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usually expressed in the form of functional equations. Such equations can be
written in form of fixed point equation

Tx = x, (1)

where T is an appropriate nonlinear operator and x is an independent variable
describing the physical phenomena. The behavior of the physical phenomena
that this equation describes can be determined by the nature of the solutions
to this fixed point equation. In general, the fixed points of the equation (1) are
not easily obtained, hence the need for approximate solutions. In this regard,
different iterative schemes have been developed and used to approximate fixed
points of nonlinear mappings on suitable domains. On the other hand, an it-
erative process that approximates the fixed points of a nonlinear fixed point
equation in a fewer number of iterations is preferable to the iterative schemes
with more iteration steps. Different types of iterative schemes have been used
in the literature. The very famous Mann iteration scheme is a one-step itera-
tion process while the Ishikawa process is a two-step iteration scheme among
others. In [7], Glowinski and Le Tallec used a three-step iteration scheme to
approximate the solutions of the elastoviscoplasticity problem in liquid crystal
theory and eigenvalue computations. They showed that a three-step iteration
process is better in giving numerical results than a one- or two- step iteration
process. Haubruge et al. [11] applied the Glowinski and Le Tallec iteration
scheme to obtain a new splitting type iterations for solving variational inequal-
ities, separable convex programming, and minimization of a sum of convex
functions. They showed also that three-step iteration process leads to a highly
paralleled iterations under certain conditions. Furthermore, in [2], Abbas and
Nazir introduced a new three-step iteration scheme that is faster than the
Agarwal et al. two-step iteration scheme. Thus studying a three-step iteration
process will yield a better numerical result when applied to real-world prob-
lems. In this paper, we study the three-step iteration scheme (to be defined in
sequel) introduced by Abbas and Nazir [2].

The role played by ambient spaces involve in a fixed point equation is also very
important. In this regard, we note that Banach spaces with convex geometric
structures have been studied extensively. Since a Banach space is a vector
space, one can introduce a convex structure on it. However, metric spaces do
not naturally have this convex structure. The notion of convex metric spaces
was introduced by Takahashi [31] who studied the fixed points of nonexpansive
mappings in the setting of convex metric spaces. Over time, different convex
structures have been introduced on metric spaces. Hyperbolic spaces are specific
examples of convex metric spaces. Different definitions of hyperbolic spaces
can be found in the literature, see [9, 16, 18, 27], for examples. Although
the hyperbolic space defined by Kohlenbach [18] is slightly restrictive than
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the hyperbolic space introduced in [8], it is, however, more general than the
hyperbolic space introduced in [27]. Moreover, this class of hyperbolic spaces
contains the Hadamard manifolds, Hilbert balls equipped with the hyperbolic
metric [9], R-trees and Cartesian products of Hilbert balls as special cases.

The nonlinear mapping T involved in a fixed point equation (1) is also very
important. Nonexpansive mappings constitute one of the important class of
nonlinear mappings in fixed point theory.

We recap some necssary ideas as follows. A subset K of a metric space X is
proximal if for each x ∈ X, there exists an element k ∈ K such that

d(x,K) = inf{d(x, y) : y ∈ K} = d(x, k).

Denote by CB(K) the set of closed and bounded subsets of K, by C(K) the
compact subset of K and by P (K) the set of proximal bounded subsets of K.
Let H(A,B) be the Hausdorff metric induced by the metric d of X, that is

H(A,B) = max

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

,

for all A,B ∈ CB(X). A multivalued map T : K −→ CB(X) is nonexpansive
if

H(Tx, Ty)  d(x, y),

for all x, y ∈ K. A point x ∈ K is a fixed point of T if x ∈ Tx. We denote by
F (T ) the set of all fixed ponit of T and PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}.

Kohlenbach [18] defined a hyperbolic space as follows:

Definition 1.1. A metric space (X, d) is a hyperbolic space if there exists a
map W : X2 × [0, 1] −→ X such that

(i) d(u,W (x, y, α))  (1− α)d(u, x) + αd(u, y),

(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),

(iii) W (x, y, α) =W (y, x, (1− α)),

(iv) d(W (x, z, α),W (y, w, α))  (1− α)d(x, y) + αd(z, w),

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

CAT(0) spaces and Banach spaces are important examples of this type of hyper-
bolic spaces. A hyperbolic space represents a unified approach for both linear
and nonlinear structures simultaneously. There are hyperbolic spaces which are
not imbedded in any Banach space, see for example [6]. If a hyperbolic space
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(X, d,W ) satisfies Definition 1.(i) only, then it coincides with the convex metric
space introduced by Takahashi [31].

In the sequel whenever we mention hyperbolic space, we mean the one given
above.

We now list some important required concepts.

Definition 1.2.A subset K of a hyperbolic space X is called convex ifW (x, y, α) ∈
K for all x, y ∈ K and α ∈ [0, 1].

