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Abstract. We present, numerical solution of well known partial differ-
ential equation such as two-dimensional telegraph equations with the aid
of three- dimensional Haar wavelet. Numerical observations illustrate
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1. Introduction

Several real life problems are formulated in the form of mathematical
models. Partial differential equations are arising in many areas of phys-
ical and mathematical sciences and also in engineering. In the last few
decades, wavelet analysis is a recently developed mathematical tool for
solving linear and nonlinear differential and integral equations. Greater
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attempts have been done to find wavelets based solutions of differential
equations. The basic methodology behind wavelet methods is working
on the procedure, which reduces the differential equations in the sys-
tem of linear and nonlinear equations, which are solved by any one
of the significant methods such as Gauss-elimination method, Gauss-
Jordan method, Matrix-inversion method, Newton method for solving
nonlinear system of equations, etc. In the last few years, wavelet re-
lated approaches are gaining more popularity in the field of numerical
analysis. Several types of wavelets and approximating functions have
been developed for solving differential and integral equations. Wavelets
have been used in different areas of science, engineering and other ar-
eas in which numerical approximations are required. In wavelet analysis,
a function or signal can be expressed or represented in terms of a set
of orthonormal basis functions known as wavelets, which are localized
both in time and scale. The wavelet family is obtained from a continu-
ous function ¢ (z), called mother wavelet, by translation and dilation of
P(x) = Z%w(ij — k), where j and k are non-negative integers. In 1998,
Ingrid Daubechie [10] introduced some wavelets which are differentiable
and have small sized support; these wavelets are frequently applied for
solving differential and integral equations. The main disadvantage of
Daubechies wavelets is that they do not have an explicit expression, so
analytical differentiation and integration is not possible.

In the last few decades, it is big and difficult challenge to obtain the nu-
merical solutions of higher degree differential and integral equations. Many
researcher are accepting the challenge and significant formulations or al-
gorithms have been developed for solving 2D and 3D problems. There
are many approaches such as finite difference method, finite element
method, finite volume method, wavelet methods etc. for solving 2D and
3D partial differential equations. Wavelet methods have various advan-
tages such as simple and fast algorithms, small computational cost, easy
to handle, more efficient and more accurate. In the past literature, dif-
ferent wavelet techniques have been used for solving one dimensional
problems. Among all wavelet families, Haar wavelet [13], being discon-
tinuous and non-differentiable, is simplest orthonormal wavelet and has
compact support. It is also known as Daubechies wavelet of order 1. Di-
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rect applications of Haar wavelets are not applied for solving partial
differential equations. Two possibilities have been obtained for solving
such equations: One possibility is to regularize the piecewise constant
Haar function by interpolation splines as presented in [3] and [4]. But,
this technique complicates the solution procedure. The other possibility
is to expand the highest derivative of the differential equation into a
Haar series as presented in [25]. Due to second possibility, simplicity of
Haar wavelet is unaltered.
Wavelet collocation method for solving elliptic boundary value prob-
lems has been presented in [1]. Haar wavelet method has been presented
for solving generalized Burger-Huxley equations in [5]. Approximation
of Haar wavelet has been used for solving magnetohydrodynamic flow
equations in [6]. Simple procedure has been developed, for the integra-
tion of Haar wavelet matrices for solving several differential equations
in [7]. Operational matrices of integrations based on Haar wavelets have
been introduced for analyzing the lumped and distributed-parameter
dynamical system in [9]. Haar wavelet methods for solving Fisher and
FitzHugh-Nagumo equations have been presented in [14] and [15] respec-
tively. Chebyshev wavelet has been used for solving partial differential
equations with boundary conditions of the telegraph type, in [16]. Some
of the recurrence relations and procedures developed in [8], [17] and [18]
may be useful for the solutions of two-and three-dimensional problems
arising in sciences and engineering. In [20], [21] and [22] direct meth-
ods based on Haar wavelets have been established for solving linear and
nonlinear higher order differential and integral equations. Haar wavelet
based methods have been used for solving parabolic and elliptic partial
differential equations in [23],[25],[28], [29] and [30]. Analytic studies on
Burgers, Fisher, Huxley equations and combined forms of these equa-
tions have been presented in [31]. Numerical solutions of two-and three-
dimensional Poisson equations and bi-harmonic equations using Haar
wavelet have been presented in [27].
Consider the second-order linear two-space dimensional hyperbolic tele-
graph equation in the region {(z,y):a < x < b, a <y < b},

0%u ou 0®u  0%u

W(xvyvt)+2r ot (l’,y,t)+A2U(.’E,y,t) = @+67y2+F1(l‘ay7t)v (1)
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with initial conditions

w0 =fy),  SEn0) =ty (@)

and boundary conditions

u(z,a,t) = gr11(x,t), wu(z,bt) =giz(z,t),
’LL(G,, Y, t) = g21(y7 t)v U(b, Y, t) = g22(ya t)’ 0 < t < Ta (3)

where I', A are constant and f, f11, g11, €12, g21, g22 are known
functions. The hyperbolic partial differential equations have significant
role in formulating fundamental equations in atomic physics and are
also very useful in understanding various phenomena in applied sciences
like engineering industry aerospace as well as in chemistry and biology
too. In the literature, we found that many attempts have been taken for
solving one-and two-dimensional telegraph equations. Several numerical
schemes were developed for solving telegraph equation such as Taylor
matrix method [2], dual reciprocity boundary integral method [11], un-
conditionally stable finite difference scheme [12]. Cubic and modified
B-spline collocation method [24, 25], Chebyshev tau method [26], inter-
polating scaling function method [19] etc.

