Journal of Mathematical Extension Vol. 12, No. 1, (2018), 91-112 ISSN: 1735-8299 URL: http://www.ijmex.com

Absolutely Extendable Property and Stable Elements in Γ-Semihyperrings

S. Ostadhadi Dehkordi

University of Hormozgan

M. Heidari

Bu-Ali Sina University

B. Davvaz*

Yazd University

Abstract. The concept of Γ -semihyperrings is a generalization of a semiring, a generalization of a Γ -semiring, and a generalization of a semihyperring. In this paper, we define the notions of complex product, extension property and flat Γ -semihyperrings and some of their properties are obtained. In addition, we prove that every flat Γ -semihyperring is absolutely extendable. Finally, we give some characterization of stable elements.

AMS Subject Classification: 16Y99; 20N20 **Keywords and Phrases:** Γ-semihyperrings, absolutely extendable, stable elements, complex product, extension property

1. Introduction

The theory of hyperstructures was introduced by Marty [17] in 1934 during the 8^{th} Congress of the Scandinavian Mathematicians. Algebraic hyperstructures are a generalization of classical algebraic structures. In

Received: February 2017; Accepted: July 2017

^{*}Corresponding author

a classical algebraic structure the composition of two elements is an element, while in an algebraic hyperstructure the composition of two elements is a non-empty set.

Let H be a non-empty set. Then, the map $\circ : H \times H \longrightarrow \mathcal{P}^*(H)$ is called a *hyperoperation*, where $\mathcal{P}^*(H)$ is the family of non-empty subsets of H. (H, \circ) is called a *semihypergroup* if for every $x, y \in H$, we have $x \circ (y \circ z) = (x \circ y) \circ z$. If for every $x \in H$, $x \circ H = H = H \circ x$, then (H, \circ) is called a *hypergroup*. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad x \circ A = \{x\} \circ A \text{ and } A \circ x = A \circ \{x\}.$$

Since then, hundreds of papers and several books have been written on this topic; see [2, 3, 6, 20]. A recent book on hyperstructures points out on their applications in cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Another book [6] is devoted especially to the study of hyperring theory; several kinds of hyperrings are introduced and analyzed, and the volume ends with an outline of applications in chemistry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and transposition hypergroups. A well known type of a hyperring is called the *Krasner hyperring* [16] and then some researchers such as Davvaz et al. [1, 5, 4, 7, 8, 14, 15, 18, 22], Gontineac [13], Sen and Dasgupta [19], Vougiouklis [20, 21] and others followed him.

Definition 1.1. A Krasner hyperring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

- (1) (R, +) is a canonical hypergroup, i.e.,
 - (i) for every $x, y, z \in R, x + (y + z) = (x + y) + z$,
 - (i) for every $x, y \in R, x + y = y + x$,
 - (iii) there exists $0 \in R$ such that 0 + x = x.
 - (iv) for every $x \in R$ there exists a unique element $-x \in R$ such that $0 \in x + (-x)$.
 - (v) $z \in x + y$ implies that $y \in -x + z$ and $x \in -y + z$.

- (2) Relating to the multiplication, (R, \cdot) is a semigroup having zero as a bilaterally absorbing element,
- (3) The multiplication is distributive with respect to the hyperoperation +.

Recently, the concept of Γ -hyperstructures such as Γ -semihypergroups, Γ -hypergroups, Γ -semihyperrings and Γ -hypermodules study by many resechers. The concept of Γ -semihyperrings is a generalization of semihyperrings, generalization of a Γ -semirings and a generalization of semirings. This concept consider by Dehkordi and Davvaz [9, 10, 11, 12]. They introduced rough ideals, fundamental relations and complex product on Γ -semihyperrings. By the concept fundamental relation on Γ -semihyperrings they introduced covariant functor between the category Γ -semihyperrings and the category semirings.

We know that homological algebra is a efficient toll in the study of rings and modules. This research work deals with certain algebraic systems that is non-additive modification of classical homological structure. Motivated by the definition of flat rings in the category of rings, we define flat Γ -semihyperrings in the category of Γ -semihyperrings. We introduce the notions of *complex systems* on Γ -semihypergroups, then we prove some results in respect. Also, we introduce the notions of right(left) *flat* Γ -semihyperring, extension property and absolutely extendable. We prove that every flat Γ -semihyperring is absolutely extendable. Finally, we obtain a characterization of stable elements in Γ -semihyperrings.

2. **F-Semihyperrings and Complex Product**

In [10, 11], Dehkordi and Davvaz introduced the concept of Γ -semihyperrings. Now, in this section, we shall explain more about Γ -semihyperrings. We investigate the concept of left (right) Γ -funs and complex product.

Definition 2.1. Let R and Γ be additive hypergroup and semihypergroup, respectively. Then, R is called a Γ -semihyperring if there exists a hyperoperation $R \times \Gamma \times R \longrightarrow \mathcal{P}^*(R)$ (the image of (x, α, y) is denoted by $x\alpha y$, for $x, y \in R$ and α , $\beta \in \Gamma$) satisfies the following conditions: (1) $x_1\alpha(x_2+x_3) = x_1\alpha x_2 + x_1\alpha x_3$,

(2)
$$(x_1 + x_2)\alpha x_3 = x_1\alpha x_3 + x_2\alpha x_3$$
,

- (3) $x_1(\alpha + \beta)x_2 = x_1\alpha x_2 + x_1\beta x_2,$
- (4) $(x_1 \alpha x_2)\beta x_3 = x_1 \alpha (x_2 \beta x_3),$

for all $x_1, x_2, x_3 \in R$ and $\alpha \in \Gamma$.

A Γ -semihyperring R is called Γ -hyperring if R is a canonical hypergroup. It is obvious that every Krasner hyperring is a Γ -hyperring where $x \alpha y$ denotes the product of the elements $x, y \in R$.

Example 2.2. Let $R = \{a, b\}$ and $\Gamma = \{\alpha, \beta\}$ be two sets with the following operations and hyperoperation. Then, R is a Γ -hyperring.

