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Abstract. Gordon presented an example of a function that is Denjoy
integrable but not Lebesgue integrable in the book: The integrals of
Lebesgue, Denjoy, Peron and Henstock. That example showed that, the
class of Denjoy integrable functions is larger than the class of Lebesgue
integrable functions. We are going to show that the set of Denjoy inte-
grable functions that are not Lebesgue integrable, contains an infinite
dimensional vector space.
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1. Introduction

Finding infinite dimensional algebraic structures and infinitely generated
algebras in different subsets of various spaces is relatively new trend in
mathematical analysis.

Recall that a subset S of a vector space V is called lineable if S ∪ {0}
contains an infinite dimensional vector subspace of V . Also if V is a
topological vector space then S is called spaceable if S ∪ {0} contains
a closed infinite dimensional vector subspace of V . These notions were
first appeared in an unpublished notes of Enflo and Gurariy. Aron and
Gurariy published those notes in [2]. We should mention that Enflo’s
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and gurariy’s unpublished notes were completed in collaboration with
Seoane-Sepulvida and finally published in [6].

The origin of lineability is due to Gurariy ([12, 13]) who showed the
existence of an infinite dimensional linear space such that every non-
zero element of which is a continuous nowhere differentiable function
on C[0; 1]. Many examples of vector spaces of functions on R or C en-
joying certain special properties have been constructed in the recent
years. More recently, many authors got interested in this subject and
gave a wide range of exampls. For more results on lineability we refer
the reader to [7, 8, 9].

Our concern in this paper is the set of Denjoy integrable functions that
are the extension of Lebesgue measurable functions. To define Denjoy
integrable functions we need a variation of the bounded variation func-
tions. The notion of bounded variation and absolute continuity on an
interval play a key role in the theory of Lebesgue integral. The exten-
sion of these concepts from intervals to arbitrary sets will play a major
role in the development of the integrals that generalize the Lebesgue
integral. First we bring some definitions and primary results.

Definition 1.1. Let F : [a, b] → R be an arbitrary function. The oscil-
lation of the function F on the interval [a, b] is

ω(F, [a, b]) = sup{|F (y) − F (x)| : a  x < y  d}.

Definition 1.2. Let F : [a, b] → R and let E ⊂ [a, b].

(a) The weak variation of F on E and the strong variation of F on E
are defined by

V (F,E) = sup{
n

i=1

|F (di) − F (ci)|};

V∗(F,E) = sup{
n

i=1

ω(F, [ci, di])},

respectively, where the supremum in each case is taken over all the finite
collections {[ci, di] : 1  i  n} of non-overlapping intervals that have
endpoints in E.
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(b) The function F is absolutely continuous on E (F is AC on E) if for
each ε > 0 there exits δ > 0 such that

n
i=1 |F (di)−F (ci)| < ε whenever

{[ci, di] : 1  i  n} is a finite collection of non-overlapping intervals
that have endpoins in E and satisfy

n
i=1(di − ci) < δ. The function

F is absolutely continuous in the restricted sense on E (F is AC∗ on
E) if for each ε > 0 there exits δ > 0 such that

n
i=1 ω(F, [ci, di]) < ε

whenever {[ci, di] : 1  i  n} is a finite collection of non-overlapping
intervals that have endpoins in E and satisfy

n
i=1(di − ci) < δ.

(c) The function F is generalized absolutely continuous on E (F is ACG
on E) if F |E is continuous on E and E can be written as a countable
union of sets on each of which F is AC. The function F is generalized
absolutely continuous in restricted sense on E (F is ACG∗ on E) if F |E
is continuous on E and E can be written as a countable union of sets
on each of which F is AC∗.

It is easy to see that the concept of weak variation and strong variation
of a function coincide on an closed interval. In this case f is AC(ACG)
if and only if it is AC∗(ACG∗).

The following theorem helps us showing that the Denjoy integral (that
will be defined in the sequel)of an ACG function can be uniquely deter-
mined up to an additive constant.