Kronecker product of two matrices:
For saving calculation time, we use the concept of Kronecker product of
matrix A with matrix B of orders p x ¢ respectively and is defined as:

ai1B ap2B - aqu
ang CLQQB RN ¢} B

A9B=| A (4)
CLplB apr ce aqu

The first documented work on Kronecker products was written by Jo-
hann Georg Zehfuss between 1858 and 1868. In MATLAB, the Kro-
necker product of two matrices A and B is directly calculated with the
command kron(A, B).
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Kronecker product of three matrices:
The Kronecker product of three A, B and C matrices each of orders p x ¢q
can be calculated as:

a11E CL12E e alqE
anl apkl - ag FE

A®B®C = . . . ! : (5)
(LplE (IPQE e apqE

where E is of the form:

an b12C’ s bqu
bo1C  byeC - -- quC

E=B®C= . . . ) (6)
bp1C bpC - bpC

In Section 2, we briefly describe Haar wavelet and establish some op-
erational matrices of integrations. Description of three-dimensional Haar
wavelet method for solving two-dimensional telegraph equations has been
presented in Section 3. Error analysis has been derived for two-dimensional
telegraph equations in Section 4 and in Section 5, numerical examples
have been solved using the present method to illustrate the efficiency
and accuracy of present wavelet method.

2. Haar Wavelet

The Haar functions are an orthogonal family of switched rectangu-
lar waveforms where amplitudes can differ from one function to an-
other. These functions are defined as

1, a<z<p,
0, elsewhere,
where o = %,ﬁ = % and vy = %.Integerm =2 (j=0,1,2,......,J)

indicates the level of the wavelet,and k = 0,1,2, .....,m—1 is the transla-
tion parameter. Maximal level of resolution is J. The index i = m+k+1.
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In case of minimal values, m = 1,k = 0 we have ¢ = 2. The maximal
value of 7 is i = 2M, where M = 27. It is assumed that for value i = 1,
the corresponding scaling function in [0, 1] is as

1, 0<z<1
H =<7 ’ 8
1(@) {O, elsewhere. ®

(=93 here | =1,2,3, ..., 2M. The

operational matrix of integration, which is a 2M x 2M square matrix,
is defined by the relations

e / Hi (9)

n—l—l z / Pnz (10)

where n = 1,2,3,4,.... These integrals can be evaluated using (7) and
first two of them are given below:

Define the collocation points x; =

and

x—a, z€[a,f),
Pl,’i(x) = Y=, l'e{ﬁ,’}/), (11)
0, elsewhere;

0, T <«
l(x_a)27 .CL‘E[OL,ﬁ],
Pai(z) =4 1 12
2, ( ) %[(x 705)2 2($ *5)2], ZEG[ﬂ, ] ( )
sll@—a)? =2(@ =P+ (z—9)], a>7
In general,
0, r < a,
()= J @) r€la, ),
Pn,l( ) %[(‘f B Oz)n B (ZE B ﬁ)n], QSG[B,’)/], (13)
Hl@—a)" =2 = B)"+ (x =", =>1.
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Haar wavelet functions are orthogonal to each other as given below

1 277 i=1=2+k
/0 Hz(x)Hl(a:)d:c = {0 ; 7& L (14)

Any square integrable function f(x,y,t) in the interval [0,1) x [0,1) x
[0,1) can be expanded by a Haar series of infinite terms

[c.oluNe olNNe o]

fla,yt) =Y 3> CijpHilx)H;()Hr(t), =y,t€(0,1], (15)

i=1j=1k=1

where C;;i, are constants of the triple summation series, known as wavelet
coefficient. For numerical approximation the above series is truncated up
to finite terms say 2M, that is

2M 2M 2M

flay,t) =Y > > CippMil@)Hi(y)Hi(t), w,y,t€[0,1).  (16)

i=1j=1k=1

3. Three-Dimensional Haar Wavelet Method for
Solving Two-Dimensional Telegraph Equations

Consider the approximate wavelet solution of the form

2M 2M 2M

86
W;aﬂ zyt) =D Y > CopHi(@)H(y)He(t).  (17)

i=1 j=1 k=1
Integrating (17), twice with respect to z, from 0 to x, we obtain
84u 4 5

u U
W(x,y,t) = W(O’y’t) + xm(o%ﬂ
oM 2M 2M

+D D> CinPai(@)Hi(y)Ha(t).  (18)

i=1 j=1 k=1
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Putting x = 1 in (18), we obtain