+	a	b	α	a	b	β	a	b	_	+	α	β
a	a	R	a	a	a	a	a	a	_	α	α	α
b	R	b	b	a	a	b	a	R		β	$ \alpha $	R

Example 2.3. Let $S = \{a_1, a_2, a_3, a_4\}$, $\Gamma = \{\alpha, \beta\}$. Then, S is a Γ -semihyperring with respect to the following operations and hyperoperations:

\oplus		a_1	a_2	a_3	a_4		
a_1		a_1	a_2	$\{a_3, a_4\}$	$\{a_3, a_4\}$		
a_2		a_2	a_2	S	S		
a_3	{	a_3, a_4	- S	$\{a_3, a_4\}$	$\{a_3, a_4\}$		
a_4	{	a_3, a_4	S	$\{a_3, a_4\}$	$\{a_3,a_4\}$		
	β	$ a_1 $	a_2	a_3	a_4		
_	a_1	a_1	a_1	a_1	a_1		
	a_2	a_1	a_2	$\{a_3, a_4\}$	$\{a_3, a_4\}$		
	a_3	a_1	a_2	$\{a_3, a_4\}$	$\{a_3, a_4\}$		
	a_4	$ a_1 $	a_2	$\{a_3, a_4\}$	$\{a_3,a_4\}$		
			+	α β			
			α	$\alpha \beta$			
			β	α β			

for every $x, y \in S$, $x \alpha y = a_1$.

Example 2.4. Let R be the Krasner hyperring, $R_{m \times n}$ be of all matrices over R and Γ be additive semihypergroup of all $n \times m$ matrices over R. Then, $R_{n \times m}$ is a Γ -hyperring where $a\alpha b$ denoted the usual matrix product of a, α, b where $a, b \in R_{m \times n}$ and $\alpha \in \Gamma$.

Example 2.5. Let \mathbb{R} be the set of real numbers. Then, \mathbb{R} is a \mathbb{Z} semihyperring with respect to the following hyperaddition and hyperoperation:

$$\begin{aligned} x_1 \oplus x_2 &= \{ z : [x_1] + [x_2] \leqslant z < [x_1] + [x_2] + 1 \}, \\ x_1 \widehat{\alpha} x_2 &= \{ z : \alpha [x_1] [x_2] \leqslant z < \alpha [x_1] [x_2] + 1 \}, \end{aligned}$$

for every $x_1, x_2 \in \mathbb{R}$ and $\widehat{\alpha} \in \widehat{\mathbb{Z}}$, where $\widehat{\mathbb{Z}} = \{\widehat{\alpha} : \alpha \in \mathbb{Z}\}$.

Let A and B be non-empty subsets of Γ -semihyperring R. We define

$$A\Gamma^{\sum} B = \Big\{ x \in R : x \in \sum_{i=1}^{n} a_i \alpha_i b_i : a_i \in A, b_i \in B, n \in \mathbb{N} \Big\}.$$

Let Γ be a semihypergroup and n be a nonzero natural number. Then, we say that

$$x\beta_n y \iff \exists x_1, x_2, \cdots, x_n \in \Gamma : \{x, y\} \subseteq \prod_{i=1}^n x_i.$$

Let $\beta = \bigcup_{n \ge 1} \beta_n$. Clearly, the relation β is reflexive and symmetric. Denote by β^* the transitive closure of β .

Let R be a Γ -semihyperring and \mathcal{U} be a finite sum of elements of R. We define a relation γ on R as follows:

$$(a,b)\in\gamma\iff a,b\in u,$$

where $u \in \mathcal{U} = U_R \bigcup R\Gamma^{\Sigma} R \bigcup (U_R + R\Gamma^{\Sigma} R)$. We denote the transitive closure γ by γ^* and this equivalence relation is called *fundamental equiv*alence relation on R. We denote the equivalence class of the element a by $\gamma^*(a)$. Hence, $\gamma^*(a_1) = \gamma^*(a_2)$ if and only if there exist $x_1, x_2, \ldots, x_{n+1}$ with $x_1 = a_1$, $x_{n+1} = a_2$ and $u_1, u_2, \ldots u_n \in \mathcal{U}$ such that $\{x_i, x_{i+1}\} \subseteq u_i$, for some $i \in \{1, 2, ..., n\}$.

Let R be a Γ -semihyperring. We define a relation θ on

$$\Big\{\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i)) : n \in \mathbb{N}, x_i \in R, \alpha_i \in \Gamma\Big\},\$$

as follows:

$$\left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)), \prod_{j=1}^{m} (\gamma^*(x_j'), \beta^*(\alpha_j'))\right) \in \theta$$
$$\iff \sum_{i=1}^{n} \gamma^*(x_i)\widehat{\beta^*(\alpha_i)}\gamma^*(x) = \sum_{j=1}^{m} \gamma^*(x_j')\widehat{\beta^*(\alpha_j')}\gamma^*(x)$$

for every $\gamma^*(x) \in [R : \gamma^*]$, where γ^* is a fundamental relation on R. Let R be a Γ -semihyperring and there exists an element

$$\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big),$$

such that $\sum_{i=1}^{n} \gamma^*(e_i)\widehat{\beta^*(\delta_i)}\gamma^*(x) = \gamma^*(x)$, for all $\gamma^*(x) \in [R:\gamma^*]$. We say that this element is an *identity element(or just an identity)*) of F(R) and F(R) is a Γ -semihyperring with identity.

Let $F(R) = \left\{ \theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \right) : x_i \in R, \alpha_i \in \Gamma, n \in \mathbb{N} \right\}$ and S be a non-empty set. We say that S is a left Γ -fun if there exists an action

$$F(R) \times S \longrightarrow S$$
$$\left(\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big), y\Big) \longmapsto \theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big) y$$

with the following property:

$$\theta\Big(\prod_{i,j} (\gamma^*(x_i)\widehat{\beta^*(\alpha_i)}\gamma^*(y_j)), \beta^*(\gamma_j)\Big)y$$

= $\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big(\theta\Big(\prod_{j=1}^m (\gamma^*(y_j), \beta^*(\gamma_j)\Big)y\Big),$
 $\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big), s\Big) = s,$

where $\theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\right), \theta \left(\prod_{j=1}^{m} (\gamma^*(y_j), \beta^*(\gamma_j))\right)$ are elements of F(R)and $s \in S$. In the same way, we can define right Γ -fun. Also, if R_1 and R_2 are Γ_1 - and Γ_2 - semihyperrings respectively, we say that S is a (Γ_1, Γ_2) - fun if it is a left Γ_1 -fun and a right Γ_2 -fun, and

$$\left(\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) y \Big) \theta \Big(\prod_{j=1}^{m} (\gamma^*(y_j), \beta^*(\gamma_j)) \Big)$$