Theorem 1.3. Let f : [a, b] → R be ACG on [a, b]. If f  = 0 almost
everywhere on [a, b], then f is constant on [a, b].

Proof. See page 104 of [10]. 

Now we want to define Denjoy integrable functions. This definition will
be achieved by expanding a nice property of Lebesgue measurable func-
tions that is presented in the following theorem.

Theorem 1.4. ([10]) Let F be a real valued continuous function defined
on [a, b]. If F is differentiable nearly everywhere on [a, b] and if F  is
Lebesgue integrable on [a, b], then

 x
a F

 = F (x)−F (a) for each x ∈ [a, b].

The phrase “nearly everywhere” in the above theorem means that the
property holds on all points but a countable set. The hypothesis that F 
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be Lebesgue measurable on [a, b] is necessary. As an instance take

F (x) =

x2 sin

�
π
x2


, if 0 < x  1

0, if x = 0

This function has derivative at each point of [0, 1], but F is not abso-
lutely continuous on [0, 1]. Consequently the function F  is not Lebesgue
integrable on [0, 1]. In fact if F  is Lebesgue integrable on [0, 1], put
G(x) =

 x
0 F

 for each x ∈ [0, 1]. The function F and G are ACG∗ on
[0, 1] and their derivatives are equal almost everywhere on [0, 1]. On the
other hand F (0) = G(0), thus by Theorem 1.3, the functions F and G
are equal on [0, 1]. But this implies that F is AC on [0, 1], a contradic-
tion.

This rose the following question:

Is there an integration process that holds the following property? Let
F : [a, b] → R be a continuous function. If F is differentiable nearly
everywhere on [a, b], then F  is integrable on [a, b] and

 x
a F

 = F (x) −
F (a) for each x ∈ [a, b].
An integral with this property is said to recover a function from its
derivative. In addition, any integral that satisfies the above theorem
should include the Lebesgue integral. That is, any function that is Lebesgue
integrable should be integrable in the new sense and the integrals should
be equal. In 1912, A. Denjoy developed an integration process that sat-
isfies the theorem quoted above. He called the process of computing
the value of his integral “totalization” and showed that every derivative
met the criteria for this process and that the original function was re-
covered. This totalization is a rather complicated process that involves
the use of transfinite numbers. A few months after Denjoy’s work, N.
Lusin connected the new integral and the notion of generalized absolute
continuity. This is the approach that will be followed here.

As it is shown in [10], a function f : [a, b] → R is Lebesgue integrable
on [a, b] if and only if there exists an AC function F : [a, b] → R such
that F  = f , almost everywhere on [a, b]. The Denjoy integral is a simple
generalization of this characterization of the Lebesgue integral.

Definition 1.5. A function f : [a, b] → R is Denjoy integrable on [a, b]
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if there exists an ACG∗ function F : [a, b] → R such that F  = f almost
everywhere on [a, b]. The function f is Denjoy integrable on a measurable
set E ⊆ [a, b] if fχE is Denjoy integrable on [a, b].

By theorem 1.3, the Denjoy integral of a function is uniquely determined
up to an additive constant. If we add the condition that F (a) = 0, then
the function F is unique. We will denote this function by (D)

 x
a f . It is

shown in [10] that Denjoy integral recovers a function from its deriva-
tive. Actually they proved the following theorem.

Theorem 1.6. Let F : [a, b] → R be a continuous function. If F is
differentiable nearly everywhere on [a, b], then F  is Denjoy integrable
on [a, b] and (D)

 x
a F

 = F (x)− F (a) for each x ∈ [a, b].

The Denjoy integral has all of the usual properties of an integral.

2. Main Theorem

In this section we are going to prove that the set of Denjoy integrable
functions that are not Lebesgue integrable contains an infinite dimen-
sional vector space. First we need the following lemma.

Lemma 2.1. Let n ∈ N be arbitrary and define Fn : [0, 1] → R by

Fn(x) =

xn sin

�
π
xn


, if 0 < x  1

0, if x = 0

Then Fn is ACG on [0, 1] but it is not AC on [0, 1].