Definition 1.3. A hyperbolic space (X, d,W ) is said to be strictly convex if
for any x, y ∈ X and λ ∈ [0, 1], there exists a unique element z ∈ X such that

d(z, x) = λd(x, y) and d(z, y) = (1− λ)d(x, y);

Definition 1.4. A hyperbolic space (X, d,W ) is uniformly convex [32] if for
all u, x, y ∈ X, r > 0 and  ∈ (0, 2], there exists a δ ∈ (0, 1] such that

d(x, u)  r
d(y, u)  r
d(x, y)  r




 =⇒ d(W (x, y,
1
2
), u)  (1− δ)r.

A map η : (0,∞) × (0, 2] −→ (0, 1] which provides such a δ = η(r, ) for given
r > 0 and  ∈ (0, 2] is called modulus of uniform convexity. The modulus of
uniform convexity η is said to be monotone if it decreases with r, for fixed .
Note that a uniformly convex hyperbolic space is strictly convex, see [21].

The study of fixed points for multivalued nonexpansive mappings using Haus-
dorff metric was initiated by Markin [24], see also [1, 4, 14, 15, 25]. Shimizu
and Takahashi [32] proved the existence of fixed points for multivalued nonex-
pansive maps in convex metric spaces.

There is an interesting and rich fixed point theory for multivalued maps. A
wide range of theory for such maps has been developed and applied to differ-
ent areas of mathematics such as control theory, optimization economics and
differential equations, just to name a few, for example, see [10]. The existence
and convergence of fixed points for multivalued nonexpansive maps in convex
metric space has been discussed, for example, in [1] and the references therein.

In [2], Abbas and Nazir considered the following single-valued three-step iter-
ative process in Banach spaces:






zn = (1− γn)xn + γnTxn,
yn = (1− βn)Txn + βnTzn,
xn+1 = (1− αn)Tyn + αnTzn,
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where {αn}, {βn} and {γn} are in (0, 1).

Khan [13] translated the above scheme into the language of hyperbolic spaces
as follows:

xn+1 = W (Tyn, T zn, αn) ,
yn = W (Txn, T zn, βn) ,
zn = W (xn, Txn, γn) , n ∈ N.

Although the results of Khan [13] are interesting, they are single-valued and use
only one mapping. In this paper, we not only extend his results to multivalued
case but also use two mappings to approximate common fixed points.

Let K be a nonempty convex subset of a hyperbolic space X. Let S, T :
K −→ C(K) be two multivalued mappings and PT (x) = {y ∈ Tx : d(x, y) =
d(x, Tx)}. Choose x0 ∈ K and define the sequence {xn} as follows:






zn =W (xn, vn, γn
αn+βn

),
yn =W (vn, wn, βn

1−αn ),
xn+1 =W (un, wn, αn),

(2)

where vn ∈ PS(xn), un ∈ PT (yn) = PT (W (vn, wn, βn
1−αn )), wn ∈ PT (zn) =

PT (W (xn, vn, γn
αn+βn

)) and αn, βn ∈ (0, 1) such that γn ∈ (0, 1
2 ).

We verify that the algorithm (2) is well defined. Assume that PS and PT are
nonexpansive multivalued mappings on K. It follows from the definition of PT
that d(x, Tx)  d(x, PT (x)) for any x in K. Let a self map f : K −→ K be
defined as

f(x) =W (u,w, α1),

for some u ∈ PT (y) = PT (W (v, w, β1
1−α1 )), w ∈ PT (z) = PT (W (x, v, γ1

α1+β1
))

and v ∈ PS(xn).
For any x1, x2 ∈ K, let v1 ∈ PS(x1), v2 ∈ PS(x2) such that d(v1, v2) =
d(v1, Sx2),

w1 ∈ PT (z1) = PT (W (x0, v1,
γ1

α1+β1
)), w2 ∈ PT (z2) = PT (W (x0, v2,

γ1
α1+β1

))
such that d(w1, w2) = d(w1, T z2),

u1 ∈ PT (y1) = PT (W (v1, w1,
β1

1−α1 )), u2 ∈ PT (y2) = PT (W (v2, w2,
β1

1−α1 ))
such that d(u1, u2) = d(u1, T y2).
Using Definition 1.(iv), we have
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d(f(x1), f(x2))
= d(W (u1, w1, α1),W (u2, w2, α1))
 (1− α1)d(u1, u2) + α1d(w1, w2)
= (1− α1)d(u1, T y2) + α1d(w1, T z2)

 (1− α1)d(u1, PT (W (v2, w2,
β1

1− α1
))) + α1d(w1, PT (W (x0, v2,

γ1
α1 + β1

)))

 (1− α1)H(PT (W (v1, w1,
β1

1− α1
)), PT (W (v2, w2,

β1

1− α1
)))

+ α1H(PT (W (x0, v1,
γ1

α1 + β1
)), PT (W (x0, v2,

γ1
α1 + β1

)))