Pu *u *u
v - " __v*
8x8y28t2 (O7y7t) 8y28t2 ( 7y7t) 8y28t2 (an7t)
oM 2M 2M
= YD CiiwPai (M () He(t). (19)
i=1 j=1 k=1
From (18) and (19), we obtain
*u d*u Mt =T
= _ - — 1 _
5201 (z,9,1) 9y201 0,y,t) + $[ay2at2( , Y, t) 05201 (0,y,1)]
oM 2M 2M
+ 33N Cn(Pailw) — aPai (1)) H; (y)Hi(t). (20
i=1 j=1 k=1

Again, integrating (20), twice with respect to y, from 0 to y, we obtain

2
gt;‘@c, Y. t) = Y (z,y,t) + yrz(x,t) + 21y, t)
2M 2M 2M
+ Z Z ZCijk(Pz,i(w) — 2 P2i(1))Pa;(y)Hi(t). (21)
i=1 j=1 k=1
where
2U 2 2
03 Pu
V() = 5 o (@,0,0) = 5 5 (0,0,0)
0u 0Pu
+aly i (0.0.0) = S (1L0.0). (23)
9%u 9%u 0? 0?
Ui, 0) = (G (Ly.0) = 55 (1,0.0) = 53(0.9,0) + 55(0,0,1)).

(24)
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Putting y = 1 in (21), we obtain

0%u
¢12($7t) c'?t2 (:L‘alat) ¢11($71>t) _$¢13(17t)
2M 2M 2M
— Z Z ZCUk(PZZ(x) — 1‘73271'(1))7727]‘(1)7'[](;@). (25)
i=1 j=1 k=1
From (21), using (25), we obtain
62
8t’;jl($ Y, ) = ¢11($7y7t) + x¢13(yat)
9%u
+ y[ﬁ(fm Lt) —ab1i(x, 1,t) — wapr3(1,1)]
2M 2M 2M

£ 0> Cip(Pai(a) = aPai(1)(Po,j(y) — yPai(1)He(t). (26)

i=1 j=1 k=1

Integrating (17) twice with respect to ¢ from 0 to ¢, we obtain
0t A Pu

(2, t) = = (2,9,0) + t (2, 9,0

9270, (z,y,t) 0229, (2,,0) + 8x28y28t(x’y’ )

2M 2M 2M

=1 j=1 k=1
Putting ¢ = 1 in (27), we obtain

Ou *u 4

0*u

_— = — 1 _ —
axzaygat('xayao) 8m26y2($’y’ ) 890283/2(36"%0)

2M 2M 2M

- ZZZCUkH )PQ k(l
i=1 j=1 k=1
From (27), using (28), we obtain
o*u 0t 0*u 4
_vr _ 7% v 1
6w28y2 ($7y7t) 8$28y2 (x7y70)+t[ax26y2 (ZB,y, ) aanyQ
2M 2M 2M

+ZZZCkaH (¥)(Poi(t) — tP2r(1)).

=1 j=1k=1

). (28)

(,y,0)]

(29)
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Again, integrating (29) twice with respect to z, from 0 to z, we obtain

9%u
Tyg(wa Y, t) = w21($7 Y, t) + 1‘1022(3/, t) + t¢23($, y)
oM 2M 2M
DN CijpPai(@)H; (y) (Pa(t) — tPax(1)),  (30)
i=1 j=1 k=1
where
d%u 9%u d%u
= = - 1
1?21(% Y, t) 3y2 (07 Y, t) + 8y2 (SC, Y, 0) 3y2 (07 Y, 0)7 (3 )
3 Pu
P2a(y,t) = 5;;;&5(07y7t)'— éaiggg(ojyjo)
Pu B
+t[8x8y2 (anao) - 81‘763/2(073/7 1)]7 (32)
9%u 9%u 9%u 0%u
Pa3(x,y) _>(Eﬁff(w’y’1)<_'Eﬂfi(o’y’l)'_'Eﬂfi(x’y’o) +‘Eg;§(0,y,0))
(33)
Putting = 1 in (30), we obtain:
0%u
¢22(y7 t) = 8711/2(1’ Y, t) - ¢21(17 Y, t) - t¢23(17 y)
oM 2M 2M
=3 30 CirPai()H; (y) (Pai(t) — tP2x(1)). (34)
i=1 j=1 k=1
Substituting (34) in (30), we obtain
9%u
aiyg(xa Y, t) = 1/}21($7 Y, t) + t¢23(a}7 y)
9%u
+ ‘T[aiyg(]-v Y, t) - 1/}21(15 Y, t) - WJ23(1, y)]

2M 2M 2M

+ D> Cin(Poila) — aPai(1))H;(y) (Pas(t) — tP2(1)). (35)

i=1 j=1 k=1
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Integrating (17) twice with respect to y, from 0 to y, we obtain:

84u 4u 5’LL
W(mayvt) = W(Z”O,t) + ym(x,o,t)
2M 2M 2M
+ZZZC7,]ICH P2,] )Hk(t) (36)
=1 j=1 k=1

Putting y = 1 in (36), we obtain

A%u ot ot
arzayore &0t = g, Fa20i2 T 1 0) ~ Grap (5:0.1)
2M 2M 2M
= YD CijpHi(z)Paj(y)Hi(t).  (37)
i=1 j=1 k=1

From (36) and (37), we obtain

d*u o o ot
W(%Z/J) = W(%Qﬂ + Q[W(% 1,t) — W(%Qﬂ]
oM 2M 2M
)Y CipMi(@)(Pai(y) — yPa(1)Hi(t). (38)
i=1 j—1 k=1

Again, integrating (38), twice with respect ¢, from 0 to ¢, we obtain

9%u

w(wv yat) = 1/}31($,y,t) + t7/132(377y) + y¢33(x7t)
oM 2M 2M
+ YD CijpHi@) (Pay(y) — yP2;(1)Pag(t), (39)
i=1 j=1 k=1
where
2 2, pY
Uan(ay,t) = 5o (@, 0) + 55 (@,0.0) = 55 (.0,0),  (40)
34, 1
Ui, y) = 55 (2.,0) = 55 (2,0,0)

Bu Bu

—I—y[m(l‘,o,()) 8.7}28 ($71>O)] (41)
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82 62 2 2
baa(a. 1) = (55 (0, 1,0) = 55(2,1,0) = 55(2,0,8) + 55(2,0,0).
(42)
Putting ¢t = 1 in (39), we obtain
0%*u
¢32(33a y) = W(l" Y, 1) - ¢31($, Y, ]-) - ?/¢33(~’Ua 1)
2M 2M 2M
=X 20D CiHal@) (Pay(y) — yPoi(1)Pai(1). (43)
i=1 j=1 k=1
From (39) and (43)), we obtain
82
871'@26(%7 Y, t) = ¢31 (.ﬁU, Y, t) + y¢33(337 t)
82
155 (e, 1) = @,y 1) — yius(a, 1)
2M 2M 2M
+ D 3> CiiHi(@) (Paj(y) — yPaj(1))(Pa(t) — tPag(1)).  (44)
i=1 j=1 k=1

Again, integrating (44), twice with respect to z, from 0 to x, we obtain

u(w,y,t) = po(r,y,t) + xp1(y, t) + toa(z,y) — ytps(x) + ypa(z,t)
2M 2M 2M

+D 00D CipPoi(@)(Paj(y) — yPa (1)) (Pok(t) — tP2x(1)), (45)

i=1 j=1 k=1

where

(Po(.T, Y, t) - U(O, Y, t) + u(ac, Y, 0) - U(O, Y, 0) + U(IB, 07 t) - ’U,(O, Oa t)
—u(z,0,0) + u(0,0,0), (46)

o) = (220,11 — 220,,0) -
FHE0,9,0) - g<o%>

ou ou
%(0 ,0) — 8:5(0 1,

)+
ou ou
Jr’y(%((), 1,0) — %(07 1,1)

Ju au
8
+ == 1) — 9

(0,

720
“ou
o -—(0,0,0))
1

i 0.1)~ 9%(0,0,0))

ou

%(07 07 0))5
(47)

0,
ou
@f(
ou
+6—(0 0,t) —
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wo(x,y) = u(z,y,1) —u(0,y,1) — u(z,y,0) + u(0,y,0) — u(x,0,1)
+u(0,0,1) + u(z, 0,0) — u(0,0,0), (48)

e3(z) = u(z,1,1) —u(0,1,1) — u(z,1,0) + u(0,1,0) — u(z,0,1)
+u(0,0,1) + u(x,0,0) —u(0,0,0), (49)

o4(x,t) = u(x,1,t) — u(0,1,t) — u(z,1,0) + u(0,1,0) — u(z,0,t)
+u(0,0,) + u(z,0,0) — u(0,0,0). (50)

Putting x = 1 in (45), we obtain

e1(y,t) = u(l,y,t) — po(1,y,t) — twa(1,y) + ytes(1) — yea(l,t)
2M 2M 2M

=3NS G Pai (1) (Paj(y) — P2 (1)) (Pas(t) — tPax(1)). (51)

i=1 j=1 k=1

From (45) and (51), we obtain

U(SC,y,t) = 900(33>y7t) + xu(l,y,t) - xQOO(]-?yvt) - xt@?(lay)

+ 2ytps(1) — zypa(1,t) + toa(z,y) — ytos(x) + ypa(, t)
2M 2M 2M

DD Cip(Paila) — aPoi(1)(Pai(y) — yPaj(1)(Pas(t) — tPox(1)).
=1 =1 k=1
(52)