Proof. Since Fn is continuous on each interval [1/m, 1], for all m  1,
so it is ACG on [0, 1]. To prove that F is not AC on [0, 1], let 0 < δ be

arbitrary. For each m  1 put am =


2
4m+1

1/n
and bm =


2
4m

1/n. Let
M,N ∈ N be chosen such that M < N and

N
i=M

2
4i+1 > 1. Then

{[am, bm] : M < m < N} is a finite collection of non-overlapping inter-
vals in [0, 1] that satisfy

N
i=M (bi − ai) < δ, but

N

i=M

|Fn(bi)− Fn(ai)| =
N

i=M

2
4i+ 1

> 1.
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This completes the proof. 

Theorem 2.2. The set of Denjoy integrable functions that are not
Lebesgue integrable is lineable.

Proof. For all i  1, define ni = i! and put Gi = Fni . By Lemma 2.1,
Gi is ACG but not AC on [0, 1]. Since the concept of ACG and ACG∗
coincide on closed intervals, so Gi is ACG∗ on [0, 1].

Now for each i  1 put gi = G

i. By the Definition 1.5 and the discussion

before the definition, each gi is Denjoy integrable but not Lebesgue
integrable. We are going to prove that each finite linear combination
of elements of {gi : n  1} is still Denjoy integrable and is not Lebesgue
integrable. Also we will show that the above set is linearly independent.

To this end let i1 < i2 < · · · < ik be prime numbers and α1, . . . , αk be
arbitrary constants. Let α1gi1 + . . .+ αkgik = 0. Since Denjoy integral
recovers a function from its derivative and also since gi(0) = 0 for all
i  1, so α1Gi1 + . . .+αkGik = 0. Put x1 = 1

21/(i1+1)! . For all 2  j  k,
Gij (x1) = 0 and Gi1(x1) = 0. Thus α1 = 0. Put x2 = 1

21/(i2+1)! . For
all 3  j  k, Gij (x1) = 0 and Gi2(x1) = 0. Thus α2 = 0 ans so on.
Therefore the set {gi : i ∈ N} is linearly independent.
To prove that each finite linear combination of elements of {gi : i  1}
is Denjoy integrable and is not Lebesgue integrable, it suffices to show
that each finite linear combination of elements of {Gi : i  1} is ACG
but not AC on [0, 1]. Let i1 < i2 < · · · < ik be distinct integers and
α1, . . . , αk be arbitrary constants and consider the linear combination
α1Gi1 + . . .+ αkGik . The proof that this linear combination is ACG, is
just similar to the one we brought above to show that a single function
is ACG on [0, 1].

To show that this combination is not AC on [0, 1], we follow the same
process that we employed in Lemma 2.1. Let δ > 0 be arbitrary and

consider am =


2
4m+1

1/n1!

,
bm =


2
4m

1/n1!

.
Since the series


α1

2
4m+ 1

+ α2


2

4m+ 1

(n2−n1)!

+ . . .+ αk


2

4m+ 1

(nk−n1)!

,
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is divergent and the series

(bm − am) is convergent, so we can choose

M and N such that M < N ,
N

m=M (bm − am) < δ and

N

m=M

α1
2

4m+ 1
+ α2


2

4m+ 1

(n2−n1)!

+ . . .+ αk


2

4m+ 1

(nk−n1)!

> 1.

Now we have
N

m=M

|(α1Gi1(bm) + . . . αkGik(bm))− (α1Gi1(am) + . . . αkGik(am))| =

N

m=M

α1
2

4m+ 1
+ α2


2

4m+ 1

(n2−n1)!

+ . . .+ αk


2

4m+ 1

(nk−n1)!

> 1.

This completes the proof. 

Remark 2.3. Here we proved ℵ0-lineability of the set of Denjoy inte-
grable functions that are not Lebesgue integrable. One can ask whether it
is the maximum dimension of the vector space? Or is there any algebra
contained in this set of functions?
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