 (1− α1)

1− β1

1− α1
d(v1, v2) +

β1

1− α1
d(w1, w2)



+α1


γ1

α1 + β1
d(v1, v2)



= (1− α1 − β1)d(v1, v2) + β1d(w1, w2) + α1


γ1

α1 + β1
d(v1, v2)



= (1− α1 − β1)d(v1, Sx2) + β1d(w1, T z2)

+α1


γ1

α1 + β1
d(v1, Sx2)



 (1− α1 − β1)d(v1, PS(x2)) + β1d(w1, PT (z2))

+α1


γ1

α1 + β1
d(v1, PS(x2))



 (1− α1 − β1)H(PS(x1), PS(x2))

+ β1H(PT (W (x0, v1,
γ1

α1 + β1
)), PT (W (x0, v2,

γ1
α1 + β1

)))

+
α1γ1
α1 + β1

H(PS(x1), PS(x2))

 (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
d(v1, v2) +

α1γ1
α1 + β1

d(x1, x2)

= (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
d(v1, Sx2) +

α1γ1
α1 + β1

d(x1, x2)

 (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
H(PS(x1), PS(x2)) +

α1γ1
α1 + β1

d(x1, x2)

92 S. HUSSAIN KHAN, D. AGBEBAKU AND M. ABBAS

d(f(x1), f(x2))
= d(W (u1, w1, α1),W (u2, w2, α1))
 (1− α1)d(u1, u2) + α1d(w1, w2)
= (1− α1)d(u1, T y2) + α1d(w1, T z2)

 (1− α1)d(u1, PT (W (v2, w2,
β1

1− α1
))) + α1d(w1, PT (W (x0, v2,

γ1
α1 + β1

)))

 (1− α1)H(PT (W (v1, w1,
β1

1− α1
)), PT (W (v2, w2,

β1

1− α1
)))

+ α1H(PT (W (x0, v1,
γ1

α1 + β1
)), PT (W (x0, v2,

γ1
α1 + β1

)))

 (1− α1)

1− β1

1− α1
d(v1, v2) +

β1

1− α1
d(w1, w2)



+α1


γ1

α1 + β1
d(v1, v2)



= (1− α1 − β1)d(v1, v2) + β1d(w1, w2) + α1


γ1

α1 + β1
d(v1, v2)



= (1− α1 − β1)d(v1, Sx2) + β1d(w1, T z2)

+α1


γ1

α1 + β1
d(v1, Sx2)



 (1− α1 − β1)d(v1, PS(x2)) + β1d(w1, PT (z2))

+α1


γ1

α1 + β1
d(v1, PS(x2))



 (1− α1 − β1)H(PS(x1), PS(x2))

+ β1H(PT (W (x0, v1,
γ1

α1 + β1
)), PT (W (x0, v2,

γ1
α1 + β1

)))

+
α1γ1
α1 + β1

H(PS(x1), PS(x2))

 (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
d(v1, v2) +

α1γ1
α1 + β1

d(x1, x2)

= (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
d(v1, Sx2) +

α1γ1
α1 + β1

d(x1, x2)

 (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
H(PS(x1), PS(x2)) +

α1γ1
α1 + β1

d(x1, x2)



THREE STEP ITERATION PROCESS FOR ... 93

 (1− α1 − β1)d(x1, x2) +
β1γ1

α1 + β1
d(x1, x2) +

α1γ1
α1 + β1

d(x1, x2)

 (1− α1 − β1 + γ1)d(x1, x2)
= 2γ1d(x1, x2).

Since 2γ1 < 1, the mapping f is therefore a contraction. Hence by the Banach
contraction mapping principle, f has a unique fixed point in K. Thus we
have established the existence of x1. Continuing in this way, the existence of
x2, x3, · · · and thus xn is guaranteed. Hence the above algorithm is well-defined.

The concept of ∆-convergence in a metric space was introduced by Lim [23]. In
[18], Kirk and Panyanak applied Lim’s concept to CAT(0) spaces and proved a
number of results involving weak convergence in Banach spaces. Since then the
notion of ∆-convergence has been widely studied and a number of papers have
been published in this direction, see[9], [10], [19], [20], [24], [26], [30]. In order
to give the definition of ∆-convergence, we first recall the notion of asymptotic
radius and asymptotic center. Let {xn} be a bounded sequence in a metric
space X. For x ∈ X, define a continuous functional r(x, {xn}) by

r(x, {xn}) = lim sup
n→∞

d(x, {xn}).

rK({xn}) = inf{r(x, {xn}) : x ∈ K} is called the asymptotic radius of {xn}
with respect to K ⊆ X. For any y ∈ K, the set

AK({xn}) = {x ∈ X : r(x, {xn})  r(y, {xn})}

is called the asymptotic center of {xn} with respect to K ⊂ X. Asymptotic
radius and asymptotic center taken with respect to X are denoted as r({xn})
and A({xn}) respectively. The asymptotic center A({xn}) may, in general, be
empty or may contain infinitely many points. It is well known that a com-
plete uniformly convex space with monotone modulus of convexity enjoys the
property that bounded sequences have unique asymptotic center with respect
to closed convex subsets, see, for example, [22].