= $\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \Big(y \theta \Big(\prod_{j=1}^{m} (\gamma^*(y_j), \beta^*(\gamma_j)) \Big) \Big),$

where $\theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\right) \in F(R_1), \theta \left(\prod_{j=1}^{m} (\gamma^*(y_j), \beta^*(\gamma_j))\right) \in F(R_2).$ It is clear that the cartesian product $X_1 \times X_2$ of a left Γ_1 - fun X_1 and a

right Γ_2 -fun X_2 becomes (Γ_1, Γ_2) -fun if we make the obvious definition:

$$\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big)(x_1, x_2) = \Big(\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big)x_1, x_2\Big),$$
$$(x_1, x_2)\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big) = \Big(x_1, x_2\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big).$$

Suppose that A is a (Γ_1, Γ_2) -fun and B is a (Γ_2, Γ_3) -fun. Hence, $A \times B$ is a (Γ_1, Γ_3) -fun. A map $\varphi : A \times B \longrightarrow C$ is called a (Γ_1, Γ_3) -map if for all $a \in A, b \in B$ and $\theta \Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big) \in F(R_2),$

$$\varphi\Big(a\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_i))\Big),b\Big)=\varphi\Big(a,\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_i))\Big)b\Big).$$

Example 2.6. Let R be a Γ -semihyperring, S be the set of all one-one and onto functions on F(R). Then, S is a left Γ -fun.

Example 2.7. Let I be an ideal of Γ -semihyperring R. Then,

$$T(I) = \left\{ \theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \in F(R) : \\ \omega \Big(\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \Big) \subseteq \gamma^*(I) \right\},$$

is a left Γ -fun, where

$$\omega\Big(\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big)$$

= $\Big\{\bigoplus_i \gamma^*(x_i)\widehat{\beta^*(\alpha_i)}\gamma^*(x) : 1 \le i \le n, \ x \in R\Big\}.$

We say that (Γ_1, Γ_3) -fun C is a *complex product* of A and B over $F(R_2)$ if there is a (Γ_1, Γ_3) -map $\varphi : A \times B \longrightarrow C$ such that for every (Γ_1, Γ_3) fun D and every (Γ_1, Γ_3) -map $\beta : A \times B \longrightarrow D$ there exists a unique (Γ_1, Γ_3) -map $\overline{\beta} : C \longrightarrow D$ such that $\overline{\beta} \circ \varphi = \beta$.

Suppose that ρ^* is an equivalence relation on $A \times B$ generated by the following relation:

$$\rho = \left\{ \left(\left(a\theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)), b \right), \left(a, \theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) b \right) \right) \right) \right) \right)$$
$$: a \in A, b \in B, \theta \left(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \right) \in F(R_2) \right\}.$$

We define $C(A, B) = [A \times B : \rho^*]$ and denote a typical element $\rho^*(a, b)$ of C(A, B) by C(a, b). By definition of ρ we have that

$$C\Big(a\theta\Big(\prod_{i=1}^{n}(\gamma^{*}(x_{i}),\beta^{*}(\alpha_{i}))\Big),b\Big)=C\Big(a,\theta\Big(\prod_{i=1}^{n}(\gamma^{*}(x_{i}),\beta^{*}(\alpha_{i}))\Big)b\Big),$$

for all $a \in A$ and $b \in B$.

Proposition 2.7. Let A be a (Γ_1, Γ_2) -fun and B be a (Γ_2, Γ_3) -fun. Then, C(A, B) is a complex product of A and B over $F(R_2)$.

Theorem 2.8. The complex product of A and B over $F(R_2)$ is unique up to isomorphism.

3. Flat Γ -Semihyperrings and Stable Elements

Motivated by the definition flat rings in the category of ring, we define flat Γ -semihyperrings in the category Γ -semihyperrings. This concept is a efficient tolls in the study of Γ -semihyperrings. In this section, we introduce the concept of flat Γ -semihyperrings, absolutely extendable, stable elements. Moreover, we prove that every flat Γ -semihyperring is absolutely extendable and we obtain a characterization for stable elements. **Definition 3.1.** Let R be a Γ -semihyperring and X_1 , X_2 be left Γ -funs. Then by a morphism or Γ -morphism from a left Γ -fun X_1 into a left Γ -fun X_2 we mean a map $\psi : X_1 \longrightarrow X_2$ with the following property:

$$\psi\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)x_1\Big) = \theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\psi(x_1),$$

for every $\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \in F(R)$ and $x_1 \in X_1$.

A congruence relation on a left Γ -fun X is an equivalence relation on X with the following property:

$$x_1 \rho x_2 \Longrightarrow \theta \Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) x_1 \rho \; \theta \Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) x_2 g \Big)$$

for every $x_1, x_2 \in X$ and $\theta \Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \in F(R)$. The quotient [X : a] is a left Γ for structure by the follow

The quotient $[X : \rho]$ is a left Γ -fun structure by the following definition:

$$\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big) \cdot \rho(x) = \rho\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)x\Big).$$

We can generalize the notion of complex product for three Γ -funs. Suppose that X_1 , X_2 and X_3 are (Γ_1, Γ_2) -, (Γ_2, Γ_3) -and (Γ_3, Γ_4) - funs, respectively. A map $\varphi : X_1 \times X_2 \times X_3 \longrightarrow X$ is called a *triple map* or (Γ_1, Γ_4) -map, if for $x_1 \in X_1$, $x_2 \in X_2$ and $x_3 \in X_3$

$$\varphi\Big(x_1\theta\Big(\prod_{i=1}^n (\gamma^*(y_i), \beta^*(\alpha_i))\Big), x_2, x_3\Big)$$

= $\varphi\Big(x_1, \theta\Big(\prod_{i=1}^n (\gamma^*(y_i), \beta^*(\alpha_i))\Big)x_2, x_3\Big)$

where $\theta\left(\prod_{i=1}^{n} (\gamma^*(y_i), \beta^*(\alpha_i))\right) \in F(R_2)$, and

$$\varphi\Big(x_1, x_2\theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\gamma_j))\Big), x_3\Big)$$