Differentiating (52) with respect to ¢, we obtain:

ou _ Oypo ou _O¢o B
a(‘rayﬂf)_ W(mayvt)—l_xa(lay?t) ‘Tﬁ(lvy)t) ‘TSOQ(]-)y)
0 0
+ayps(1) — ay ot (1,8) + eale,y) = yea(@) +y o (2.1
2M 2M 2M
3NN Ciip(Pailw) — 2Pa,i(1)) (Paj(y) — P2 (1) (Pri(t) — Pag(1).
i=1 j=1 k=1
(53)



14 I. SINGH AND S. KUMAR

Substituting the values from (26), (35), (44), (52) and (53) in (1), we
obtain

2M 2M 2M
Z Z Zcz‘jk[Rl +2I'S7 + A2T1 - Ui — Vll] = Q(z,y,t), (54)
i=1 j=1 k=1
where
Ry = Hi(2)(P2,j(y) — yP2,;(1))(Poi(t) — tP2k(1)), (55)

St = (Pi(w) — 2P (1)) (P2, (y) — yP2 (1)) (Pri(t) — Pok(1)), (56)
Ti = (Pai(z) — 2P2,i(1)) (P2, (y) — yP2, (1)) (Pok(t) — tP2k(1)), (57)
Ui = Hi(2)(Pa,j(y) — yP2,i (1)) (Por(t) — tP2k(1)), (58)
Vi1 = (Pa,i(z) — 2P2,i(1))H;(y) (P (t) — P2k (1)), (59)

and
Qz,y,t) = F1(x,y,t) — EXTRA—-TERMS. (60)

where EXTRA-TERMS termed as remaining terms from (26), (35), (44),
(52) and (53). Discretisation by using © — z;, y — y; and t — t;. From
(54), we obtained Haar wavelet coefficients and the numerical solution
can be obtained by substituting wavelet coefficients into (52). For finding
Ry, 51,11, U1, Vi1 and €2, we have use the concept of Kronecker product.

4. Error Analysis for Two-Dimensional Telegraph
Equation

In this section we present the error analysis of two-dimensional partial
differential equations such as two-dimensional telegraph equations. In
order to analyze the convergence of our proposed method, we state and
prove the following convergence theorem

Theorem 4.1. Suppose that u(x,y,t) satisfies a Lipschitz condition on
D =10,1)x[0,1)x[0,1), that is there exist a positive constant Ly, Lo, L3
and Ly, such that for all (x1,y,t), (z2,y,t), (z3,y,t), (x4,y,1), (x5,¥,1),
(z6,y,1t), (z7,y,t) and (x8,y,t) in D, we have
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|U($27y7 ) (‘/Elaya ) |: L1’IE2—LE1 ‘7
| u(a,y,t) — w(xs,y,t) |= Lo| 24 — 23 |, (61)
‘ u($67y7 ) (x57ya ) ‘: L3’ Te — T ‘7
| U(l’g,y, ) u(z%ya ) |: L4’ xrg — I |
Then, the error bound || Ey, ||2 obtained from above is
| B o~ O(-)* (62
m ||27 E .

Here, the order of convergence is of the order 4.

Proof. Consider L1 = Ly = L3 = Ly = L. Let uegact(x,y,t) and
Uapprozimate(T, Y, ) be the exact and approximate solutions of the partial
differential equation. The error at the Jth level of resolution is defined
as:

B = Uegact (l‘, Y, t) — Uapproximate (ﬁ, Y, t)

= Y N Y ChriisHa () iy (y)Hiy (1)
i1=2M+1ia=2M +1iz=2M+1

= Y CivigisMi (@) Hiy () His (£), (63)

i1,82,i3=2M+1

where

2M 2M 2M

Uapproximate = Z Z Zczlzgzg 11 (y>H 3(t)7 (64)

i1=1io=1i3=1

and the wavelet coeflicients are calculated as follows:

Ciyigis /// u(z,y, t)Hiy () Hiy (y)Hiy (t)dxdydt

= (Har @), (Haa(v), (ula,y. ). s, (1)) ) ). (65)
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Here <> shows the inner product. Define || . ||, as:

1 pr1 p1 2
|| Em ||; = / / / |:ue:):act (:Ua Y, t) - uapprozimate (SL’, Y, t):| d:rdydt
0 Jo JO

(66)
From (63) and (66), we obtain
2
iEali= [ [ G oy () s () (1)) iyt
11,82,13= 2M+1
(67)

Using definition of inner product, from (67), we obtain

o0 o0

PBalb= > Y CotwnCoar [H(i10)] [Hlizi )] [HCis 7))

11,i2,i3=2M+1 p,q,r=2M+1

where

H(i1, p / Hi, (z dx), (69)

H (i, q / M, (y d) (70)
H(is,r /Hz3 ) (71)