Definition 1.5. A sequence {xn} in X is said to ∆-converge to x ∈ X if x is
the unique asymptotic center of all subsequence {xni} of {xn}. In this case, x
is called the ∆-limit of {xn}.

Lemma 1.6. [5] (i) Every bounded sequence in X has a ∆-convergent subse-
quence (see [17, p. 3690]).

(ii) If K is a closed convex subset of X and {xn} is a bounded sequence in K,
then asymptotic center of {xn} is in K (see [28, Proposition 2.1]).
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(iii) If K is a closed convex subset of X and f : K −→ X is a nonexpansive
mapping, then the conditions, {xn} ∆-converges to x and d(xn, f(xn)) → 0,
imply x ∈ K and f(x) = x (see [17, Proposition 3.7]).

Lemma 1.7. [5] If {xn} is a bounded sequence in X with A({xn}) = {x} and
{un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)}
converges, then x = u.
The following result is needed in the proof of our main results.

Lemma 1.8. [12] Let K be a nonempty closed subset of a uniformly convex
hyperbolic space and {xn} a bounded sequence in K such that A({xn}) = {y}.
If {ym} is another sequence in K such that limn→∞ r(ym, {xn}) = r(y, {xn}),
then limn→∞ ym = y.

Lemma 1.9. [12] Let (X, d,W ) be a uniformly convex hyperbolic space with a
monotone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence
in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that
lim sup
n−→∞

d(xn, x)  r, lim sup
n−→∞

d(yn, x)  r and lim
n−→∞

d(W (xn, yn, αn), x) = r for

some r  0, then lim
n−→∞

d(xn, yn) = 0.

2. Main Results

In this section we present the main results. The following lemma was proved
in [6].

Lemma 2.1. Let K be a nonempty subset of a metric space X and T : K −→
C(K) be a multivalued mapping. Then x ∈ F (T ) iff PT (x) = {x} iff x ∈ F (PT ).
Moreover, F (T ) = F (PT ).
We denote F = F (T ) ∩ F (S) the set of all common fixed points of the multi-
valued maps T and S.

Lemma 2.2. Let K be a nonempty closed convex subset of a hyperbolic space
X and let S, T : K −→ C(K) be multivalued mappings such that PT , PS are
nonexpansive and F = φ. Then, for the sequence defined in (2) , d(xn+1, p) 
d(xn, p) for each p ∈ F.

Proof. Let p ∈ F. Then p ∈ PT (p) = {p} and p ∈ PS(p) = {p}. Using (2) and
Definition 1., we have

d(zn, p) = d(W (xn, vn,
γn

αn + βn
), p)

 (1− γn
αn + βn

)d(xn, p) +
γn

αn + βn
d(vn, p)



THREE STEP ITERATION PROCESS FOR ... 95

 (1− γn
αn + βn

)d(xn, p) +
γn

αn + βn
H(PS(xn), PS(p))

 (1− γn
αn + βn

)d(xn, p) +
γn

αn + βn
d(xn, p)

 d(xn, p).

That is,
d(zn, p)  d(xn, p). (3)

Next,

d(yn, p) = d(W (vn, wn,
βn

1− αn
), p)

 (1− βn
1− αn

)d(vn, p) +
βn

1− αn
d(wn, p)

 (1− βn
1− αn

)H(PS(xn), PS(p)) +
βn

1− αn
H(PT (zn), PT (p))

 (1− βn
1− αn

)d(xn, p) +
βn

1− αn
d(zn, p)

 (1− βn
1− αn

)d(xn, p) +
βn

1− αn
d(xn, p)

= d(xn, p).

That is,
d(yn, p)  d(xn, p). (4)

Therefore,

d(xn+1, p) = d(W (un, wn, αn), p)
 (1− αn)d(un, p) + αnd(wn, p)
 (1− αn)H(PT (yn), PT (p)) + αnH(PT (zn), PT (p))
 (1− αn)d(yn, p) + αnd(zn, p) (5)
 (1− αn)d(xn, p) + αnd(xn, p)
= d(xn, p).

That is,
d(xn+1, p)  d(xn, p). 

The following results are immediate consequence of Lemma 2.2.

Corollary 2.3. Let the assumptions of Lemma 2.2 hold. Then for the sequence
{xn} in (2) ,we have
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1. lim
n→∞

d(xn, p) exists for all p ∈ F.

2. lim
n→∞

d(xn, F (T )) exists.

3. {xn} is bounded.