= $\varphi\Big(x_1, x_2, \theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\gamma_j))\Big)x_3\Big),$

where $\theta\left(\prod_{j=1}^{m} (\gamma^*(x_j), \beta^*(\gamma_j))\right) \in F(R_3).$

We say that P is a complex product of X_1 , X_2 and X_3 if there exists a unique (Γ_1, Γ_4) - map $\psi : X_1 \times X_2 \times X_3 \longrightarrow P$ such that for every (Γ_1, Γ_4) - fun X and (Γ_1, Γ_4) - map $\overline{\varphi} : P \longrightarrow D$, $\overline{\varphi} \circ \psi = \varphi$. One can see that $C(C(X_1, X_2), X_3)$ is a complex product of $X_1 \times X_2 \times X_3$ and

$$C(C(X_1, X_2), X_3) \cong C(X_1, C(X_2, X_3)).$$

Let R be a Γ -semihyperring. We say that R is *left flat* if for every left Γ -fun X and monomorphism $\psi : X_1 \longrightarrow X_2$ of right Γ -funs, the induced map $\psi_C : C(X_1, X) \longrightarrow C(X_2, X)$ is injective. In the same way, we can define a *right flat* Γ -semihyperring.

Suppose that R_1 is a Γ -subsemilyperring of R. We say that R_1 has the *extension property* in R if for every right Γ -fun X_1 and left Γ - fun X_2 in R_1 , the following map is injective:

$$\psi: C_{F(R_1)}(X_1, X_2) \longrightarrow C_{F(R_1)}(C_{F(R_1)}(X_1, F(R)), X_2)$$
$$C(x_1, x_2) \longmapsto C\Big(C\Big(x_1, \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i)\Big)\Big), x_2\Big).$$

A Γ -semihyperring R is called *absolutely extendable* if it has extension property in every Γ -semihyperring R' containing it as Γ -subsemihyperring.

Example 3.2. Let (R, +, *) be a Krasner hyperring, $(\Gamma, +)$ be a subsemihypergroup of (R, +) and $\{A_g \mid g \in R\}$ be a family of disjoint nonempty sets. Then, $S = \bigcup_{g \in R} A_g$ is a Γ -semihyperring with respect to the following hyperoperations:

$$x \oplus y = \bigcup_{t \in g_1 + g_2} A_t, \quad x \alpha y = \bigcup_{t = g_1 * \alpha * g_2} A_t,$$

where $x \in A_{g_1}$ and $y \in A_{g_2}$. Also, R is a left Γ -fun by

$$F(S) \times R \longrightarrow R$$
$$\theta\Big(\Big(\prod_{i=1}^{n} (\gamma^*(s_i), \beta^*(\alpha_i))\Big), x\Big) \longrightarrow x,$$

where $x \in R$, $\gamma^*(s_i) \in [S : \gamma^*]$ and $\beta^*(\alpha_i) \in [\Gamma : \beta^*]$. Let X_1 and X_2 be left Γ -funs and $\psi : X_1 \longrightarrow X_2$ be a monomorphism. Then, $\psi_C : C(X_1, R) \longrightarrow C(X_2, R)$ is injective. Indeed,

$$\psi_C(\rho^*(x_1, r_1)) = \psi_C(\rho^*(x_2, r)),$$

where $x_1 \in X$ and $r \in R$. By definition, ρ^* , we have $\psi(x_1) = \psi(x_2)$ and $r_1 = r_2$. Since ψ is one to one, we have $x_1 = x_2$. Therefore, $\rho^*(x_1, r_1) = \rho^*(x_2, r_2)$. Therefore, S is a flat and absolutely extendable Γ -semihyperring.

Proposition 3.3. Every flat Γ -semihyperring is absolutely extendable.

Proof. Suppose that R is a flat Γ -semihyperring and R_1 is a Γ -semihyperring containing R as a Γ -subsemihyperring. We show that the map

$$\psi: C_{F(R)}(X_1, X_2) \longrightarrow C_{F(R)}(C_{F(R)}(X_1, F(R_1)), X_2),$$

is injective. We note that the map

$$X_1 \cong C_{F(R)}(X_1, F(R)) \longrightarrow C_{F(R)}(X_1, F(R_1)),$$

is injective. Since R is flat, the following map is one-one. Hence,

$$C_{F(R)}(X_1, X_2) \cong C_{F(R)}(C_{F(R)}(X_1, F(R)), X_2) \longrightarrow C_{F(R)}(C_{F(R)}(X_1, F(R_1)), X_2).$$

Therefore, R has the extension property in R_1 . This completes the proof. Let R_1 be a Γ -subsemihyperring of R such that $\theta\left(\prod_{i=1}^n (\gamma^*(x_i)), \beta^*(\alpha_i)\right) \in F(R)$. We say that $\theta\left(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\right)$ is stable element by R_1 if for every Γ' -semihyperring R' and homomorphism $\psi_1, \psi_2 : F(R) \longrightarrow F(R')$

$$\psi_1\Big(\theta\Big(\prod_{j=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big)=\psi_2\Big(\theta\Big(\prod_{j=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big),$$

for every $\theta \left(\prod_{j=1}^{n} (\gamma^*(y_j), \beta^*(\gamma_j)) \right) \in F(R_1)$ which implies that

$$\psi_1\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big) = \psi_1\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big).$$

The set of elements of F(R) stable by R_1 denoted by $St_R(R_1)$. It is easy to see that $F(R_1) \subseteq St_R(R_1)$ \Box .