Using orthogonality conditions, from (68), we obtain

o0

1

2

H Em H2 = ﬁ Z C7,212213 (72)
i1,42,i3=2M+1

Using definition of inner product space and (7), we can write

<u(w,y,t),Hi3(t)> = /Olu(nv,y,t)’/"(i3 (t)dt

k+0.5/m k+1/m
:/ u(z,y,t)dt—/ u(z,y,t)dt. (73)
k/m k+0.5/m
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Applying mean value theorem, that is there exist ¢; € [%, H%] and
ty € [E£05 kL) Cguch that

m ’ m

(ul,y.1), His(t))

_ [(k 47—%0.5 B %)u(az,y,tl) B (k;—ll B k+0'5>u(x,y,t2)}
= ﬁ [U(I,y,tl) —u(z,y, tz)}- (74)
Again,
(Hial), (ul,,0), M) ) = (M), 5 (s, 1) — o ,)) ),

(75)
From (75), using the definition of inner product, we obtain

(M) (a0 ), 10 = [ o [0, 0) = oot i)

m
(76)
Using (7), from (76), we obtain
1 E+0.5 k+1
= 277’L|:/k u(xayatl)dy/m U(S(J,y,tl)dy}
1m kil " k0.5
ol [ atwtay— [ 7 atep i) (@)

Applying mean value theorem, we obtain:

(Hia(y), (ulw,9,8), His(1)))

1 [(k+0.5_ k

E)”M(%yl,tl) B (k+ I k+0.5

m m

(ot

m

k+0.5 _ £>U($,y3,t2)}.

m m 8)

+%[(/@4—17]{4-0.5

Yoot (

m m

After simplifications, from (78), we obtain
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(Hia(v), (ulw,y.0), Hiy(1)))

1
= m [u(:):, ylatl) - u(l'?y%tl) - u($,y3,t2) + u(x,y4,t2)] : (79>

Hence,
Civigyis =
1
<Hi1 (33), m [U(l",yl,tl) - U(xv?JZ,tl) - U(I, 937152) + U(IL', Ya, t2):|>
1 1
= 23+2m/ [u(x,y].’tl) - u(x7y2>tl) - u(x7y37t2) + u(m7y47t2)i| H’L(x)dx
0
(80)
From (80), using (7), we obtain
Cirigis =
1 k+0.5 k41
Y- {/ u(x,y1,t1)dx — /€+O.5u(x,y1,t1)d:c
1 m mg -
~ i / (x,y2,t1)dx +/ s u(zx, yo,t1)dx
1 s -
+ CYEET / (z,y4,to)dx — [C+O'5u(x,y4,t2)dx
~ [/k u(a;,yg,tg)da; - [9+0‘5u(m,y3,t2)dm]. (81)

Applying mean value theorem, from (81), we obtain

Ci1i2i3:
(50— Bt - (0800
o (R e e ot
ﬁ[(k+05 ) w(zs, yarts) — (%—k+0'5>u(m6,y4,t2)}
g (0 B (S B0 )

(82)
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After simplifications, from (82), we obtain

|Ci1i2i3‘
1
< Sa93,, [!u(m’hyl,tl) —u(x2, Y1, 1) + u(za, Y2, t1) — u($37y2,t1)’}

1
+ 52578, [!U(iﬁ5,y4,t2) — u(x6, ya, t2) + u(zs, Y3, t2) — U@%Z/:&Jz)\]
(

83)
Using (61), from (83), we obtain

1 4L
Ci

21i2i3| X 22j+3m%7 (84)

where L = max{Li, Lo, L3, L4}. After simplifications, from (84), we

obtain
4L L 1

ial < - < —
(Cirinis| < 92j+4y 2 S 92542 12

(85)
Squaring both sides, from (85), we obtain

o2 L? 1

114213 < 24]+4 m4 (86)

By substituting (86) in (72), we obtain

e}

1 L?

2

| Em 2 < 3 > GYvEE e (87)
11,i2,i3=2M+1

After simplifications, from (87), we obtain

[e.9]

L? 1 1

2

I Em ll2 < =5 > 24 (88)
11,82,i3=2M+1

Expanding (88), we obtain

27129 -127 -1

Bl < 2 Y (XX X)) (59)

J 1 11=0%2=01t3=0
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From (89), after simplification, we obtain

21 & /1

2

I B 3 < S 3 (57): (90)
j=J+1

From (90), after series summation, we obtain

L2

2
| B I < o1)
After taking square root, we obtain
N 1
| B lly % O(-). (92)

This shows that the convergence is of the order 4.

5. Numerical Experiments and Discussion

We illustrate here, the efficiency and accuracy of the present method by
solving few numerical examples of two-dimensional telegraph equations.

Example 5.1. Consider the two-dimensional telegraph equation (1)
with ' = 0, A = 1 and F {(z,y,t) = (7? + 1)sin rx.sin 7y.sin 7t. The
exact solution of the problem is

u(z,y,t) = sinwt.sin rz.sin 7y. (93)

The maximum absolute errors of Example 5.1 are 2.4155e—002, 1.7278¢e—
002, 5.4222¢ — 003 and 1.4323e¢ — 003 for J = 0,1,2 and J = 3 respec-
tively.