Lemma 2.4. Let K be a nonempty closed convex subset of a uniformly convex
hyperbolic space X and let S, T : K −→ C(K) be multivalued maps such that
PT , PS are nonexpansive maps and F = ∅. Then for the sequence defined in(2) ,

lim
n→∞

d(xn, PS(xn)) = lim
n→∞

d(xn, PT (yn)) = lim
n→∞

d(xn, PT (zn)) = 0.

Proof. From Corollary 2.3, lim
n→∞

d(xn, p) exists for all p ∈ F, call it c for some
c  0. We proceed to proof for the case c > 0 as the case c = 0 trivially holds.
Now lim

n−→∞
d(xn+1, p) = c means

lim
n−→∞

d(W (un, wn, αn), p) = c.

Since PT is nonexpansive, we have

d(un, p)  H(PT (yn), PT (p))
 d(yn, p)
 d(xn, p) by (4),

so that
d(un, p)  d(xn, p).

Taking lim sup of both sides, we have

lim sup
n→∞

d(un, p)  lim sup
n→∞

d(xn, p) = c.

Thus
lim sup
n→∞

d(un, p)  c. (6)

Similarly,
lim sup
n→∞

d(vn, p)  c (7)

and

lim sup
n→∞

d(wn, p)  c. (8)
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Furthermore,

d(W (vn, wn,
βn

1− αn
), p)  (1− βn

1− αn
)d(vn, p) +

βn
1− αn

d(wn, p)

 (1− βn
1− αn

)d(xn, p) +
βn

1− αn
d(xn, p)

= d(xn, p).

That is
d(W (vn, wn,

βn
1− αn

), p)  d(xn, p).

Taking lim sup of both sides, we have

lim sup
n→∞

d(W (vn, wn,
βn

1− αn
), p)  c. (9)

Similarly, one can show that

lim sup
n→∞

d(W (xn, vn,
γn

αn + βn
), p)  c. (10)

Moreover, from (5) , we have

d(xn+1, p)
 (1− αn)d(yn, p) + αnd(zn, p)

 (1− αn)

(1− βn

1− αn
)d(xn, p) +

βn
1− αn

d(zn, p)

+ αnd(zn, p)

 (1− αn)

(1− βn

1− αn
)d(xn, p) +

βn
1− αn

d(W (xn, vn,
γn

αn + βn
), p)



+ αnd(xn, p)

 (1− αn − βn)d(xn, p) + βnd(W (xn, vn,
γn

αn + βn
), p) + αnd(xn, p)

= (1− βn)d(xn, p) + βnd(W (xn, vn,
γn

αn + βn
), p).

This gives

βnd(xn+1, p)  (1− βn)d(xn, p)

+ βnd(W (xn, vn,
γn

αn + βn
), p)− (1− βn)d(xn+1, p)

 βnd(W (xn, vn,
γn

αn + βn
), p)

+(1− βn) [d(xn, p)− d(xn+1, p)] ,
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and so

d(xn+1, p)  d(W (xn, vn,
γn

αn + βn
), p) +

(1− βn)
βn

[d(xn, p)− d(xn+1, p)]

 d(W (xn, vn,
γn

αn + βn
), p) +

(1− a)
a

[d(xn, p)− d(xn+1, p)] .

That is,

d(xn+1, p)  d(W (xn, vn,
γn

αn + βn
), p) +

(1− a)
a

[d(xn, p)− d(xn+1, p)] .

Now taking lim inf of both sides we have

c  lim inf
n−→∞

d(W (xn, vn,
γn

αn + βn
), p). (11)

This implies that

c  lim inf
n−→∞

d(W (xn, vn,
γn

αn + βn
), p)

 lim sup
n−→∞

d(W (xn, vn,
γn

αn + βn
), p)  c,

and, in turn, we have

lim
n−→∞

d(W (xn, vn,
γn

αn + βn
), p) = c

From Lemma 1., (7) , and lim
n−→∞

d(xn, p) = c, it follows that

lim
n−→∞

d(xn, vn) = 0.

Again, from (5) , we have

d(xn+1, p)  (1− αn)d(yn, p) + αnd(zn, p)

 (1− αn)d(W (vn, wn,
βn

1− αn
), p) + αnd(zn, p)

 (1− αn)d(W (vn, wn,
βn

1− αn
, p) + αnd(xn, p)

(1− αn)d(xn+1, p)  (1− αn)d(W (vn, wn,
βn

1− αn
, p))

+ αn[d(xn, p)− d(xn+1, p)]

d(xn+1, p)  (1− αn)d(W (vn, wn,
βn

1− αn
), p)

+
αn

1− αn
[d(xn, p)− d(xn+1, p)]

d(xn+1, p)  d(W (vn, wn,
βn

1− αn
), p) +

b

1− b
[d(xn, p)− d(xn+1, p)] .
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That is,

d(xn+1, p)  d(W (vn, wn,
βn

1− αn
), p) +

b

1− b
[d(xn, p)− d(xn+1, p)] .