Theorem 3.4. Let R_1 be a Γ -subsemihyperring of R and

$$\theta\Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i))\Big) \in F(R).$$

Then,

$$\begin{split} C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big)\Big),\\ &=C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_j))\Big)\Big),\\ implies \ that \ \theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_i))\Big) \ is \ stable \ by \ R_1. \end{split}$$

Proof. Suppose that

$$C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big)\Big),$$
$$=C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(x_i),\beta^*(\alpha_j))\Big)\Big).$$

Let we have Γ' -semihyperring R' and homomorphism $\psi_1, \psi_2 : F(R) \longrightarrow F(R')$ such that for every $\theta \Big(\prod_{j=1}^m (\gamma^*(s_j), \beta^*(\varepsilon_j))\Big) \in F(R_1),$

$$\psi_1\Big(\theta\Big(\prod_{j=1}^m(\gamma^*(s_j),\beta^*(\varepsilon_j))\Big)\Big)=\psi_2\Big(\theta\Big(\prod_{j=1}^m(\gamma^*(s_j),\beta^*(\varepsilon_j))\Big)\Big).$$

We define

$$\left(\theta \Big(\prod_{j=1}^{m} (\gamma^*(s_j), \beta^*(\varepsilon_j)) \Big) \Big) \cdot \theta \Big(\prod_{j=1}^{m} (\gamma^*(z_j), \beta^*(\gamma_j)) \Big)$$

= $\psi_1 \Big(\theta \Big(\prod_{i=1}^{n} (\gamma^*(x_i), \beta^*(\alpha_i)) \Big) \Big) \theta \Big(\prod_{j=1}^{m} (\gamma^*(z_j), \beta^*(\gamma_j)) \Big).$

and

$$\theta \Big(\prod_{j=1}^{m} (\gamma^*(z_j), \beta^*(\gamma_j)) \Big) \cdot \theta \Big(\prod_{j=1}^{m} (\gamma^*(s_j), \beta^*(\epsilon_j)) \Big) \\= \theta \Big(\prod_{j=1}^{m} (\gamma^*(z_j), \beta^*(\gamma_j)) \Big) \psi_2 \Big(\theta \Big(\prod_{j=1}^{m} (\gamma^*(s_j), \beta^*(\varepsilon_j)) \Big) \Big),$$

where $\theta \Big(\prod_{j=1}^{m} (\gamma^*(s_j), \beta^*(\varepsilon_j)) \Big) \in F(R_1)$ and $\theta \Big(\prod_{j=1}^{m} (\gamma^*(z_j), \beta^*(\gamma_j)) \Big) \in F(R')$. Hence, F(R') is a (Γ_1, Γ_1) -funs in R_1 . We define $\psi : F(R) \times F(R) \longrightarrow F(R')$ by the rule that

$$\psi\Big(\theta\Big(\prod_{i=1}^{n}(\gamma^{*}(t_{i}),\beta^{*}(\delta_{i}))\Big),\theta\Big(\prod_{j=1}^{m}(\gamma^{*}(y_{j}),\beta^{*}(\gamma_{j}))\Big)\Big)$$
$$=\psi_{1}\Big(\theta\Big(\prod_{i=1}^{n}(\gamma^{*}(t_{i}),\beta^{*}(\delta_{i}))\Big)\Big)\psi_{2}\Big(\theta\Big(\prod_{j=1}^{m}(\gamma^{*}(y_{j}),\beta^{*}(\gamma_{j}))\Big)\Big)$$

Then, ψ is a (Γ_1, Γ_1) -map in R_1 . Indeed,

$$\begin{split} &\psi\Big(\theta\Big(\prod_{i,j}(\gamma^*(t_i)\widehat{\beta^*(\delta_i)}\gamma^*(y_j),\beta^*(\gamma_j))\Big),\theta\Big(\prod_{r=1}^m(\gamma^*(z_r)),\beta^*(\omega_r))\Big)\Big)\\ &=\psi_1\Big(\prod_{i,j}(\gamma^*(t_i)\widehat{\beta^*(\delta_i)}\gamma^*(y_j),\beta^*(\gamma_j))\Big)\psi_2\Big(\theta\Big(\prod_{r=1}^m(\gamma^*(z_r),\beta^*(\omega_r))\Big)\Big)\\ &=\psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(t_i),\beta^*(\delta_i))\Big)\Big)\psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big);\\ &\psi_2\Big(\theta\Big(\prod_{r=1}^m(\gamma^*(z_r),\beta^*(\omega_r))\Big)\Big)\\ &=\psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(t_i),\beta^*(\delta_i))\Big)\Big)\psi_2\Big(\prod_{r,j}\gamma^*(y_j)\widehat{\beta^*(\gamma_j)}\gamma^*(z_r),\beta^*(\omega_r))\Big).\end{split}$$

Hence, there exists a map $\overline{\psi}: C_{F(R_1)}(F(R), F(R)) \longrightarrow F(R')$ such that

$$\begin{aligned} \overline{\psi}\Big(C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(t_i),\beta^*(\delta_i))\Big),\theta\Big(\prod_{j=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big)\Big)\\ &=\psi\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(t_i),\beta^*(\delta_i))\Big),\theta\Big(\prod_{j=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big)\\ &=\psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(t_i),\beta^*(\delta_i))\Big)\Big)\psi_2\Big(\theta\Big(\prod_{j=1}^n(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big).\end{aligned}$$

Now, by assumption

$$\begin{split} &\psi_1\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big)\\ &=\psi_1\Big(\theta\Big(\prod_{i=1}^m (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big)\psi_2\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)\\ &=\overline{\psi}\Big(C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\alpha_i))\Big), \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)\Big)\\ &=\overline{\psi}\Big(C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big), \theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big)\Big)\\ &=\psi_1\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)\psi_2\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big)\\ &=\psi_2\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(x_i), \beta^*(\alpha_i))\Big)\Big).\end{split}$$

This completes the proof. $\hfill\square$

Theorem 3.5. Let R_1 be a Γ -subsemihyperring of R. Then,

$$\theta\Big(\prod_{j=1}^{m} (\gamma^*(x_j), \beta^*(\alpha_j))\Big) \in St_R(R_1)$$

implies that

$$C_{F(R_1)}\Big(\theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\alpha_j))\Big), \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)$$
$$= C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\alpha_j))\Big)\Big).$$