Exact solution of Example 1 for t=31/64 and J=4.

Figure 1: Exact solutions of Example 1 for ¢ = 31/64 and J = 4.
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Numerical solution of Example 1 for t=31/64 and J=4.

oS
PN
SN
S SSSSTIN
S SESSSSOIINS
S gSERSORNIN
SRS

1950050
2

Figure 2: Numerical solutions of Example 1 for ¢ = 31/64 and J = 4.

Example 5.2. Consider the two-dimensional telegraph equation (1)
withT =0, A = land f 1(z,y,t) = (6t(1 — 2t) + t3(1 — t) + 272t3(1 — ¢)).
The exact solution of the problem is

u(z,y,t) = t3.(1 — t).sin rx.sin 7y. (94)

The maximum absolute errors of Example 5.2 are 1.3225¢—002, 8.3354¢—
003, 2.6554e — 003 and 6.9725¢ — 004 for J = 0,1,2 and J = 3 respec-
tively.

Exact solution of Example 2 for t=31/64 and J=4.

55555 S RN
o 00,,,,;;;%,;;;[ LSS S ‘-‘33“:::\\‘-‘33::“:::& > 4
o :‘\“‘“\ 06
0 0
y-axis Xx—axis

Figure 3: Exact solutions of Example 2 for ¢ = 31/64 and J = 4.

Numerical solution of Example 2 for t=31/64 and J=4.

Figure 4: Numerical solutions of Example 2 for ¢t = 31/64 and J = 4.
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Example 5.3. Consider the two-dimensional telegraph equation (1)
with ' =0, A =0 and

Fi(e,y,t) = 6t(1 = 26)2°(1 — 2)y° (1 — y)—62(1 — 22)y>(1 — y)t*(1 — 1)
—6y(1 —2y)x3(1 — )3 (1 —t). (95)
The exact solution of the problem is
u(z,y,t) =t3.(1 —t).2%.(1 —z).9°.(1 —y). (96)

The maximum absolute errors of Example 5.3 are 1.5095¢—004, 6.1064e—
005, 1.7972e — 005 and 4.6994e¢ — 006 for J = 0,1,2 and J = 3 respec-
tively.

Exact solution of Example 3 for t=31/64 and J=4.

u(x.y.t)
s o o

o~

y—axis X—axis

Figure 5: Exact solutions of Example 3 for ¢t = 31/64 and J = 4.

Numerical solution of Example 3 for t=31/64 and J=4.

y-axis X—axis

Figure 6: Numerical solutions of Example 3 for t = 31/64 and J = 4.
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Example 5.4. In Example 5.1, if I' = 0, A = 0, then F(z,y,t) =
72, sin 7. sin my. sin 7t. The exact solution is (93). The maximum abso-
lute errors of Example 5.4 are 2.6419e¢ —002, 1.8987¢ —002, 5.9681e —003
and 1.5772e — 003 for J = 0,1,2 and J = 3 respectively.

6. Conclusion

We conclude from the above that, three-dimensional Haar wavelet based
methods are also working as a powerful tool for solving two-dimensional
telegraph equations. We also conclude here from the above, that the high
dimensional Haar wavelet methods are more accurate, simple, fast and
computationally efficient for solving partial differential equations. For
getting the necessary accuracy the number of calculation points may be
increased.

Acknowledgements
The authors are grateful to anynomous referee(s) for their valuable sug-
gestions which improved the quality of the paper.

References

[1] 1. Aziz, Siraj-ul-Islam, and B. Sarler, Wavelets collocation methods for the
numerical solution of elliptic BV problems, Applied Mathematical Mod-
elling, 37 (2013), 676-697.

[2] B. Blbl and M. Sezer, A Taylor matrix method for the solution of a two-
dimensional linear hyperbolic equation, Applied Mathematics Letter, 24
(10) (2011), 1716-1720.

[3] C. Cattani, Haar wavelet splines, Journal of Interdisciplinary Mathemat-
ics, 4 (2001), 35-47.

[4] C. Cattani, Haar wavelets based technique in evolution problems, Pro-
ceedings of the Estonian Academy of Sciences. Physics. Mathematics, 53
(1) (2004), 45-63.

[5] 1. Celik, Haar wavelet method for solving generalized Burgers-Huxley
equation, Arab Journal of Mathematical Sciences, 18 (2012), 25-37.



24

(6]

[7]

[10]

[11]

[13]

[14]

[15]

[16]

I. SINGH AND S. KUMAR

I. Celik, Haar wavelet approximation for magnetohydrodynamic flow
equations, Applied Mathematical Modelling, 37 (6) (2013), 3894-3902.

P. Chang and P. Piau, Haar wavelet matrices designation in numerical
solution of ordinary differential equations, JAENG International Journal
of Applied Mathematics, 38 (3) (2008), 1-5.