Now taking lim inf of both sides, we have

c  lim inf
n−→∞

d(W (vn, wn,
βn

1− αn
), p).

Also by (9) ,

lim sup
n−→

d(W (vn, wn,
βn

1− αn
), p)  c,

so that,

c  lim inf
n−→∞

d(W (vn, wn,
βn

1− αn
), p)

 lim sup
n−→∞

d(W (vn, wn,
βn

1− αn
), p)  c,

which implies that

lim
n−→∞

d(W (vn, wn,
βn

1− αn
), p) = c. (12)

From Lemma 1., (7) , (8) and (12) , it follows that

lim
n−→∞

d(vn, wn) = 0.

From basic properties of metric d, we have

d(xn, wn)  d(xn, vn) + d(vn, wn)

which implies that

lim
n−→∞

d(xn, wn)  d(xn, vn) + d(vn, wn) −→ 0.

Thus
lim

n−→∞
d(xn, wn) = 0.

From(2) , we have
d(xn+1, p) = d(W (un, wn, αn), p),

which implies
lim

n−→∞
d(W (un, wn, αn), p) = c.
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So that from (6) , (8) and Lemma 1., we get

lim
n−→∞

d(un, wn) = 0.

Thus
d(xn, un)  d(xn, wn) + d(wn, un),

implies that
lim

n−→∞
d(xn, un) = 0.

Finally, since d(x, PS(x)) = inf
z∈PS(x)

d(x, z), we have

lim
n−→∞

d(xn, PS(xn))  lim
n−→∞

d(xn, vn) = 0,

which implies that
lim

n−→∞
d(xn, PS(xn)) = 0.

Similarly,
lim

n−→∞
d(xn, PS(yn)) = 0,

and
lim

n−→∞
d(x, PS(zn)) = 0.

This completes the proof. 

In what follows, we prove that the sequence {xn} given in (2) ∆-converges to
a common fixed point of two multivalued nonexpansive mappings.

Theorem 2.5. Let K be a nonempty, closed and convex subset of a uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η. Let
S, T : K −→ C(K) be multivalued nonexpansive maps such that PT and PS are
nonexpansive. Let {xn} be the sequence in (2). Then {xn} ∆-converges to a
common fixed point of S and T (or PT and PS).

Proof. Since {xn} is bounded by Corollary 2.3, it follows that {xn} has a
unique asymptotic center. That is, A({xn}) = {x}. Let {zn} denote any sub-
sequence of {xn} such that A({zn}) = {z}. Then by Lemma 2.4, we have

lim
n→∞

d(zn, PT (zn)) = lim
n→∞

d(zn, PS(zn)) = 0.

Claim: z is a common fixed point of PS and PT .

Proof of claim: Take wm in PT (z). Then
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r(wn, {zn}) = lim sup
n→∞

d(wn, zn)

 lim sup
n→∞

{d(wm, PT (zn)) + d(PT (zn), zn)

 lim sup
n→∞

H(PT (z), PT (zn))

 lim sup
n→∞

d(z, {zn})

= r(z, {zn}).

This implies that |r(wn, {zn}) − r(z, {zn})| → 0 as m → ∞. Therefore, from
Lemma 1., we have that limn→∞ wm = z. Since PT (K) and PS(K) are closed
and bounded subsets of K, it follows that PT (z) and PS(z) are closed. Con-
sequently, limn→∞ wm = z ∈ PT (z) and limn→∞ wm = z ∈ PS(z). Hence
z ∈ F (T ) and z ∈ F (S) so that z ∈ F.

By the existence of the limit limn→∞ d(xn, z) and the uniqueness of asymptotic
centers, we have

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, x)

 lim sup
n→∞

{d(xn, x)

 lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(z, {zn})

= r(z, {zn}).

which leads to a contradiction. Hence x = z. Thus A({zn}) = {z} for every
subsequence {zn} of {xn} which shows that {xn} ∆-converges to a common
fixed point of S and T. 

Next, we give a necessary and sufficient condition for the strong convergence
of the iterative scheme (2) .

Theorem 2.6. Let K be a nonempty, closed and convex subset of a complete
hyperbolic space X. Let S, T : K −→ C(K) be multivalued nonexpansive maps
such that PT and PS are nonexpansive. Let {xn} be the sequence in (2) . Then
{xn} converges strongly to a common fixed point of S and T (or PT and PS)
if and only if lim infn→∞ d(xn, F ) = 0.

Proof. (=⇒) Suppose that {xn} converges to a common fixed point p of T and
S. Then limn→∞ d(xn, p) = 0. Since 0  d(xn, F )  d(xn, p), it follows that
limn→∞ d(xn, F ) = 0 so that lim infn→∞ d(xn, F ) = 0.
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(⇐=) Suppose that lim infn→∞ d(xn, F ) = 0. Then from Lemma 2.2, we infer
that

d(xn+1, F )  d(xn+1, F ),

so that limn→∞ d(xn, F ) exists. Using the hypothesis lim infn→∞ d(xn, F ) = 0
and the existence of limn→∞ d(xn, F ), we have

lim
n→∞

d(xn, F ) = 0.