Proof. We know that $C_{F(R_1)}(F(R), F(R))$ is a (Γ, Γ) -fun in R as follows:

$$\begin{aligned} \theta\Big(\prod_{i=1}^{n} (\gamma^{*}(y_{i}), \beta^{*}(\gamma_{i}))\Big)\Big(C_{F(R_{1})}\Big(\theta\Big(\prod_{j=1}^{m} (\gamma^{*}(z_{j}), \beta^{*}(\alpha_{j}))\Big)\Big)\\ \cdot \theta\Big(\prod_{j=1}^{m'} (\gamma^{*}(z_{j}'), \beta^{*}(\alpha_{j}'))\Big)\Big)\Big)\\ = C_{F(R_{1})}\Big(\theta\Big(\prod_{i,j} \Big(\gamma^{*}(y_{i})\widehat{\beta^{*}(\gamma_{i})}\gamma^{*}(z_{j}), \beta^{*}(\alpha_{j})\Big), \theta\Big(\prod_{j=1}^{m'} (\gamma^{*}(z_{j}'), \beta^{*}(\alpha_{j}'))\Big)\Big)\Big);\end{aligned}$$

$$C_{F(R_1)}\left(\theta\left(\prod_{j=1}^{m}(\gamma^*(z_j),\beta^*(\alpha_j))\right),\theta\left(\prod_{j=1}^{m'}(\gamma^*(z'_j),\beta^*(\alpha'_j))\right)\right)$$
$$\cdot\theta\left(\prod_{i=1}^{n}(\gamma^*(y_i),\beta^*(\gamma_i))\right)$$
$$=C_{F(R_1)}\left(\theta\left(\prod_{j=1}^{m}(\gamma^*(z_j),\beta^*(\alpha_j))\right),\theta\left(\prod_{i,j}\left(\gamma^*(z'_j)\widehat{\beta^*(\alpha'_j)}\gamma^*(y_i)\right),\beta^*(\gamma_i)\right)\right)\right).$$

Let Ω be the set of all finite combinations

$$\sum_{i=1}^{n} n_i \Big(C_{F(R_1)} \Big(\theta \Big(\prod_{j=1}^{m_i} \gamma^*(x_{ij}), \beta^*(\alpha_{ij}) \Big) \Big), \theta \Big(\prod_{j=1}^{m'_i} \gamma^*(x'_{ij}), \beta^*(\alpha'_{ij}) \Big) \Big).$$

One can see that Ω is a (Γ, Γ) -fun in R. We define a binary relation on $F(R) \times \Omega$ as follows:

$$\begin{pmatrix} \theta \Big(\prod_{t=1}^{n} (\gamma^{*}(y_{t}), \beta^{*}(\alpha_{t})) \Big), \\ \sum_{i=1}^{n} n_{i} \Big(C_{F(R_{1})} \Big(\theta \Big(\prod_{j=1}^{m_{i}} \gamma^{*}(x_{ij}), \beta^{*}(\alpha_{ij}) \Big) \Big), \theta \Big(\prod_{j=1}^{m'_{i}} \gamma^{*}(x'_{ij}), \beta^{*}(\alpha'_{ij}) \Big) \Big) \end{pmatrix}) \\ \begin{pmatrix} \theta \Big(\prod_{r=1}^{n'} (\gamma^{*}(y'_{r}), \beta^{*}(\alpha'_{r})) \Big), \\ \theta \Big(\prod_{j=1}^{m} \gamma^{*}(z_{ij}), \beta^{*}(\alpha_{ij}) \Big) \Big), \theta \Big(\prod_{j=1}^{m'_{i}} \gamma^{*}(z'_{ij}), \beta^{*}(\gamma'_{ij}) \Big) \Big) \end{pmatrix} \\ = \Big(\theta \Big(\prod_{t,r} (\gamma^{*}(y_{t}) \widehat{\beta^{*}(\alpha_{t})} \gamma^{*}(y'_{r}), \beta^{*}(\alpha'_{r})) \Big), \\ \prod_{i=1}^{m} n_{i} C_{F(R_{1})} \Big(\theta \Big(\prod_{j,t} (\gamma^{*}(y_{t}) \widehat{\beta^{*}(\alpha_{t})} \gamma^{*}(z_{ij})), \beta^{*}(\gamma_{ij}) \Big), \theta \Big(\prod_{j=1}^{m'_{i}} \gamma^{*}(z'_{ij}), \beta^{*}(\gamma'_{ij}) \Big) \Big) \\ + \sum_{i=1}^{n} s_{i} C_{F(R_{1})} \Big(\theta \Big(\prod_{r,j} \gamma^{*}(x_{ij}) \widehat{\beta^{*}(\alpha_{ij})} \gamma^{*}(y'_{j}), \beta^{*}(\alpha'_{r})) \Big) \Big), \\ \theta \Big(\prod_{j=1}^{m'_{i}} \gamma^{*}(x'_{ij}), \beta^{*}(\alpha'_{ij}) \Big) \Big).$$

It is easy to see that this binary relation is associative. In fact $F(R) \times \Omega$ is a groupoid with identity $\left(\theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\delta_{i}))\right), 0\right)$. Suppose that

 $\theta \Big(\prod_{j=1}^{m} (\gamma^*(x_j), \beta^*(\alpha_j))\Big) \in St_R(R_1)$. We consider two homomorphisms ψ_1 and ψ_2 from F(R) into $F(R) \times \Omega$ and show that they coincide on R_1 . We define

$$\begin{split} \psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(y_i),\beta^*(\alpha_i))\Big)\Big) &= \Big(\theta\Big(\prod_{i=1}^n(\gamma^*(y_i),\beta^*(\alpha_i))\Big),0\Big)\\ \psi_2\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(y_i),\beta^*(\alpha_i))\Big)\Big) &= \Big(\theta\Big(\prod_{i=1}^n(\gamma^*(y_i),\beta^*(\alpha_i))\Big),\\ \theta\Big(\prod_{i,j}\gamma^*(y_i)\widehat{\beta^*(\alpha_i)}\gamma^*(e_j),\beta^*(\delta_j))\Big) &= \theta\Big(\prod_{i,j}\gamma^*(e_j)\widehat{\gamma^*(\delta_j)}\gamma^*(y_i),\beta^*(\alpha_i))\Big)\Big). \end{split}$$

By a routine process, we see that ψ_1 and ψ_2 are homomorphisms. Let $\theta\left(\prod_{i=1}^n (\gamma^*(z_i), \beta^*(\alpha_i))\right) \in F(R_1)$. This implies that

$$C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(z_i),\beta^*(\alpha_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big)\Big)$$
$$=C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big),\theta\Big(\prod_{i=1}^n(\gamma^*(z_i),\beta^*(\alpha_i)))\Big)\Big)$$

in $C_{F(R_1)}(F(R), F(R))$ and so

$$\psi_1\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(z_i),\beta^*(\alpha_i))\Big)\Big)=\psi_2\Big(\theta\Big(\prod_{i=1}^n(\gamma^*(z_i),\beta^*(\alpha_i))\Big)\Big).$$

