted by C(G, x;−→w ), as follows

C(G, x;−→w ) =

ω∑
i=0

ci(
−→w )xi, (2)

where −→w = (w1, . . . , wn) is the weight vector of vertices of G and
ci(

−→w ), i ≥ 1, denotes the sum of the weights of all i-cliques in G.

By convention, we assume c0(
−→w ) = 1 for any weight vector −→w . In

particular, if all weights are equal to one then we obtain the clique
polynomial of G [3].

Example 2.2. Let G = K3 be the complete graph with three vertices
and the weight vector −→w = (w1, w2, w3). Then, we have

C(K3, x;
−→w ) = 1+(w1+w2+w3)x+(w1w2+w1w3+w2w3)x

2+(w1w2w3)x
3.

(3)

The generalized Newton binomial identity can be read, as follows

(1 + x1)(1 + x2) · · · (1 + xn) =
∑

I⊆{1,2,...,n}

(∏
i∈I

xi

)
. (4)

Hence, the equality (3) is equivalent to

C(K3, x;
−→w ) = (1 + w1x)(1 + w2x)(1 + w3x). (5)

Example 2.3. Let G = C4 be the cycle of length four and the weight
vector w = (1, 2, 3, 4). Then, we get

C(C4, x;
−→w ) = 1 + 10x+ 24x2 = (1 + 4x)(1 + 6x). (6)

It seems that as in the case of the clique polynomials, we have always
a real root for the weighted clique polynomials for any arbitrary choices
of non-negative weights. Next, we present the necessary tools for proving
this interesting result.
The following counting lemma is key for proving the existence of a real
root for the weighted clique polynomials with non-negative weights.
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Lemma 2.4. Let G be a graph and u, v ∈ V (G) with non-negative
weights wu and wv. Then, we have

i) C(G, x;−→w ) = C(G− u, x;−→w 1) + wuxC(G[N(u)], x;−→w 2), (7)

ii) C(G, x;−→w ) = C(G− uv, x;−→w 3)

+ wuwvx
2C(G[N(u) ∩N(v)], x;−→w 4), (8)

where uv ∈ E(G) and −→w i’s are the weight vectors for their corresponding
subgraphs.

Proof. Assume that Ki is an i-clique in G.

i) If u ∈ Ki, then Ki is an i-clique in G− u. Otherwise, u ∈ Ki and
Ki − u is an (i − 1)-clique in G[N(u)]. Now by the definition of
the weighted clique polynomial, we get the desired result.

ii) If Ki does not contain the edge uv, then Ki is an i-clique in G−uv.
Otherwise, Ki − uv is an (i− 2)-clique in G[N(u) ∩N(v)]. Hence,
we get the desired result.

□
The join of two simple graphs G and H, written G∨H, is defined as

a graph with the vertex set V (G)∪V (H) and the edge set E(G)∪E(H)∪
{xy|x ∈ V (G) ∧ y ∈ V (H)}. Considering the definition of the weighted
clique polynomials and in the same spirit of the above proof, we get the
following multiplicative property for the weighted clique polynomials.

Proposition 2.5. Let G and H be arbitrary graphs with their weight
vectors −→w 1 = (wg

1, . . . , w
g
m) and −→w 2 = (wh

1 , . . . , w
h
n). Then, we have

C(G ∨H,x;−→w ) = C(G, x;−→w 1)C(H,x;−→w 2), (9)

where
−→w = (wg

1, . . . , w
g
m, wh

1 , . . . , w
h
n). (10)

Definition 2.6. Let G be a graph and Z(G) be the set of all negative
real roots of C(G, x;−→w ). We define ζG by

ζG =

{
maxZ(G) if Z(G) ̸= ∅,
−∞ otherwise.
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Theorem 2.7. Let G be a graph and H its induced subgraph. Then
ζH ≤ ζG.

Proof. We proceed by induction on |V (G)| = n. If n = 1, 2, then
the assertion is easily followed. Suppose H is an induced subgraph
of G. Choose a vertex u of G so that H is also an induced subgraph
of G − u. Hence, it is sufficient to prove the assertion for G − u. If
Z(G − u) = ∅, by the definition of ζG−u, we are done. Otherwise,
plugging x = ζG−u into both sides of (7), we get C(G, ζG−u;

−→w 1) =
wuζG−uC(G[N(u)], ζG−v;

−→w 2). Now by mathematical induction, we have
C(G[N(u)], ζG−u;

−→w 2) ≥ 0, because, otherwise we get C(G[N(u)], ζG−u;
−→w 2) <

0, where by the intermediate value theorem implies that C(G[N(u)], ζG−u;
−→w 2)

has a real root t so that t > ζG−u. This is equivalent to ζG[N(u)] > ζG−u,
which is a contradiction by the induction hypothesis. Thus, we get
C(G, ζG−u;

−→w 1) ≤ 0. Applying the intermediate value theorem once
again, we obtain the desired result. □

Corollary 2.8. For any graph G, let wu be the weight of the vertex u
which has the maximum weights among all vertices. Then, −1

wu
≤ ζG < 0.