We now show that {xn} is a Cauchy sequence in K. To see this, let m,n ∈ N
and assume m > n. Since from Lemma 2.2, d(xn+1, p)  d(xn, p) for all p ∈ F,
it follows that

d(xm, p)  d(xn, p) for all p ∈ F.
Thus

d(xm, xn)  d(xm, p) + d(xn, p)  2d(xn, p).

Taking inf on the set F, we have

inf
p∈F
d(xm, xn)  inf

p∈F
2d(xn, p) = 2d(xn, F ).

This yields
d(xm, xn)  2d(xn, F ).

On letting m→∞, n→∞, we have

0  lim
n→∞

d(xm, xn)  lim
n→∞

2d(xn, F ) −→ 0, as n→∞.

Thus
lim
n→∞

d(xm, xn) = 0,

which implies that {xn} is a Cauchy sequence in K.

Since X is complete, the sequence {xn} converges to a point, say q ∈ X. We
now show that q is a common fixed point of T and S. That is, q ∈ F. Indeed,

d(xn, F (PT )) = inf
y∈F (PT )

d(xn, y),

implies that for each  > 0, there exists pn ∈ F (PT ) such that

d(xn, pn) < d(xn, F (PT )) +


4
.

Taking limit as n→∞, we have

lim
n→∞

d(xn, pn) < lim
n→∞

[d(xn, F (PT )) +


4
],
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which implies

lim
n→∞

d(xn, pn) 


4
.

Observe that
d(pn, q)  d(xn, pn) + d(xn, q),

so that
lim sup
n→∞

d(pn, q) 


4
.

Finally, we have the following inequality.

d(PT (q), q)  d(q, pn) + d(pn, PT (q))
 d(q, pn) +H(PT (pn), PT (q))
 d(q, pn) + d(pn, q)
= 2d(pn, q).

Taking lim sup, we have

d(PT (q), q)  2 lim sup
n→∞

d(pn, q)  2


4
=


2
< .

Since  is arbitrary, therefore d(PT (q), q) = 0. In a way similar way, one can
show that d(PS(q), q) = 0. Since F is closed, q ∈ F as required. 

We now give some examples to illustrate our results.

Example 2.7. Let K = [0, 1] be equipped with the metric d(x, y) = |x−y|. Let
S, T : K −→ CB(K) (family of closed and bounded subset of K) be defined
by Sx = [0, x4 ] and Tx = [0,

x
2 ].Then for any x, y ∈ K

H(Tx, Ty) = max{

x

2
− y

2

 , 0} =

x

2
− y

2

 =

x− y

2

  |x− y|.

Similarly,

H(Sx, Sy) = max{

x

4
− y

4

 , 0} =

x

4
− y

4

 =

x− y

4

  |x− y|.

Thus T and S are multivalued nonexpansive maps. Clearly, F (T )∩F (S) = {0}.
We proceed to show that the sequence {xn} defined in (2) converges to a
common fixed point of T and S. In this regard, we define PT and PS as follows.
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If x = 0 then PT (x) = PS(x) = {0}. Let x ∈ (0, 1], then

PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}
= {y ∈ Tx : |x− y| = |x− Tx|}

= {y ∈ Tx : |x− y| = |x− [0, x
2
]|}

= {y ∈ Tx : |x− y| = x

2
}

=

y =

x

2


.

Similarly,

PS(x) =

3x
4


.

We define the map W : R2 × [0, 1] −→ R in (1.) by

W (x, y, α) = (1− α)x+ αy.

and choose αn = βn = γn = 1
3 so that the sequence {xn} is define as follows






zn =W (xn, vn, γn
αn+βn

) = 1
2 (xn + vn),

yn =W (vn, wn, βn
1−αn ) =

1
2 (vn + wn),

xn+1 =W (un, wn, αn) = 2
3un +

1
3wn,

with vn ∈ PS(xn) =


3xn
4


, that is,

vn =
3xn
4
,

un ∈ PT (yn) =

yn
2


, that is,

un =
yn
2
,

and wn ∈ PT (zn) =

zn
2


, that is,

wn =
zn
2
.