Moreover, $\theta \Big(\prod_{j=1}^{m} (\gamma^*(x_j), \beta^*(\alpha_j)) \Big) \in St_R(R_1)$ implies that

$$\psi_1\Big(\theta\Big(\prod_{j=1}^m(\gamma^*(x_j),\beta^*(\alpha_j))\Big)\Big)=\psi_2\Big(\theta\Big(\prod_{j=1}^m(\gamma^*(x_j),\beta^*(\alpha_j))\Big)\Big),$$

and so

$$C_{F(R_1)}\Big(\theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\alpha_j))\Big), \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big),$$
$$= C_{F(R_1)}\Big(\theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\theta\Big(\prod_{j=1}^m (\gamma^*(x_j), \beta^*(\alpha_j))\Big)\Big).$$

This completes the proof. \Box

Proposition 3.6. Let R be a Γ -semihyperring, such that X_1 , X_2 and X_3 be Γ -funs and $\varphi_1 : X_1 \longrightarrow X_2$, $\varphi_2 : X_1 \longrightarrow X_3$ be Γ -morphisms. Then, there exists a Γ -fun X and $\psi_1 : X_2 \longrightarrow X$, $\psi_2 : X_3 \longrightarrow X$ such that ψ_1 and ψ_2 are Γ -homomorphisms. Moreover, if $\psi_1(x_2) = \psi_2(x_3)$, then $x_2 \in \varphi(X_1)$.

Proof. Suppose that ρ is the equivalence relation generated by all pairs $(x_1, \varphi_1(x_1)), (x_1, \varphi_2(x_1)), \text{ on } X = X_2 \cup X_3$, where $x_1 \in X_1$. The maps $\psi_1 : X_2 \longrightarrow X, \ \psi_2 : X_1 \longrightarrow X$ are given by $\psi_1(x_2) = \rho(x_2), \ \psi_1(x_2) = \rho(x_2)$. This complete the proof. \Box

Lemma 3.7. Let R_1 be a Γ -subsemihyperring of R and R_1 has extension property in $R, \varphi : X_1 \longrightarrow X_2$ be a Γ -morphism of right Γ -fun in R_1 and

$$C\Big(x_2, \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big) = C\Big(\varphi(x_1), \theta\Big(\prod_{j=1}^m (\gamma^*(y_j), \beta^*(\alpha_j))\Big)\Big),$$

in $C(X_2, F(R))$. Then, $x_2 \in \varphi(X_1)$.

Proof. Suppose that X is a Γ -fun in Proposition 3.6. Consider the following commutative diagram:

$$\begin{array}{cccc} X_1 & \stackrel{\varphi}{\longrightarrow} & X_2 \\ \downarrow & & \downarrow \\ X_2 & \stackrel{\psi_2}{\longrightarrow} & X \end{array}$$

where $\psi_1 : X_2 \longrightarrow X$ and $\psi_2 : X_2 \longrightarrow X$. Hence, the following diagram is commutative:

$$\begin{array}{ccc} C(X_1, F(R)) & \stackrel{C(\varphi, 1)}{\longrightarrow} & C(X_2, F(R)) \\ \downarrow & & \downarrow \\ C(X_2, F(R)) & \stackrel{C(\psi_2, 1)}{\longrightarrow} & C(X, F(R)) \end{array}$$

By the extension property the map $x_2 \mapsto C\left(x_2, \theta\left(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\right)\right)$

from $X_2 \cong C(X_2, F(R_1))$ to $C(X_2, F(R))$ is one to one. We have

$$C\Big(\psi_1(x_2), \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)$$

= $C(\psi_1, 1)\Big(C\Big(x_2, \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)\Big)$
= $C(\psi_1, 1)\Big(C\Big(\varphi(x_1), \theta\Big(\prod_{j=1}^m (\gamma^*(y_j), \beta^*(\alpha_j))\Big)\Big)\Big)$
= $C\Big((\psi_2 \circ \varphi)(x_1), \theta\Big(\prod_{j=1}^m (\gamma^*(y_j), \beta^*(\alpha_j))\Big)\Big)$
= $C(\psi_2, 1)\Big(C\Big(\varphi(x_1), \theta\Big(\prod_{j=1}^m (\gamma^*(y_j), \beta^*(\alpha_j))\Big)\Big)\Big)$
= $C(\psi_2, 1)\Big(x_2, \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big)$
= $C\Big(\psi_2(x_2), \theta\Big(\prod_{j=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big).$

Hence, $\psi_1(x_2) = \psi_2(x_2)$ and it follows by Proposition 3.6, $x_2 \in \varphi(X_1)$. \Box

Theorem 3.8. Let R_1 be a Γ -subsemihyperring of R and suppose that R_1 has the extension property in R. Let X_1 , X_2 be right Γ -funs in R_1 and $\varphi : X_1 \longrightarrow X_2$ be Γ -monomorphism in R_1 and Z be a left Γ -fun in R_1 such that $C(\varphi, 1) : C(X_1, Z) \longrightarrow C(X_2, Z)$ is also monomorphism. If

$$C\left(C\left(x_{2}, \theta\left(\prod_{i=1}^{n} \left(\gamma^{*}(e_{i}), \beta^{*}(\delta_{i})\right)\right)\right), z\right) = C\left(C\left(\varphi(x_{1}), \theta\left(\prod_{j=1}^{m} \left(\gamma^{*}(y_{j}), \beta^{*}(\gamma_{j})\right)\right)\right), z'\right),$$

in $C(C(X_2, F(R)), Z)$. Then, there exists $x'_1 \in X_1$ and $z_1 \in Z$ such that

$$C\left(C\left(x_{2}, \theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\delta_{i}))\right)\right), z\right)\right)$$

= $C\left(C\left(\varphi(x_{1}^{'}), \theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\delta_{i}))\right)\right), z_{1}\right)$

Proof. Suppose that

$$C\Big(C\Big(x_2,\theta\Big(\prod_{i=1}^n(\gamma^*(e_i),\beta^*(\delta_i))\Big)\Big),z\Big)$$