Proof. Let u be the vertex of G with the maximum weight wu and let
H be the subgraph G[u]. Then, clearly C(H,x;wu) = 1 + wux. Hence,
ζH = −1

wu
. Now applying Theorem 2.7 , we get ζG ≥ −1

wu
. □

Remark 2.9. It is worth to note that the above corollary shows that
the weighted clique polynomial has always a real root, provided that
the weights are non-negative real numbers and the weight vector is not
identically zero. But not all roots of a weighted clique polynomial are
necessarily real. For example, for the graph G1 with −→w = (1, 1, 1, 1, 1)
as depicted in Fig.1, we obtain

C(G1, x;
−→w ) = 1 + 5x+ 3x2 + x3. (11)

Since the quadratic polynomial d
dxC(G1, x;

−→w ) = 5 + 6x2 + 3x2 has the
discriminate ∆ = 9 − 15 = −6 < 0, then by the first derivative criteria
C(G1, x,

−→w ) is an increasing function on its domain and hence the clique
polynomial of G1 has only one real root.
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..
G1

Fig 1. The clique polynomial of the graph G1 has only one real root.

Definition 2.10. An independent set in a graph is a set of pairwise
nonadjacent vertices. The independence number of a graph G, written
α(G), is the maximum size of an independent set of vertices.

Proposition 2.11. Let G be a graph with n vertices and α(G) its inde-
pendence number. Let −→w = (w1, . . . , wn) be the weight vector of G with
w = min1≤i≤nwi. Then, we have α(G) ≤ −1

wζG
.

Proof. Assume that S = {i1, i2, . . . , ik} is an independent set of size
α(G) = k in G and H is the subgraph G[S]. Since H has no edges, we
obtain

C(H,x;−→w ) = 1 + (wi1 + wi2 + · · ·+ wik)x. (12)

Now, set w = min1≤i≤nwi. Then ξH = −1
wi1

+···+wik
≥ −1

α(G)w , and since

ζH ≤ ζG by Theorem 2.7, we finally get

α(G) ≤ −1

wζG
. (13)

□
As we already saw, when H is an induced subgraph of G we obtain
ζH ≤ ζG. Next, we show that for a spanning subgraph H of G we have
the reverse inequality; that is, ζH ≥ ζG.

Theorem 2.12. Let G be a graph and H its spanning subgraph. Then
ζH ≥ ζG.

Proof. We proceed by induction on the number of edges. It is sufficient
to prove the assertion for the case H = G− e, where e = uv is an edge
of G. Now by substituting ζG in both sides of (8), we get

C(G− uv, ζG;
−→w 3) = −wuwvζ

2
GC(G[N(u) ∩N(v)], ζG;

−→w 4). (14)
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Since G[N(u) ∩ N(v)] is an induced subgraph of G, then by Theorem
2.7 the right-hand side of (14) is negative which implies that C(G −
uv, ζG;

−→w 3) is also negative. Considering the fact that C(G−uv, 0;−→w 3) =
1 and applying the intermediate value theorem, we get the desired result.
□

3 Weighted Clique Polynomials and Homomor-
phisms

In this section we will discuss about one of the applications of the
weighted clique polynomials for obtaining a no-homomorphism criteria.
We first review some basics of graph homomorphism. The reader may
consult the reference [5].

Definition 3.1. Let G and H be two simple graphs. A homomorphism
of G to H, written as f : G −→ H is a mapping f : V (G) −→ V (H)
such that f(u)f(v) ∈ E(H) whenever uv ∈ E(G). A homomorphism of
G to H is also called an H coloring of G. we shall call a homomorphism
f : G −→ H surjective, if the mapping f : V (G) −→ V (H) is surjective.

Let G and H be two simple graphs and f : G −→ H a homo-
morphism. We associate a partition function θf with f consisting of
the preimages of f , i.e., the set f−1(x), x ∈ V (H). Clearly the set
Sx = f−1(x) must be independent set. Thus, the mapping θf partitions
the vertex set V (H) into independent sets.
It is not hard to see that every weighted clique polynomial with non-
negative integer weights can be viewed as the clique polynomial with
clusters of vertices. To see this, let G be a simple graph with the
vertex set V (G) = {v1, v2, . . . , vn} and the corresponding weight vec-
tor −→w = (w1, w2, . . . , wn). We define the blow-up graph Gb obtained
from G, as follows. The vertex set consists of the clusters of vertices
A1, A2, . . . , An where |Ai| = wi, 1 ≤ i ≤ n. Indeed, Ai is the blow-
up of the vertex vi with the weight wi. To obtain Gb, we replace each
edge e between the vertices vi and vj in G with the complete bipartite
graph Kwi,wj with bipartition (Ai, Aj). Now using the generalized New-
ton binomial identity (4) , it is easy to see that the (unweighed) clique
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polynomial of G is exactly the weighted clique polynomial Gb. That is

C(G, x) = C(Gb, x;
−→w ). (15)

Now we are at position to state the main result of this section.

Theorem 3.2. Let G and H be two simple graphs and f : G −→ H be
a surjective homomorphism. Then, we have

ζG ≥ ζH . (16)

Proof. Let V (H) = {v1, v2, . . . , vn}. Set−→w = (f−1(v1), f
−1(v2), . . . , f

−1(vn)).
Since f : G −→ H is a homomorphism, the partition function θf par-
titions the vertex set V (G) into independent sets Ai, i = 1, . . . , n, with
|Ai| = f−1(vi). Now the blow-up graph Gb with clusters of vertices Ai’s
has the weighted clique polynomial C(Gb, x;

−→w ). By surjectivity of f , its
clear that the blow-up graph Hb of the graph H is an inducted subgraph
of Gb. Therefore, using Theorem 2.7, we get

ζHb
≤ ζGb

, (17)

which is equivalent to ζH ≤ ζG, applying the identity (15). □

Corollary 3.3. Let G and H be two simple graphs such that ζG < ζH .
Then, there is no surjective homomorphism from G to H.
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