The table below show the result of our computation. Note that only a few
iterations are displayed here, the other iterations follow a similar trend and are
thus ignored.
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Table 1: Computations Table

n xn vn zn wn yn un xn+1
n xn

3xn
4

1
2 (xn + vn) zn

2
1
2 (vn + wn) yn

2
2
3un + 1

3wn
1 0.5 0.375 0.4375 0.21875 0.296875 0.1484375 0.171875
2 0.171875 0.128906 0.150391 0.075195 0.102051 0.051025 0.059082
3 0.059082 0.044312 0.051697 0.025848 0.035080 0.017540 0.020309
4 0.020309 0.015232 0.017771 0.008885 0.012059 0.006029 0.006981
5 0.006981 0.005236 0.006109 0.003054 0.004145 0.002073 0.002400
6 0.002400 0.001800 0.002100 0.001050 0.001425 0.000712 0.000825
7 0.000825 0.000619 0.000722 0.000361 0.000490 0.000245 0.000284
8 0.000284 0.000213 0.000248 0.000124 0.000168 0.000084 0.000097
9 0.000097 0.000073 0.000085 0.000043 0.000058 0.000029 0.000034
10 0.000034 0.000025 0.000029 0.000015 0.000020 0.000010 0.000012
11 0.000012 0.000009 0.000010 0.000005 0.000007 0.000003 0.000004
12 0.000004 0.000003 0.000003 0.000002 0.000002 0.000001 0.000001
13 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000000
14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

From the table it is clear that as n −→ ∞, the sequence xn −→ 0 ∈ F. Hence
result follows.

Example 2.8. Let K = [1,∞) be equipped with the metric d(x, y) = |x − y|.
Let S, T : K −→ CB(K) (family of closed and bounded subset ofK) be defined
by Sx = [1, 1 + x

4 ] and Tx = [1, 1 +
x
2 ]. The sets of fixed points of the maps

T and S are F (T ) = [1, 2] and F (S) = [1, 4
3 ], respectively. The set of common

fixed points F = [1, 4
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We proceed to show that the sequence {xn} defined in (2) converges to a
common fixed point of T and S. In this regard, we define PT and PS as follows.
If x ∈ [1, 4

3 ], then PT (x) = {x} = PS(x).
If x ∈ (2,∞),then

PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)} =

y =

x+ 2
2


.

Similarly,

PS(x) =

x+ 4
4


.

However, if x ∈ ( 43 , 2] then PT (x) = {x} and PS(x) =

x+4
4


. We define the

map W : R2 × [0, 1] −→ R in (1.) by

W (x, y, α) = (1− α)x+ αy.
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and choose αn = βn = γn = 1
3 so that the sequence {xn} is define as follows






zn =W (xn, vn, γn
αn+βn

) = 1
2 (xn + vn),

yn =W (vn, wn, βn
1−αn ) =

1
2 (vn + wn),

xn+1 =W (un, wn, αn) = 2
3un +

1
3wn,

with vn ∈ PS(xn) =

xn+4

4


, that is, vn = xn+4

4 , un ∈ PT (yn) =

yn+2

2


, that

is, un = yn+2
2 , and wn ∈ PT (zn + 2) =


zn+2

2


that is, wn = zn+2

2 .
The table below show the result of our computation. Note that only a few
iterations are displayed here, the other iterations follow a similar trend and are
thus ignored.

Table 2: Computations Table

n xn vn zn wn yn un xn+1
n xn

xn+4
4

1
2 (xn + vn) zn+2

2
1
2 (vn + wn) yn+2

2
2
3un + 1

3wn
1 3 1.75 2.375 2.1875 1.96875 1.984375 2.052083333
2 2.052083333 1.513020833 1.782552083 0.945638021 1.229329427 1.614664714 1.391655816
3 1.391655816 1.347913954 1.369784885 0.842446221 1.095180088 1.547590044 1.312542103
4 1.312542103 1.328135526 1.320338814 0.830084704 1.079110115 1.539555057 1.303064939
5 1.303064939 1.325766235 1.314415587 0.828603897 1.077185066 1.538592533 1.301929654
6 1.301929654 1.325482414 1.313706034 0.828426508 1.076954461 1.538477231 1.301793656
7 1.301793656 1.325448414 1.313621035 0.828405259 1.076926836 1.538463418 1.301777365
8 1.301777365 1.325444341 1.313610853 0.828402713 1.076923527 1.538461764 1.301775414
9 1.301775414 1.325443853 1.313609633 0.828402408 1.076923131 1.538461565 1.30177518
10 1.30177518 1.325443795 1.313609487 0.828402372 1.076923083 1.538461542 1.301775152
11 1.301775152 1.325443788 1.31360947 0.828402367 1.076923078 1.538461539 1.301775148
12 1.301775148 1.325443787 1.313609468 0.828402367 1.076923077 1.538461539 1.301775148
13 1.301775148 1.325443787 1.313609467 0.828402367 1.076923077 1.538461538 1.301775148

From the table it is clear that as n −→ ∞, the sequence xn −→ 1.301775148 ∈
F. Hence result follows.

3. Concluding Remarks

The result presented in this paper concern the convergence of the three-step
iteration scheme (2) to common fixed point of two multivalued nonexpansive
maps in a hyperbolic space. Our results extend the work of Khan [13] to mul-
tivalued maps in hyperbolic spaces. Furthermore, our results can also be con-
sidered as an extension of the work of Khan et al. [6] to three steps iterative
schemes in hyperbolic spaces.
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