= $C\Big(C\Big(\varphi(x_1),\theta\Big(\prod_{j=1}^m(\gamma^*(y_j),\beta^*(\gamma_j))\Big)\Big),z'\Big),$

in $C(C(X_2, F(R)), Z)$. By Proposition 3.6, we have the following commutative diagram:

$$\begin{array}{cccc} X_1 & \stackrel{\varphi}{\longrightarrow} & X_2 \\ \downarrow & & \downarrow \\ X_2 & \stackrel{\psi_2}{\longrightarrow} & X \end{array}$$

such that $\psi_1 : X_2 \longrightarrow X$ and $\psi_2 : X_2 \longrightarrow X$. Hence, the following diagram is commutative:

$$\begin{array}{cccc} C(X_1, Z) & \stackrel{C(\varphi, 1)}{\longrightarrow} & C(X_2, Z) \\ \downarrow & & \downarrow \\ C(X_2, Z) & \stackrel{C(\psi_2, 1)}{\longrightarrow} & C(X, Z) \end{array}$$

is commutative. We note that

$$C\left(C\left(\psi_{1}(x_{2}), \theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\delta_{i}))\right)\right), z\right)\right)$$

= $C(C(\psi_{1}, 1), 1)\left(C\left(C\left(x_{2}, \theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\delta_{i}))\right)\right), z\right)\right)\right)$
= $(C(\psi_{1}, 1), 1)\left(C\left(C\left(\varphi(x_{1}), \theta\left(\prod_{j=1}^{m} (\gamma^{*}(y_{j}), \beta^{*}(\gamma_{j}))\right)\right), z'\right)\right)\right)$
= $C\left(C\left((\psi_{1} \circ \varphi)(x_{1}), \theta\left(\prod_{j=1}^{m} (\gamma^{*}(y_{j}), \beta^{*}(\gamma_{j}))\right)\right), z'\right)\right)$
= $C\left(C\left((\psi_{2} \circ \varphi)(x_{1}), \theta\left(\prod_{j=1}^{m} (\gamma^{*}(y_{j}), \beta^{*}(\gamma_{j}))\right)\right), z'\right)\right)$
:
= $C\left(C\left(\psi_{2}(x_{2}), \theta\left(\prod_{i=1}^{n} (\gamma^{*}(e_{i}), \beta^{*}(\gamma_{i}))\right)\right), z\right).$

By the extension property we deduced that $C(\psi_1(x_2), z) = C(\psi_2(x_2), z)$. Hence, by Proposition 3.6, there exists $C(x'_1, z_1) \in C(X_1, Z)$ such that

$$C(x_{2}, z) = C(\varphi, 1)(C(x_{1}^{'}, z_{1})) = C(\varphi(x_{1}^{'}), z_{1}).$$

Therefore,

$$C\Big(C\Big(x_2, \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big), z\Big)$$

= $C\Big(C\Big(\varphi(x_1'), \theta\Big(\prod_{i=1}^n (\gamma^*(e_i), \beta^*(\delta_i))\Big)\Big), z_1\Big).$

This completes the proof. \Box

References

- [1] S. M. Anvariyeh, S. Mirvakili, and B. Davvaz, Fundamental relation on (m, n)-ary hypermodules on (m, n)-ary hyperring, ARS Combinatoria, 94 (2010), 273-288.
- [2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, (1993).
- [3] P. Corsini and V. Leoreanu, *Applications of Hyperstructures Theory*, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, (2003).
- [4] B. Davvaz, Approximations in hyperrings, Journal of Multiple-Valued Logic and Soft Computing, 15 (5-6) (2009), 471-488.
- [5] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math., 35 (3) (2004), 321-331.
- [6] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, (2007).
- B. Davvaz and A. Salasi, A realization of hyperrings, Comm. Algebra, 34 (12) (2006), 4389-4400.
- [8] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (H_v -rings) with α^* -relations, Comm. Algebra, 35 (2007), 3307-3320.
- [9] S. O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bulletin of the Malaysian Mathematical Sciences Society, 35 (4) (2012), 1035-1047.
- [10] S. O. Dehkordi and B. Davvaz, A strong regular relation on Γsemihyperrings, J. Sci. I.R., 22 (3) (2011), 257-266.

- [11] S. O. Dehkordi and B. Davvaz, Complex product, Extended Abstracts of the 42th Annual Iranian Mathematics Conference, University of Rafsanjan, Iran, (2011), 72.
- [12] S. O. Dehkordi and B. Davvaz, Γ-semihyperring: Fundamental rings and complex product, Bulletin of the Allahabad Mathematical Society, 29 (2) (2014), 111-135.
- [13] V. M. Gontineac, On hypernear-rings and H-hypergroups, in Algebraic Hyperstructures and Applications, Hadronic Press, Palm Harbor, Fla, USA, (1994), 171-179.
- [14] H. Hedayati and I. Cristea, Fundamental Γ-semigroups through H_v-Γsemigroups, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 75 (2) (2013), 33-46.
- [15] H. Hedayati and B. Davvaz, Fundamental relation on Γ-hyperrings, ARS Combinatoria, 100 (2011), 381-394.
- [16] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci., 2 (1983), 307-312.
- [17] F. Marty, Sur une generalization de la notion de groupe, in Proceedings of the 8th Congress des Mathematiciens Scandinaves, Stockholm, Sweden, (1934), 45-49.
- [18] S. Mirvakili and B. Davvaz, Applications of the α*-relation to Krasner hyperrings, J. Algebra, 362 (2012), 145-156.
- [19] M. K. Sen and U. Dasgupta, Hypersemiring, Bull. Cal. Math. Soc., 100 (2) (2008), 143-156.
- [20] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Florida, (1994).
- [21] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Algebraic Hyperstructures and Applications (Xnthi, 1990), 203-211, World Sci. Publ., Teaneck, NJ, 1991.
- [22] J. Zhan and I. Cristea, Characterizations of fuzzy soft Γ-hemirings, Journal of intelligent & fuzzy systems, 26 (2) (2014), 901-911.

112 S. OSTADHADI DEHKORDI, M. HEIDARI AND B. DAVVAZ

Sohrab Ostadhadi-Dehkordi

Assistant Professor of Mathematics Department of Mathematics University of Hormozgan Bandar-Abbas, Iran E-mail: Ostadhadi@hormozgan.ac.ir

Mehri Heidari

MS.c Student of Mathematics Department of Mathematics Bu-Ali Sina University Hamedan, Iran E-mail: mheidari@basu.ac.ir

Bijan Davvaz

Professor of Mathematics Department of Mathematics Yazd University Yazd, Iran E-mail: davvaz@yazd.ac.ir