M. M. Chawla and S. Kumar, Convergence of quadratures for Cauchy
principal value integrals, Computing, 23 (1979), 67-72.

C. F. Chen and C. H. Hsiao, Haar wavelet method for solving lumped
and distributed-parameter systems, IEE. Proc. Control Theory Appl., 144
(1997), 87-94.

I. Daubechies, Ten lectures on wavelets, CBMS-NCF, STAM, Philadelphia,
(1992).

M. Dehghan and A. Ghesmati, Solution of the second-order one-
dimensional hyperbolic telegraph equation by using the dual reciprocity
boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem.,
34 (1) (2010), 51-59.

F. Gao and C. Chi, Unconditionally stable difference schemes for a one-
space-dimensional linear hyperbolic equation, Appl. Math. Comput., 187
(2) (2007), 1272-1276.

A. Haar, Zur theorie der orthogonalen Funktionsysteme, Math. Annal.,
69 (1910), 331-71.

G. Hariharan, K. Kannan, and K. R. Sharma, Haar wavelet method for
solving Fishers equation, Appl. Math. Comput., 211 (2009), 284-292.

G. Hariharan and K. Kannan, Haar wavelet method for solving FitzHugh—
Nagumo equation, Int. J. Math. Stat. Sci., 2 (2) (2010), 59-63.

M. H. Heydari, M. R. Hooshmandasl, and F. M. Maalek Ghaini, A new
approach of the Chebyshev wavelets method for partial differential equa-
tions with boundary conditions of the telegraph type, Applied Mathemat-
ical Modelling, 38 (2014), 1597-1606.

S. Kumar, A note on quadrature formulae for Cauchy principal value
integrals, Journal of the Institute of Mathematics € its Applications, 26
(1980), 447-451.



[18]

[19]

[25]

[26]

[27]

NUMERICAL SOLUTION OF TWO-DIMENSIONAL ... 25

S. Kumar, A recurrence relation for solution of singular Volterra integral
equations using Chebyshev polynomials, BIT, 21 (1981), 123-125.

M. Lakestani and B. N. Saray, Numerical solution of telegraph equation
using interpolating scaling functions, Comput. Math. Appl., 60 (7) (2010),
1964-1972.

U. Lepik, Numerical solution of differential equations using Haar
wavelets, Math. Comput. Simul., 68 (2005), 127-143.

U. Lepik, Numerical solution of evolution equations by the Haar wavelet
method, Applied Mathematics and Computation, 185 (2007), 695-704.

U. Lepik, Application of the Haar wavelet transform to solving integral
and differential equations, Proc. Estonian Acad. Sci. Phys. Math., 56 (1)
(2007), 28-46.

U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavele-
ts, Computers and Mathematics with Applications, 61 (7) (2011), 1873-
1879.

R. C. Mittal and R. Bhatia, Numerical solution of second order one di-
mensional hyperbolic telegraph equation by cubic B-spline collocation
method, Appl. Math. Comput., 220 (2013), 496-506.

R. C. Mittal and R. Bhatia, A numerical study of two dimensional hy-
perbolic telegraph equation by modified B-spline differential quadrature
method, Applied Mathematics and Computation, 244(2014), 976-997.

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic tele-
graph equation using the Chebyshev tau method, Numer. Methods Partial
Differ. Equ., 26 (1) (2010), 239-252.

Z. Shi, Y. Cao, and Q. Chen, Solving 2D and 3D Poisson equations and
biharmonic equations by the Haar wavelet method, Applied Mathematical
Modelling, 36 (2012), 5143-5161.

Siral-ul-islam, I. Bozidar sarler, and Fazal-i- Har, Haar wavelet colloca-
tion method for the numerical solution of boundary layer fluid flow prob-
lems, Int. J. Therm. Sci., 50 (2011), 686-697.

Siraj-ul-Islam, I. Aziz, A. S. Al-Fhaid, and A. Shah, A numerical assess-
ment of parabolic partial differential equations using Haar and Legendre
wavelets, Applied Mathematical Modelling, 37 (2013), 9455-9481.



26 I. SINGH AND S. KUMAR

[30] Siraj-ul-Islam, I. Aziz, and M. Ahmad, Numerical solution of two-
dimensional elliptic PDEs with nonlocal boundary conditions, Computer
and Mathematics with Applications, 69 (2015), 180-205.

[31] A. M. Wazwaz, Analytic study on Burgers, Fisher, Huxley equations and
combined forms of these equations, Appl. Math. Comput., 195 (2) (2008),
754-761.

Inderdeep Singh

Research Scholar of Mathematics

Department of Mathematics

Dr. B.R.Ambedkar National Institute of Technology
Jalandhar, Punjab-144011, India

E-mail: inderdeeps.ma.12@nitj.ac.in

Sheo Kumar

Professor of Mathematics

Department of Mathematics

Dr. B.R.Ambedkar National Institute of Technology
Jalandhar, Punjab-144011, India

E-mail: sheoks53@gmail.com





